定位误差计算02

定位误差计算02
定位误差计算02

3.2.3 定位误差的分析与计算

在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。

1.用夹具装夹加工时的工艺基准

用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种:

(1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。

(2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。

(3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体

4的上工作面(相当支承板支承工作面)来确定的。夹具体4的上工作面是对刀基准,它确定了刀具在高度方向的位置,使刀具加工出来的槽底位置符合设计的要求。图3.3中,槽子两侧面对称度的设计基准是工件上大孔的轴线,对刀基准则为夹具上定位圆柱销的轴线。再如图3.21所示,轴套件以内孔定位,在其上加工一直径为φd 的孔,要求保证φd 轴线到左端面的尺寸L 1及

孔中心线对内孔轴线的对称度要求。尺寸L 1的设计基准是工件左端面A ′,对刀基准是定位心轴的台阶面A ;φd 轴线对内孔轴线的对称度的设计基准是内孔轴线,对刀基准是夹具定位心轴2的轴线OO 。

2.定位误差的概念

用夹具装夹加工一批工件时,由于定位不准确引起该批工件某加工精度参数(尺寸、位置)的加工误差,称为该加工精度参数的定位误差(简称定位误差)。定位误差以其最大误差范围来计算,其值为设计基准在加工精度参数方向上的最大变动量,用dw 表示。

a)

图3.21 钻模加工时的基准分析

3.定位误差产生的原因及其计算

先以图3.22为例,分析定位误差产生的原因。图3.22是以心轴定位在轴套件的外圆柱

面上加工槽子的具体定位方案。槽底尺寸h 的设计基准是外圆的母线A ,定位

基准是内孔的轴线O ′,对刀基准是夹具定位心轴的轴线O ,而一批工件外圆直径、内孔直径及夹具定位心轴直径都在其公差范围内变化,故对一批工件来说,必然会存在定位不准确的问题,必将引起一批工件加工精度参数的变化,即定位误差。图3.22的定位方案,当以内孔定位加工槽子时,工件外圆尺寸的

在变化会引起加工精度参数槽底尺寸h 的变化(即产生定位误差),这是因为设计基准于定位基准不重合引起的。当工件内孔与定位心轴配合定位时,由于其配合间隙的存在会使内孔轴线(定位基准)对心轴轴线(对刀基准)的位置在圆周360°方向发生变化。加工刀具的位置由心轴轴线确定,对一批工件而言,必将引起内孔轴线到槽底尺寸的变化,进而引起槽底尺寸h 的变化(即产生定位误差),这是因为定位基准相对对刀基准存在位置变动造成的。可见,定位误差产生的原因有两个,即定位基准与设计基准的不重合和定位基准相对对刀基准的位置变动。

1)基准不重合误差

定位基准与设计基准不重合产生的定位误差称基准不重合误差,用jb ?表示。从对图3.22的分析不难看出,基准不重合误差jb ?与设计基准相对于定位基准的最大变动量B ?(即设计基准与定位基准之间尺寸的公差值)密切相关。

当B ?与加工精度参数的方向相同时,jb ?=B ?;当B ?与加工精度参数的方向不同时,应根据实际定位方案所决定的几何关系按一定的函数关系进行计算,以确定B ?产生的定位误差的值,故有()B f jb ?=?1。将以上两种情况概括起来,基准不重合误差的计算应为()B f jb ?=?1,其中函数1f 的具体形式根据具体的定位方案分析确定。

2)基准位置误差

定位基准相对对刀基准的位置移动产生的定位误差称为基准位置误差,用jw ?表示。同理,从对图3.22的分析不难看出,基准位置误差jw ?与定位基准相对对刀基准的最大位置移动量E ?(一般为工件定位表面与定位元件工作面配合的最大间隙)密切相关。

当E ?与加工精度参数的方向相同时,jw ?=E ?;当E ?与加工精度参数的方向不同时,应根据实际定位方案所决定的几何关系按一定的函数关系进行计算,以确定E ?产生的定位误差的值,故有()E f jw ?=?2。将以上两种情况概括起来,基准位置误差的计算应为()E f jw ?=?2,其中函数2f 的具体形式根据具体的定位方案分析确定。

因为定位误差是对一批工件而言,是以其最大误差范围来计算的,故在上述jb ?和jw ?计算的分析中,考虑的是设计基准相对于定位基准的最大变动量B ?和定位基准相对对刀基准的最大位置移动量E ?。

3)定位误差的计算

由上述定位误差产生的原因及两类定位误差的计算(基准不重合误差jb ?,基准位置误差jw ?),可以得出定位误差dw ?的计算公式如下:

对刀基准

图3.22 铣槽工序定位误差分析

)()(21E f B f jw jb dw ?±?=?±?=? (3-3)

式中 dw ?—定位误差;

jb ?—基准不重合误差; jw ?—基准位置误差;

B ?—设计基准相对定位基准的最大变动量; E ?—定位基准相对对刀基准的最大位置移动量;

1f 、2f —求解B ?、E ?在加工精度参数方向上产生的定位误差的函数,其具体形

式根据具体的定位方案来分析确定。

在式3-3中,当jb ?和jw ?由两个互不相关的变量引起时,用“+”;当jb ?和jw ?是同一变量引起时,要判断两者对dw ?的影响是否同向,方向相同时用“+”,方向相反时用“-”。

4.分析计算定位误差时应注意的问题

(1)定位误差是指工件某工序中某加工精度参数的定位误差。它是该加工精度参数(尺寸、位置)的加工误差的一部分。

(2)某工序的定位方案对本工序的多个不同加工精度参数产生不同的定位误差,应分别逐一计算。

(3)分析计算定位误差的前提是用夹具装夹加工一批工件,用调整法保证加工要求。 (4)计算出的定位误差数值是指加工一批工件时某加工精度参数可能产生的最大误差范围(加工精度参数最大值于最小值之间的变动量)。它是个界限范围,而不是某一个工件定位误差的具体值。

(5)一批工件的设计基准相对定位基准、定为基准相对对刀基准产生最大位置变动量B ?、E ?是产生定位误差的原因,而不一定就是定位误差的数值。

注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。

3.2.4 工件在夹具中加工精度的分析与定位方案的确定

任何一种机械产品,在加工的工艺过程中都不可避免地存在着加工误差,即加工几何参数的实际值与其理想值之间存在偏差。这种偏差越大,加工误差就越大,实际参数的精度就越低。所谓合格零件,是指加工误差不超出设计给定的公差值的零件。产生加工误差的原因是多方面的,其中一部分就来源于夹具。在夹具设计时,分析产生加工误差的原因,并把加工误差控制在允许的范围之内,对于提高夹具设计质量,保证工件加工质量具有重要意义。

1.工序精度参数的加工误差

所谓工序加工精度参数,是指在工序图上标注出的、通过本工序的加工来保证精度的参数,如位置尺寸、垂直度、同轴度、平行度等。机械加工过程中,夹具的主要功能是保证零件上要素间的位置精度。用夹具装夹加工一批零件时,工序加工精度参数的加工误差由两部分组成,其一是于夹具的设计、制造、使用等有关的加工误差,简称夹具误差;其二是于工艺系统中除夹具之外的其它组成部分(机床、刀具、工件)有关的加工误差,简称其它误差。

1)夹具误差

由于使用夹具进行装夹加工而引起的工序加工精度参数的加工误差称夹具误差。它主要包括以下三项:

(1)定位误差 工件在夹具上定位不准确而引起的加工误差,用dw ?表示。

(2)夹具位置误差 夹具在机床上的位置不准确而引起的加工误差,用jj ?表示。

(3)刀位误差 刀具相对于夹具的位置不准确引起的加工误差,或刀具与引导元件、对刀元件之间配合间隙引起的导向或对刀误差,用dj ?表示。

夹具的设计、制造、夹具在机床上的装夹、夹紧时夹具变形、夹具的磨损等因素引起的工序加工精度参数的加工误差,是上述三项误差的组成部分,这些误差的存在,最终引起刀具相对于工件位置的不准确而产生加工误差。

2)其它误差 工艺系统中除夹具以外的其它组成部分引起的加工误差,用qt ?表示。产生这项误差的原因有机床、刀具、工件的几何误差、受力变形、热变形、磨损以及各种随机因素引起的加工误差。

2.工序加工精度参数公差的分配与定位方案的确定 1) 工序加工精度参数公差的分配

为了保证工件的加工精度,使其成为合格的产品,上述的各项加工误差之和应不超出工序加工精度参数设计时给定的公差值,即

T qt dj jj dw ≤?+?+?+? (3-4) 在生产实际中,一般将工序加工精度参数设计给定的公差值T 分成三份,定位误差dw ?占一份,夹具位置误差jj ?和刀位误差dj ?和起来占一份,其它误差qt ?占一份。这样的分配并非完全合理,仅作为公差分配的初步方案,应用时还应根据具体情况进行调整。因为不是在所有的夹具中,几种加工误差都同时存在,例如钻床夹具无夹具位置误差jj ?、定位误差等于零的情况等。即使几种加工误差都同时存在,也可按具体情况作适当调整。在夹具设计中,夹具总图上标注的于上述误差对应的位置精度都是通过求解式3-4而给出的。下面对图3.23所示定位方案进行分析,以说明工序加工精度参数公差值的分配方法。

图3.23中,圆柱形工件在V 形块上定位,在立式钻床上用钻模钻孔。设计给定加工孔的轴线对圆柱轴线的对称度公差为0.1mm 。由于V 形块具有良好的对中性能,故该方案对称度的定位误差0=?dw ;钻模在钻床上的位

置是由钻套来找正,然后再固定的,所以夹具位置误差0=?jj 。根据式3-4有

1.0=≤?+?T qt dj

将公差做平均分配,取05.0=?dj ,05.0=?qt

为了保证导向误差控制在0.05mm 以内,考虑随机因

素的影响,夹具设计时可取对称度公差为0.03mm 。所以,在夹具设计总图中的技术要求注明“钻套轴线应通过V 形块标准试棒的轴线,其对称度误差不超出0.03mm 。”

2) 定位方案的确定 由定位误差的组成可知,只要合理选择定位基准,合理选择定位元件并进行合理的组合与布置,就可以大大减小定位误差甚至使定位误差为零,这就是所谓的定位方案的设计问题。往往一道工序的定位方案有多个,需要择优选用。定位方案是否能满足工序的加工要求,一般的判断准则是看定位误差是否超出工序加工精度参数设计公差的三分之一。即判断定位方案是否可行的依据是 T dw 3

1

≤? (3-5) 式中 dw ?—定位误差;

T —工序加工精度参数的公差值。

在多个可行的定位方案中,应考虑夹具结构繁简、制造的难易、操作的方便与否等诸多因素综合择优选用。

图3.23 用夹具装夹的精度分析1—钻模板 2—工件 3—V 形块 1 2

3

3.2.5 定位误差分析计算综合实例

定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。

例3-2 在图3.3中,零件图上标注出槽子中心平面对工件两孔轴线所决定的对称中心平面的夹角要求为45°±30′,试计算工件以图示定位方案定位时槽子角度的定位误差并判断定位方案的合理性。

解:工件以一面两孔定位,实际上

是以一个平面和由两孔轴线组成的另

一平面(组合基准要素)来组合定位,此例属组合定位的定位误差分析。经分

析知0=?jb ,jw dw ?=?。

又从图3.3中知 57=L ,1

.00

16.42+=D ,009.0025.016.42--=d ,1

.00

23.15+=D ,016

.0034.023.15--=d ,03'±=αT

做出一批工件定位时产生最大角

度误差的状态如图3.24所示,图中工件上的两定位孔轴线用O 1’和O 2’表示,夹具上的两销轴线分别用O 1和O 2表示,C 点为过O 2’点做的两销连心线平行线与孔1直径线的交点,则

L C O =2 2/m a x 11'1?=O O 2/m a x 2'

221?==O O C O α=∠C O O '2

'1 于是有 L

L C O tg 2'max

2max 11?+?=

=

α,定位误差是指误差的最大变化范围,考虑另一个产生最大角度误差的极限位置,则有

857

2034

.01.0025.01.02max 2max 1'±≈?+++±=?+?±=?=?arctg L arctg

jw dw

αT 3

1

27.0308<≈,故对槽子的中心平面的角度这一参数来说,定位方案是合理的。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差? 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两

者的因素有尺寸h 和h 1,故jb ?由两部分组成:

φD 半径的变化产生2

D ?

尺寸h 1变化产生12h T ,所以

122

h jb T D

+?=

? (2)基准位置误差jw ? 定位基准为工件底平面,对刀基准为与定位基准接触的支承板的工作表面,不记形状误差,则有

0=?jw 所以槽底尺寸h 的定位误差为 122

h dw T D

+?=

? 图3.24 一面两孔定位的定位误差计算

d 1D 1d

图3.25 内键槽槽底尺寸定位误差计算

例3-4 有一批直径为0

d T d -φ的工件如图3.27所示。外圆

已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。

解:(1)首先计算V 形块定位外圆时的基准位置误差jw ?

在图3.26中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,

则基准位置误差jw ?为图中O 1点到O 2点的距离。在ΔO 1CO 2中,2

2212α

=∠=O CO T CO d ,,根据勾股定理求得

2

21sin 2α

d jw T O O E ==?=? (∵212

2sin O O T d =α) (2)分别计算图3.27三种情况的定位误差(详细推导过程见下页)

①图a )中1L 尺寸的定位误差 (从设计基准标注的尺寸不变)

)(2

sin 2sin 20

1ααd L dw d

jw jb T T E B =

?=

?=?=?=?

②图b )中2L 尺寸的定位误差

2

sin 22α

d jw d jb T E T B =

?=?=?=?

需要说明的是2L 尺寸定位误差dw ?的合成问题。由于jb ?和jw ?中都含有d T ,即外圆直径的变化同时引起jb ?和jw ?的变化,因而要判别二者合成时的符号。当外圆直径由大变小时,因调刀基准不动,从设计基准标注的尺寸变大 ,而当此圆放入V 形块中定位时,因外圆直径的变小,定位基准相对调刀基准是向下偏移的(调刀基准不动),二者变动方向相反。故设计基准相对对刀基准的位移是二者之差,即

???

? ??-=?1sin 1

2)()

(2αd T L dw ③图c )中3L 尺寸的定位误差

与②类似,只是当外圆直径由大变小时从设计基准标注的尺寸变小, jb ?和jw ?的变动方向相同,故jb ?和jw ?合成时应该相加,即

2

sin 22α

d jw d jb T E T B =

?=?=?=? 所以 ?

??

? ??+=?1s i n 12

2)

(3αd

L dw T 图3.26 V 形块定位外圆时

基准位置误差jw ?的计算 1—最大直径 2—平均直径

3—最小直径

L 2

L 3

L 1

0d

T

d -φ b

图3.27 V 形块定位外圆时定位误差的计算

1. 工序基准为圆柱体的中心线。

表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点O '和点O ''。

因此工序基准的最大位置变动量O O ''',便是对加工尺寸H 1所产生的定位误差:

故得:O E O E H H O O D H ''-'='-''='''=111ε O A E Rt ''?1

中: max 12

1D A O ='' 2

sin

A O O E ''=

' O A E Rt ''''?1中:min 12

1

D A O =''''

2

sin

1

α

A O O E ''''=

'' 2

sin 22sin 22sin 111

αααεD D

DH

T T A O A O O E O E =

=''''-''=''-'=

2. 工序基准为圆柱体的下母线:

工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量C C '''就是加工尺寸H2所产生的定位误差。

C S C S H H

D H

'-''='-''=22

2

εC O C O O O C O O S C O O S ''-''''+'''=''+'-'''+'=)

()( 而 2

sin

D T O O ='''

min 2

1

D C O =

'''' , max 21D C O ='' 。所以:C O C O O O D H ''-''''+'''=2ε

)12s i n 1

(222s i n 222s i n 2)(21)(212s i n 2m a x m i n m a x m i n 2

-=-=-+=-+=

ααααεD D D D D

DH T T T D D T D D

T

3. 工序基准为上母线

如果键槽的位置尺寸采用上母线标注时,上母线K 的极限位置变动量为K K ''',就是对加工尺寸H 3所产生的定位误差。

)12sin 1(22

sin 222

sin 222

sin 2)(21)(21)

(min max min max 33

3

+=+

=+

-=+

-=

'''+''''-''='''-''''-''=''''-''=''-'='''=α

α

ααεD D D D D DH T T T T D D T D D O O K O K O O O K O K O K O K O H H K K 在

另外一种解法:

V 型块是一种对中定位元件,当V 型块和工件外圆制作的非常精确时,这时外圆中心应在V 型块理论中心位置上,即两中心重合而无基准位移误差。但是实际上对于一批工件而言外圆直径是有偏差的,当外圆直径从Dmax 到Dmin 时,虽然工件外圆中心始终在V 型块的对称中心平面内而不发生左右移动,即V 型块在垂直于对称平面的方向无基准位移误差Δjw =0,但是工件外圆中心在V 型块的对称平面内发生上下偏移,即造成基准位移误差。

2

sin 22sin 22sin 11αααD

D

jw T T A O A O O E O E =

=''''-''=''-'=? 式中 T D ——工件定位外圆的公差;

即为基准位移误差大小。当工序尺寸的标注方法不同时还可能产生基准不重合误差,铣键槽分别以中心线,上母线和下母线为工序基准,其基准不重合误差分别为:

0)(1=?H bc , 2)(2D bc T H =

? ,2

)(3D bc T H =? 而定位误差为基准不重合误差和基准位移误差在加工尺寸方向上的代数和。

)()(i jw i bc dw H H ?±?=? , 2

sin

2)()()(111α

D jw bc dw T H H H =

?±?=?

)12

sin 1(22sin 22)()()(222+=+=

?+?=?α

αD D D jw bc dw T T T H H H )12

sin 1(222

sin

2)()()(333-=-

=

?±?=?αα

D D D bc jw dw T T T H H H

例3-5已知:外径d 为mm 003.050-φ;内径D 为mm 05

.00

30+φ 内外圆同轴度为0.02mm ,试计算用调整法加工这批工件时,工序尺寸H 的定位误差是多少?

解:基准不重合误差:mm c 025.02

05

.0==ε 基准位移误差: mm T D w 021.02

90sin

203

.02

sin

2==

=

α

ε 同轴度误差:mm 02.0=?同轴度 则,定位误差为:

mm W C D 066.002.0021.0025.0=++++==同轴度εεεε

例3-6 有一批如图3.28所示的工件,

)(6500016.0-h φ外圆,

)(730021

.00+H φ内孔和两端面均已加

工合格,并保证外圆对内孔的同轴度误差在015.0)(φ=e T 范围内。今按图

示的定位方案,用)(630007.0020.0+-g φ心轴

定位,在立式铣床上用顶尖顶住心轴铣)(9120043.0-h 的槽子。除槽宽要求外,还应保证下列要求:

(1)槽的轴向位置尺寸 )(1225021.01-=h L ;

(2)槽底位置尺寸)(1242025.01-=h H

(3)槽子两侧面对50φ外圆轴线的对称度公差25.0)(=c T 。 试分析计算定位误差,判断定位方案的合理性。

解:(1)槽的轴向位置尺寸1L 的定位误差

定位基准与设计基准重合 0=?=?B jb

定位基准与对刀基准重合 0=?=?E jw 所以 0=?+?=?jw jb dw (2)槽底位置尺寸1H 的定位误差

槽底的设计基准是外圆的下母线,定位基准是内孔的轴线,不重合

023.0015.02

016

.0)(2=+=+?=

?=?e T d B jb 定位基准是内孔的轴线,对刀基准是心轴的轴线,两者有位置变动量

041.0020.0021.0min max =+=-=?=?d D E jw 所以槽底位置尺寸1H 的定位误差为 064.0041.0023.0=+=?dw 定位误差占尺寸公差的

%3.33%6.2525

.0064

.0<=,能保证加工要求。 (3)槽子两侧面对外圆轴线的对称度的定位误差

设计基准是外圆轴线,定位基准是内孔轴线,两者不重合,有同轴度误差

015.0=?=?B jb

定位基准是内孔的轴线,对刀基准是心轴的轴线,两者有位置变动量

041.0020.0021.0min max =+=-=?=?d D E jw 所以槽子两侧面对外圆轴线的对称度的定位误差为

056.0041.0015.0=+=?+?=?jw jb dw

定位误差占加工公差的

%4.2225

.0056

.0= ,能保证加工要求。 该定位方案能满足槽子加工的精度要求,定位方案是合理的。

如图所示工件以外圆柱面在V 型块上定位,对内孔进行插键槽工序,

图3.28 心轴定位内孔铣键槽定位误差的计算

定位误差的计算方法.

定位误差的计算方法: (1)合成法 为基准不重合误差和基准位移误差之和; (2)极限位置法 工序基准相对于刀具(机床)的两个极限位置间的距离就是定位误差; (3)微分法 先用几何方法找出工序基准到定位元件上某一固定点的距离,然后对其全微分,用微小增量代替微分,将尺寸误差视为微小增量代入,就可以得到某一加工尺寸的定位误差。 注:基准不重合误差和基准位移误差它们在工序尺寸方向上的投影之和即为定位误差。 例如:用V 型块定位铣键槽,键槽尺寸标注是轴的中心到键槽底面的尺寸H 。T D 为工件定位外圆的公差;α为V 型块夹角。 1. 工序基准为圆柱体的中心线。 表示一批工件依次放到V 型块上定位时所处的两个极端位置情形,当工件外圆直径尺寸为极大和极小时,其工件外圆中心线分别出于点 O '和点O ''。 因此工序基准的最大位置变动量O O ''',便是对加工尺寸H 1所产生的定位误差: 故得:O E O E H H O O 11DH 1 ''-'='-''='''=ε O A E Rt 1''?中: max 1 D 2 1A O ='' 2 sin A O O E 1α''= ' O A E Rt 1''''?中:min 1 D 2 1 A O ='''' 2 sin A O O E 1α''''= '' 2 sin 2T 2sin 2T 2sin A O A O O E O E D D 11DH 1 α=α=α''''-''=''-'=ε

2. 工序基准为圆柱体的下母线: 工件加工表面以下母线C 为其工序基准时,工序基准的极限位置变动量C C '''就是加工尺寸H2所产生的定位误差。 C S C S C O O O H H 22DH 2 '-''=''-'''='-''=ε C O C O O O ) C O O S ()C O O S (' '-''''+'''=''+'-'''+'= 而 2 sin 2T O O D α= ''' min D 2 1C O ='''' max D 2 1 C O ='' 所以:C O C O O O 2 DH ''-''''+'''=ε ) 12 sin 1(2T 2T 2sin 2T 2D D 2 sin 2T )D (21 )D (212sin 2T D D D max min D max min D DH 2 -α=-α=-+ α=-+α=ε

定位误差计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准)由夹 具定位元件的定位工作面体现的,用于调 整加工刀具位置所依据的基准。必须指出, 对刀基准与上述两工艺基准的本质是不 同,它不是工件上的要素,它是夹具定位 元件的定位工作面体现出来的要素(平面、 轴线、对称平面等)。如果夹具定位元件是 支承板,对刀基准就是该支承板的支承工 a) 作面。在图3.3中,刀具的高度尺寸由对 导块2的工作面来调整,而对刀块2工作 面的位置尺寸7.85±0.02是相对夹具体4 的上工作面(相当支承板支承工作面)来 确定的。夹具体4的上工作面是对刀基准, 它确定了刀具在高度方向的位置,使刀具 加工出来的槽底位置符合设计的要求。图 3.3中,槽子两侧面对称度的设计基准是工 b 图3.21 钻模加工时的基准分析

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

定位误差的分析与计算

华北航天工业学院教案 教研室:机制工艺授课教师:陈明

第十章机床夹具的设计原理 第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用?D表示。 一、定位误差的组成 1.基准不重合误差 如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。因此选择定位基准时应尽量与设计基准相重合。当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。 设计夹具时,应当使定位基准与工序基准重合。当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用?B表示。工序基准与定位基准之间的尺寸就称为定位尺寸。 2.基准位移误差 工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用?Y表示。 基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。 当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即 ?Y = ?i 当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即 ?Y = ?i cos a 二、各种定位方式下定位误差的计算 1.定位误差的计算方法 如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。计算时,先分别算出?B和?Y,然后将两者组合而成?D。组合方法为:如果工序基准不在定位基面上:?D =?Y + ?B 如果工序基准在定位基面上:?D = ?Y±?B 式中“+”、“-”号的确定方法如下: 1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。 2)2)当定位基面直径作同样变化时,设定位基准的位置不变动,分析工序基准的变动方向。 3)3)两者的变动方向相同时,取“+”号,两者的变动方向相反时,取“-”号。 2.工件以圆孔在心轴(或定位销)上定位 (1)(1)定位副固定单边接触 当心轴水平放置时,工件在重力作用下与心轴固定单边接触,此时

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差? 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件 为与定位基准接触的支承板的工作表面,不记形状误差,则有 所以槽底尺寸h 的定 位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图3.27所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图3.26中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1 点到O 2点的距离。在ΔO 1CO 2中,2 2212 α =∠= O CO T CO d ,,根据勾股定理求得 2 21sin 2α d jw T O O E = =?=? (2)分别计算图3.27三种情 况的定位误差 ①图a )中1L 尺寸的定位误差 ②图b )中2L 尺寸的定位误差 需要说明的是2L 尺寸定位误差dw ?的合成问即外圆直径的变化 题。由于jb ?和jw ?中都含有d T ,要判别二者合成时 同时引起jb ?和jw ?的变化,因而 的符号。当外圆直径由大变小时,设计基准相对定位基准向上偏移,而当此圆放入V 形块中定位时,因外圆直 径的变小,定位基准相对调刀基准是向下偏移的,二者变动方向相反。故设计基准相对对刀基准的位移是二者之差,即 ③图c )中3L 尺寸的定位误差 与②类似,只是当外圆直径由大变小时jb ?和jw ?的变动方向相同,故jb ?和jw ?合成时应该相加,即 L 2 L 3 L 1 d T d -φ b 图3.27 V 形块定位外圆时定位误差的计算 图3.25 内键槽槽底尺寸定位误差计算 图3.26 V 形块定位外圆时 基准位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径

常见定位方式定位误差的计算

常见定位方式定位误差得计算 ⑴工件以平面定位 平面为精基面 基准位移误差△基=0 定位误差△定=△不 、⑵工件以内孔定位 ①工件孔与定位心轴(或销)采用间隙配合得定位误差计算△定= △不+ △基 工件以内孔在圆柱心轴、圆柱销上定位。由于孔与轴有配合间隙,有基准位移误差,分两种情况讨论: a、心轴(或定位销)垂直放置,按最大孔与最销轴求得孔中心线位置得

变动量为: △基= δD+ δd+△min = △max =孔Dmax-轴dmin (最大间隙) b、心轴(或定位销)水平放置,孔中心线得最大变动量(在铅垂方向上)即为△定 △基=OO'=1/2(δD+δd+△mi n)=△max/2 或△基=(Dmax/2)-(dmin /2)=△max/2 = (孔直径公差+轴直径公差) / 2 ②工件孔与定位心轴(销)过盈配合时(垂直或水平放置)时得定位误差

此时,由于工件孔与心轴(销)为过盈配合, 所以△基=0。 对H1尺寸:工序基准与定位基准重合,均为中心O,所以△不=0 对H2尺寸:△不=δd/2 ⑶工件以外圆表面定位 A、工件以外圆表面在V型块上定位 由于V型块在水平方向有对中作用。基准位移误差△基=0 B.工件以外圆表面在定位套上定位 定位误差得计算与工件以内孔在圆柱心轴、圆柱销上定位误差得计算相同。

⑷工件与"一面两孔"定位时得定位误差 ①“1”孔中心线在X,Y方向得最大位移为: △定(1x)=△定(1y)=δD1+δd 1+△1min=△1max(孔与销得最大间隙) ②“2”孔中心线在X,Y方向得最大位移分别为: △定(2x)=△定(1x)+2δLd(两孔中心距公差) △定(2y)=δD2+δd2+△2min=△2max ③两孔中心连线对两销中心连线得最大转角误差:

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 122 h jb T D +?= ? 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件为与定位基准接触的支承板的工作表面,不记形状误差, 则有 0=?jw 所以槽底尺寸h 的定位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1点到O 2点的距离。在ΔO 1CO 2中,2 2212α =∠= O CO T CO d ,,根据勾股定理求得 《 2 21sin 2α d jw T O O E = =?=? (2)分别计算图三种情况的 定位误差 ①图a )中1L 尺寸的定位误差 2 )(2 sin 2sin 20 1αα d L dw d jw jb T T E B = ?= ?=?=?=? $ L 2 L 3 L 1 0d T d -φb 图 V 形块定位外圆时定位误差的计算 图 内键槽槽底尺寸定位误差计算 @ 图 V 形块定位外圆时基准 位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径 B A α/ 2 1 C 3 2 @ O O

定位误差分析与计算(一)

定位误差分析与计算(一) 在机械加工过程中,使用夹具的目的是为保证工件的加工精度。那么,在设计定位方案时,工件除了正确地选择定位基准和定位元件之外,还应使选择的定位方式必须能满足工件加工精度要求。因此,需要对定位方式所产生的定位误差进行定量地分析与计算,以确定所选择的定位方式是否合理。 1 定位误差产生的原因和计算 造成定位误差ΔD的原因可分为性质不同的两个部分:一是由于基准不重合而产生的误差,称为基准不重合误差Δ B;二是由于定位副制造误差,而引起定位基准的位移,称为基准位移误差Δ Y。当定位误差Δ D≤1/3δK(δK为本工序要求保证的工序尺寸的公差)时,一般认为选定的定位方式可行。 (1) 基准不重合误差的计算 由于定位基准与工序基准不重合而造成的工序基准对于定位基准在工序尺寸方向上的最大可能变化量,称为基准不重合误差,以ΔB表示。如图4.36所示的零件简图,在工件上铣一通槽,要求保证的工序尺寸为A、B、C,为保证B尺寸,工件用以K1面或以K2面来定位,都可以限制工件在B尺寸方向上的移动自由度。但两种定位方式的定位精度是不一样的。由于加工过程中,是采用夹具上定位件的定位表面为基准来对刀的。当以K1面为定位基准时, 如图 4.37(a)所示B就为确定刀具与夹具相互位置的对刀尺寸,在一批工件的加工过程中 B的位置是不变的。当以K2面为定位基准时,如图4.37(b)所示B′为确定刀具与夹具相互位置的对刀尺寸,由于工序基准是K1面,与K2面不重合。当一批工件逐个在夹具上定位时,受尺寸L±Δl的影响,工序基准K1面的位置是变动的,K1的变动影响工序尺寸B的大小,给B造成误差。 由图 4.37(a)可知ΔB=0 由图 4.37(b)可知ΔB=Lmax-Lmin=2Δl (4.1)

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算, 在夹具设计中占有重要的地位, 定位误差的大小是定位方案能否确定的重要依据。 为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会 贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸 解: ( 1) 和h i ,故厶j b h 的定位误差? 基准不重合误差求.jb 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸 由两部分组成: 0 D 半径的变化产生卫 2 尺寸h 1变化产生2T h 1,所以 D —2T h 1 (2)基准位置误差 3 O a / 2 2 ■"■=jw 定位基准为工件 为与定位基准接触 面,不记形状误差, 也 jw =0 底平面,对刀基准 的支承板的工作表 则有 所以槽底尺寸h 的定位误差为 例3-4 有一批直径为 d ; A iD --dw 2T h, 2 的工件如图3.27所示。外圆已加工合格,今用 V 形块定位铳宽度为 b 的槽。若要求保证槽底尺寸分别为 L 1、L 2和L 3。试分别分析 计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差 图3.26 V 形块定位外圆时 基准位置误差一的计算 -■ jw 1—最大直径2 —平均直径 3—最小直径 八jw 在图3.26中,对刀基准是一批工件平均轴线所处的位置 O 点,设定位基准为 外圆的轴线,加工精度参数的方向与 O 1O 2相同,则基准位置误差 jw 为图中 O 1 点到02点的距离。在 △ O 1CO 2中,CO 2 Ct —C0102 ,根据勾股定理求 2 T d 2sinf (2)分别计算图3.27三种情 ①图a )中L i 尺寸的定位误 ■\w =.E Td . 2s in 号 T d Ct 2 图3.27 V 形块定位外圆时定位误差的计算 况的定位误差 ②图b )中L 2尺寸的定位误差

定位误差的分析计算

主轴结构分析要求: 1、写出主轴结构中各轴承的名称。分析前、后轴承精度的选 择原则(前轴承精度要选得高一些)。 2、写出主轴轴承的配置形式(速度型,刚度型,速度刚度型), 并写出该配置形式适用的场合。 3、写出主轴推力轴承的配置方式及优缺点,并能画 出主轴推力轴承配置的结构简图。 4、写出角接触球轴承和圆锥滚子轴承的配置形式(背靠背, 面对面等P127;正排列,反排列)。 5、那些轴承需要预紧,如何预紧?(双列短圆柱滚子轴承等) 6、分析主轴部件中径向力有什么轴承承受?轴向力(两个方 向)分别有哪些轴承承受。 7、主轴轴承采用的密封和润滑形式是什么?密封和润滑的 作用是什么?该密封形式有何特点? 8、在图中标出主轴的支承跨距L,并分析当支承跨距: L实际<L合理时,应提高。 L实际>L合理时,应提高。 9、跨距较长的主轴部件,采用三支承轴承,要求判断该结构中 的主支承和辅助支承,并说明辅助支承的工作情况P123

第三章作业 P210题42 圆柱轴承承载能力大(双列轴承承载能力更大) 滚子轴承转速高 角接触球轴承和圆锥滚子轴承可既能承受径向力,又能承受轴向力 图Ⅲ:刚度型配置 双向推力角接触球轴承(234000B型,原2268100型)与圆锥孔双列圆柱滚子轴承(NN3000K型,原3182100型)配合使用。 参见P130图3-64(b);P131图3-66 (刚度型配置) 与该题一样配置 前支承采用双列圆柱滚子轴承承受径向载荷,和60°角接触双列推力球轴承承受双向轴向载荷,后轴承采用双列圆柱滚子轴承。 推力轴承为中间配置,特点见P123图3-54(b)(2) 这种轴承配置的主轴部件,适用于中等转速和切削负载较大,要求刚性高的机床。如数控车床主轴,镗削主轴单元等。 图Ⅱ:刚度速度型 参见P130图3-64 C,P131图3-67为刚度速度型 前轴承采用一对背靠背角接触球轴承(背靠背安装具有较高的抗颠覆力矩的能力)。 后轴承采用双列圆柱滚子轴承,动力可以从后端传入,后轴承能承载较大的传动力。 推力轴承前端布置,特点见P123图3-54 ( a)(1) 应用于要求径向刚度好,并有较高的转速的场合,例:图3-67的卧式铣床主轴。 图Ⅰ:为刚度速度型 前轴承采用双列圆柱滚子轴承,能承受较大的径向力,主要承受加工中的径向力。 后轴承采用背靠背角接触球轴承,承受轴向力 推力轴承后端布置,特点见P123图3-54(c)(3) 43题: 向右轴向力的传递:

定位误差计算.doc

3.2.3定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工 序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确, 故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工 序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设 计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: ( 1)工序基准在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单 地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 ( 2)定位基准在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹 具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 ( 3)对刀基准(即调刀基准)由夹具定位元件的定位工作面体现的,用于调整加工 刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图中,刀具的高度尺 寸由对导块 2 的工作面来调整,而对刀块 2 工作 面的位置尺寸 ±是相对夹具体 4 的上工作面(相 当支承板支承工作面)来确定的。夹具体 4 的上 工作面是对刀基准,它确定了刀具在高度方向的 位置,使刀具加工出来的槽底位置符合设计的要 求。图中,槽子两侧面对称度的设计基准是工件 a 上大孔的轴线,对刀基准则为夹具上定位圆柱销 的轴线。再如图所示,轴套件以内孔定位,在其 上加工一直径为φd的孔,要求保证φd轴线到 左端面的尺寸L1及孔中心线对内孔轴线的对称 度要求。尺寸L1的设计基准是工件左端面A′, 对刀基准是定位心轴的台阶面A;φd轴线对内 b 图钻模加工时的基准分析

定位误差计算

例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。

解: ① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。 ③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?jb 基准位移误差0=?jy 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ?

例题二:如下图所示齿轮坯,内孔及外圆已加工 合格(025 .0035+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与 内孔同轴度误差)。 解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T

(mm) 例题三:a)图工件设计图。试分别计算按b)、c)、d)三种定位方式加工尺寸A 时的定位误差。

. 例题四:计算以图示定位方案加工尺寸A时的定位误差。

相关文档
最新文档