一水氢氧化锂生产工艺

一水氢氧化锂生产工艺
一水氢氧化锂生产工艺

一水氢氧化锂生产工艺

本工艺是硫酸锂溶液与烧碱进行复分解反应,形成硫酸钠与氢氧化锂溶液混合物。利用硫酸钠与一水氢氧化锂在低温下溶解度的显著差异将两者分离。包括以下步骤:在锂精矿经焙烧、酸化、制浆、浸出和初步浓缩的硫酸锂溶液中,加入氢氧化钠得到硫酸钠与氢氧化锂溶液混合物;将混合溶液降温冷冻到5~-10℃,经结晶后分离出硫酸钠;将由冷冻分离来的清液,加热,蒸发浓缩;结晶并分离,得一水氢氧化锂粗品;一水氢氧化锂粗品用水溶解后,加入氢氧化钡,形成不溶的硫酸钡,过滤,滤出液经蒸发浓缩、结晶、分离,得湿一水氢氧化锂;干燥得一水氢氧化锂。本发明工艺路线大大缩短,锂收率大有改善,成本大幅度降低。是锂化合产品生产的一次革命。

一水氢氧化锂生产工艺

一种一水氢氧化锂生产工艺,工艺包括以下步骤:(1)、由锂辉矿经焙烧、酸化、制浆、浸出和初步浓缩的硫酸锂溶液;(2)、在硫酸锂溶液中加入氢氧化钠,得到硫酸钠与氢氧化锂溶液混合物;Li2SO4+2NaOH→2LiOH+Na2SO4(3)、将硫酸钠与氢氧化锂混合溶液降温冷冻,溶液温度降到5~-10℃,经结晶后分离出硫酸钠;(4)、由冷冻分离来的清液,加热,蒸发浓缩;(5)、结晶并离心分离,得氢氧化锂粗品;(6)、在粗品一水氢氧化锂溶解液中加入氢氧化钡,形成不溶的硫酸钡,过滤除去沉淀物及杂物,滤出液经蒸发浓缩、结晶、分离,得湿一水氢氧化锂:Ba(OH)2+SO42-→BaSO4+2OH-(7)、干燥得一水氢氧化锂。

氢氧化锂的生产技术

LiH,LiO和LiOH的分析势能函数与分子反应动力学[1].pdf

单水氢氧化锂生产中盘式连续干燥器的应用[1].pdf

单水氢氧化锂完成液除硫方法[1].pdf

高纯锂盐应用及工艺研究的新进展[1].pdf

高纯碳酸锂的制备[1].pdf

锂[1].pdf

硫酸锂冷冻法生产单水氢氧化锂母液循环的工艺研究[1].pdf

卤水制备氢氧化锂研究进展[1].pdf

氢氧化锂[1].pdf

氢氧化锂的应用与生产方法研究进展[1].pdf

三室膜电解法由硫酸锂制备氢氧化锂的实验研究[1].pdf

微波辐射干燥单水氢氧化锂的研究[1].pdf

西藏扎布耶盐湖卤水的开发和利用[1].pdf

溴化锂生产新工艺[1].pdf

氢氧化锂的应用

Pechini法制备LiCoO2机理的研究[1].pdf

ZnO:Li4SiO4纳米发光材料的制备及其荧光性能[1].pdf

保障潜艇生命的氢氧化锂隔板[1].pdf

低热固相反应法在多元金属复合氧化物合成中的应用:——锂离子电池正极材料LiCo0[1].. 低热固相反应法在多元金属复合氧化物合成中的应用——锂离子电池正极材料r—LiMnO2?. 低热固相反应法制备锂离子电池正极材料LiCoO2[1].pdf

对当前润滑脂技术发展的一些思考[1].pdf

对我国润滑脂产量的调查与分析[1].pdf

高分子固体电解质LiNO3—LiOOCCH3/聚丙烯酸锂的合成与性能研究[1].pdf

高性能吸水膨胀橡胶及其制备方法[1].pdf

硅酸锂的合成与应用研究[1].pdf

交联阳离子淀粉的制备及其脱色性能[1].pdf

聚丙烯酸锂/锂盐聚合物电解质的研究[1].pdf

类溶胶—凝胶法制备LiMn2O4—δClδ正极材料[1].pdf

锂离子电池正极材料Co^3+掺杂LiNiO2的制备及其放电容量[1].pdf

锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2的合成、表征及电化学性能[1].pdf

锂离子电池正极材料LixNi1/3Mn1/3及电化学性能研究CO1/3O2的合成及电化学性能研?.

利用复合氢氧化物溶剂法合成复合氧化物纳米单晶材料[1].pdf

美潜艇将装备专用救生帘幕[1].pdf

镍掺杂阴极材料LiNixCo1—xO2的制备研究[1].pdf

汽车液压制动系统专用润滑脂的研制与应用[1].pdf

氢氧化锂-活性炭纤维材料的制备和性能试验[1].pdf

缺金属型锂钴氧化物正极材料的研究[1].pdf

溶胶凝胶法锂离子电池正要材料LiMn2O4的制备及表征[1].pdf

软化学法合成层状结构LiMnO2阴极材料[1].pdf

室温固相制备尖晶石相LiMn2O4的工艺研究[1].pdf

探索提高轧辊轴承脂滴点的生产工艺[1].pdf

艇用氧烛—氢氧化锂空气再生装置适用性研究[1].pdf

微波对固相烧结锂锰氧化合物电化学性能的影响[1].pdf

微波法合成锂离子材料LiCoO2的研究[1].pdf

无机非金属材料[1].pdf

溴化锂的生产新工艺[1].pdf

一种高水堵水调剖剂及其生产使用方法[1].pdf

用工业级氢氧化锂和硼酸生产高纯高清四硼酸锂晶体技术[1].pdf

正极材料LiNi1/3Co1/3Mn1/3O2的制备及性能[1].pdf

正极材料磷酸亚铁锂的共沉淀合成和Mn^2+掺杂的研究[1].pdf

中国的氢氧化锂生产[1].pdf

电子级氢氟酸工艺介绍

电子级氢氟酸生产工艺介绍 1 概述 目前国内外制备电子级氢氟酸的常用提纯技术有精馏、蒸馏、亚沸蒸馏、减压蒸馏、气体吸收等技术,这些提纯技术各有特性,各有所长。如亚沸蒸馏技术只能用于制备量少的产品,气体吸收技术可以用于大规模的生产。另外,由于氢氟酸的强腐蚀性,采用蒸馏工艺温度较高时腐蚀会更严重,因此所使用的蒸馏设备一般需用铂、金、银等贵金属或聚四氟乙 烯等抗腐蚀性能力较强的材料来制造。电子级氢氟酸生产装置设计与工艺流程布置密切相关,垂直流向布置,原料( 无水氢氟酸和高纯水) 与中间产物可以依靠重力自上而下流动,高纯氢氟酸的制备在中部,产品过滤、灌装及贮存在底层。此布置可减少泵输送,节省能耗,降低生产成本,同时可避免泵对产品的二次污染。 2 生产工艺 将工业无水氢氟酸经化学预处理后,进入精馏塔通过精馏操作,得到的氟化氢气体经冷却后,在吸收塔中用超纯水吸收,并采用控制喷淋密度、气液比等方法使电子级氢氟酸进一步纯化,随后经μm以下超滤工序,最后在密闭洁净环境条件下( 百级以下) 进行灌装得到最终产品———电子级氢氟酸。 3生产方法的难点 分析控制与产品检测要求高。制备电子级氢氟酸所应用的测试仪器如下: (1)电感耦合等离子高频质谱分析仪( ICP - MS);(2)电感耦合等离子原子发射分析仪( ICP - AES);(3)原子吸收分光光度计;(4)氧原子发生无焰原子吸收分析仪; (5)离子色谱分析仪;(6)激光散射液体微粒计数器;(7)水表面杂质分析系统; (8)原子间力显微镜;(9)光学显微镜微粒计数器;(10)扫描电子显微镜;(11)光学膜厚测定和表面仿形仪;(12)表面张力测定仪;(13) 空气中尘埃微粒测定仪;(14)水电阻率测定仪。 对水质要求高,要求水的电阻率≥Ω·cm。 高纯水是生产电子氢氟酸中不可缺少的原料,也是包装容器的清洗剂,其纯度将直接影响到电子级氢氟酸的产品质量。高纯水的主要控制指标是电阻率和固

氢氧化锂的生产工艺

氢氧化锂是最重要的锂化合物之一,有无水LiOH和LiOH·H2O两种。无水LiOH 为白色四方结晶颗粒或流动性粉末,相对密度1.45g/cm3,熔点471.2 ℃,沸点1620 ℃。单水氢氧化锂为白色易潮解的单晶粉末,相对密度1.51g/cm3,熔点680 ℃,当温度高于100 ℃时,失去结晶水成为无水LiOH。LiOH溶于水,微溶于醇,在空气中易吸收CO2生成Li2CO3。LiOH 及其浓溶液具有腐蚀性,一般温度下就能腐蚀玻璃和陶瓷。LiOH是生产高级锂基润滑脂的主要原料之一,氢氧化锂用途广泛,主要用于化工原料、化学试剂、电池工业、石油、冶金、玻璃、陶瓷等行业,同时也是国防工业、原子能工业和航天工业的重要原料。用氢氧化锂生产的锂基润滑脂,使用寿命长、抗水性强、防火性能好、难氧化、多次加热-冷却-加热循环时性能稳定,适用温度范围可从-50℃~+300℃,广泛用于军事装备、飞机、汽车、轧钢机以及各种机械传动部分的润滑。在电池工业中,氢氧化锂用于碱性蓄电池、镍氢电池添加剂,可以延长电池寿命、增加蓄电量。此外随着汽车工业的迅猛发展和汽车普及以及冶金机械工业对锂基脂量需求的大幅增长,LiOH的消费也越来越大,使得LiOH的生产显现出前所未有的美好前景。2020年以前,大部分项目仍然在建设过程中,市场将以短缺为主;2020年以后,随着新建项目产能释放,供应过剩风险将会增加。这其中,氢氧化锂的产能释放速度与碳酸锂一样,也取决于锂辉石原料的供应情况,因而全球锂辉石资源的开发进程也成为影响氢氧化锂产能释放的重要因素。 【生产】[1] 1.石灰石焙烧法 将含Li2O 3.6 %~4 .2 %的锂云母与石灰石按质量比1∶3 混合,加水至矿浆浓度为15 %时湿式球磨至直径小于0 .076nm 。然后将磨好的料浆增稠到65 %,

氟化氢生产技术的现状及发展趋势

氟化氢生产技术的现状及 发展趋势 Prepared on 24 November 2020

我国氟化氢产品生产技术的现状及发展趋势 徐建国周贞锋应盛荣 (衢州市鼎盛化工科技有限公司浙江衢州 324000) 摘要:介绍了我国氟化氢的生产现状及市场需求现状,回顾了我国氟化氢生产的技术进步的历史沿革,对现有的氟化氢生产技术进行总结比较,分析了今后的发展趋势,并对硫酸-萤石法的其它工艺研究进展作了相关介绍;着重介绍了氟硅酸生产氟化氢的几种工艺技术成果,认为把氟硅酸中的氟资源有效开发对我国氟化氢行业发展与技术进步有着重大的战略意义。 关键词:氟化氢技术工艺氟硅酸萤石硫酸 Abstract: Detailed introduce the current market situation and current production situation for Hydrogen Fluoride in China, look back the history evolution for Hydrogen Fluoride technology development in China. Summarize and compare the current technology process for Hydrogen Fluoride, give a relative introduction about current research process for sulphate acid-fluorite other processes. Put emphasis on introducing several process technology harvests for using Fluosilicate acid to Hydrogen Fluoride, consider that there has a great strategic significance for Hydrogen Fluoride industry and technology developing in China when fluorine resource of fluosilicate acid be utilized efficient. Key words: Hydrogen Fluoride, Technology Process; Fluosilicate acid, fluorite, vitriol 1、引言 氟化氢(Hydrogen Fluoride),化学分子式为 HF,分子量,易溶于水、乙醇。无水氟化氢(简称AHF)低温或压力下为无色透明液体,沸点℃,熔点℃,密度1.008g/cm3(水=1)。在室温和常温下极易挥发成白色烟雾。它的化学性质极活泼,能与碱、金属、氧化物以及硅酸盐等反应(1)。氟化氢的水溶液为氢氟酸,工业氢氟酸为含氟化氢 60%以下的无色澄清水溶液,无色透明,在敞口容器中易于挥发,有强烈的刺激性气味、

我国氟化氢生产技术的现状及发展趋势

我国氟化氢产品生产技术的现状及发展趋势 徐建国周贞锋应盛荣 (衢州市鼎盛化工科技有限公司浙江衢州 324000) 摘要:介绍了我国氟化氢的生产现状及市场需求现状,回顾了我国氟化氢生产的技术进步的历史沿革,对现有的氟化氢生产技术进行总结比较,分析了今后的发展趋势,并对硫酸-萤石法的其它工艺研究进展作了相关介绍;着重介绍了氟硅酸生产氟化氢的几种工艺技术成果,认为把氟硅酸中的氟资源有效开发对我国氟化氢行业发展与技术进步有着重大的战略意义。 关键词:氟化氢技术工艺氟硅酸萤石硫酸 Abstract: Detailed introduce the current market situation and current production situation for Hydrogen Fluoride in China, look back the history evolution for Hydrogen Fluoride technology development in China. Summarize and compare the current technology process for Hydrogen Fluoride, give a relative introduction about current research process for sulphate acid-fluorite other processes. Put emphasis on introducing several process technology harvests for using Fluosilicate acid to Hydrogen Fluoride, consider that there has a great strategic significance for Hydrogen Fluoride industry and technology developing in China when fluorine resource of fluosilicate acid be utilized efficient. Key words: Hydrogen Fluoride, Technology Process; Fluosilicate acid, fluorite, vitriol 1、引言 氟化氢(Hydrogen Fluoride),化学分子式为HF,分子量20.01,易溶于水、乙醇。无水氟化氢(简称AHF)低温或压力下为无色透明液体,沸点19.4℃,熔点-83.37℃,密度 1.008g/cm3(水=1)。在室温和常温下极易挥发成白色烟雾。它的化学性质极活泼,能与碱、金属、氧化物以及硅酸盐等反应(1)。氟化氢的水溶液为氢氟酸,工业氢氟酸为含氟化氢60%以下的无色澄清水溶液,无色透明,在敞口容器中易于挥发,有强烈的刺激性气味、具有很强的腐蚀性,能迅速腐蚀玻璃等含硅材料,具有酸的一般通性,剧毒。氟化氢气体对眼、耳、鼻、喉粘膜有强腐蚀作用,对人的牙齿

【CN110002476A】一种氢氧化锂的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910293912.5 (22)申请日 2019.04.12 (71)申请人 中国科学院青海盐湖研究所 地址 810008 青海省西宁市新宁路18号 (72)发明人 王怀有 王敏 赵有璟 李锦丽  (74)专利代理机构 深圳市铭粤知识产权代理有 限公司 44304 代理人 孙伟峰 吕颖 (51)Int.Cl. C01D 15/02(2006.01) (54)发明名称一种氢氧化锂的制备方法(57)摘要本发明公开了一种氢氧化锂的制备方法,包括:A、利用铝盐溶液和氢氧化钠溶液对盐湖卤水提锂母液中进行共沉淀,经陈化后固液分离、洗涤干燥,获得锂铝水滑石;B、酸化锂铝水滑石获得锂铝酸溶液;C、将锂铝酸溶液依次进行纳滤铝锂分离、反渗透一级浓缩,获得一次浓缩富锂液;D、将富锂溶液进行深度除铝获得除铝富锂液;E、将除铝富锂液进行双极膜电渗析获得二次浓缩富锂液;F、将二次浓缩富锂液进行蒸发浓缩获得氢氧化锂。本发明的制备方法将含有碳酸锂的盐湖卤水提锂母液作为原料先行制备锂铝水滑石,再通过酸化法将锂离子转移至水溶液中,实现锂离子与杂质离子分离,经除铝、双极膜电渗析浓缩获得氢氧化锂,充分利用锂资源,提高资源利 用率。权利要求书2页 说明书9页CN 110002476 A 2019.07.12 C N 110002476 A

权 利 要 求 书1/2页CN 110002476 A 1.一种氢氧化锂的制备方法,其特征在于,包括步骤: S1、向盐湖卤水提锂母液中同时滴加铝盐溶液和氢氧化钠溶液,使三者在25℃~70℃下进行共沉淀反应,并且保持体系的pH为8~13,获得具有锂铝水滑石晶核的成核体系;其中,在所述盐湖卤水提锂母液中,Li+的浓度为1g/L~2g/L,CO32-的浓度为10g/L~30g/L,OH-的浓度为5g/L~25g/L; S2、将所述成核体系于50℃~150℃下陈化6h~48h后进行固液分离,获得锂铝水滑石滤饼; S3、将所述锂铝水滑石滤饼洗涤、干燥,获得锂铝水滑石; S4、以2mol/L~12mol/L的盐酸为原料,采用酸化法将所述锂铝水滑石进行溶解,获得锂铝酸溶液;其中,在所述锂铝酸溶液中,Li+的浓度为1.5g/L~10g/L,Al3+的浓度为10g/L ~80g/L,Cl-的浓度为70g/L~450g/L; S5、将所述锂铝酸溶液依次经纳滤系统和反渗透系统内依次进行铝锂分离和一次富集浓缩,获得一次浓缩富锂液;其中,在纳滤后获得的纳滤淡水中,Li+的浓度为0.2g/L~2.0g/L,铝锂比为0.01~0.6;在反渗透后获得的所述一次浓缩富锂液中,Li+的浓度为1.5g/L~8.0g/L,铝锂比为0.01~0.6; S6、将所述一次浓缩富锂液进行深度除铝,获得除铝富锂液;其中,在所述除铝富锂液中,Li+的浓度为1.5g/L~8.0g/L,Al3+的浓度不超过10ppm; S7、将所述除铝富锂液于双极膜电渗析系统中进行二次富集浓缩,获得二次浓缩富锂液;其中,在所述二次浓缩富锂液中,Li+的浓度为3g/L~30g/L,Na+的浓度为0.04g/L~12g/ L; S8、将所述浓缩富锂液于MVR系统内、并在真空或惰性气体保护下进行蒸发浓缩结晶,获得氢氧化锂。 2.根据权利要求1所述的制备方法,其特征在于,在所述步骤S1中,所述铝盐溶液中Al3+与所述盐湖卤水提锂母液中Li+的物质的量之比为1:1~5:1;所述氢氧化钠溶液中OH-和所述盐湖卤水提锂母液中OH-物质的量之和与所述盐湖卤水提锂母液中Li+的物质的量之比为4:1~10:1。 3.根据权利要求2所述的制备方法,其特征在于,在所述步骤S1中,所述铝盐溶液中Al3+与所述盐湖卤水提锂母液中Li+的物质的量之比为1.5:1~3.5:1;所述氢氧化钠溶液中OH-和所述盐湖卤水提锂母液中OH-物质的量之和与所述盐湖卤水提锂母液中Li+的物质的量之比为5:1~8:1。 4.根据权利要求1所述的制备方法,其特征在于,在所述步骤S1中,共沉淀反应过程中保持体系的pH为9~11。 5.根据权利要求1所述的制备方法,其特征在于,在所述步骤S1中,所述盐湖卤水提锂母液与所述铝盐溶液和所述氢氧化钠溶液三者在30℃~50℃下进行共沉淀反应。 6.根据权利要求1-5任一所述的制备方法,其特征在于,在所述盐湖卤水提锂母液中,Li+的浓度为1.3g/L~1.7g/L,CO32-的浓度为15g/L~25g/L,OH-的浓度为10g/L~20g/L; 在所述纳滤淡水中,Li+的浓度为0.5g/L~1.5g/L,铝锂比为0.05~0.3; 在所述反渗透浓水中,Li+的浓度为3.5g/L~7.5g/L,铝锂比为0.05~0.3; 在所述除铝富锂液中,Li+的浓度为1.5g/L~8.0g/L,Al3+的浓度不超过10ppm。 2

一种碳酸锂、氢氧化锂的工艺技术

一种碳酸锂、氢氧化锂的工艺技术 胡兴桃工艺流程叙述 锂精矿粉在回转窑中以天然气作为燃料经预热、焙烧转型,焙烧转型后的精矿经冷却、破碎、球磨得到细粉焙料。细粉焙料与硫酸在双轴混合器中搅拌后进入酸化窑内焙烧。酸化焙烧好的酸化熟料经浸出制浆至PH值6.5-7,过滤和洗涤。滤滤碱化、除钙,经压滤,得到浸出液的净化液。浸出渣送入渣场,净化液须浓缩至浓度为Li2O 硫酸锂浓缩液,该溶液一部分用于氢氧化锂生产线生产电池级氢氧化锂,一部分用于碳酸锂生产线生产电池级碳酸锂。系统中各过滤、压滤系统所产生的渣及过滤、压滤设备清洗的水混合制成浆料返回至浸出岗位进行锂的回收,而本项目所产生的浸出渣为中性,可直接输送至水泥厂作为水泥生产辅料使用。 氢氧化锂生产线:硫酸锂+氢氧化钠冷冻法生产单水氢氧化锂的工艺原理就是在硫酸锂溶液中加入一定量的氢氧化钠溶液,利用硫酸钠在低温时溶解度较低的性质除去硫酸钠,形成一定浓度的氢氧化锂溶液,氢氧化锂溶液经蒸发结晶最后得到氢氧化锂产品. 碳酸锂生产线:氢化法制碳酸锂的工艺原理就是硫酸锂溶液经碱化除杂后与纯碱液在高温条件下反应,沉锂出工业级碳酸锂,工业级碳酸锂经搅洗、分离后配制成碳酸锂浆料,经氢化提纯、分离、烘干、粉碎,最终得到电池级碳酸锂产品。 氢氧化锂生产

主要反应如下: Li2SO4+2NaOH+10H2O Na2SO4·10H2O+2LiOH 经浓缩后的硫酸锂溶液中加入氢氧化钠溶液和后工序的沉锂母液经压滤制成冷冻前的预制液。 在冷冻的条件下,进料预制液经过一次冷冻和二次冷冻过程,物料出,经分离得到冷冻后的氢氧化锂初始溶液。第一次冷冻分离出十水硫酸钠加冷凝水溶化制成饱和硫酸钠浆液,经MVR蒸发浓缩结晶、分离出无水硫酸钠,再经烘干、包装即为元明粉(Na2SO4·10H2O)产品(为副产品外销)。第二次冷冻分离出十水硫酸钠与第一次分离的浆料混合,第二次冷冻后氢氧化锂溶液经MVR蒸发浓缩粗品结晶氢氧化锂,母液返回到硫酸锂的配制溶液中。粗品用后工序重结晶的冷凝水加热配制氢氧化锂饱和溶液,经压滤、精密过滤制成重结晶饱和溶液。浆该溶液打入MVR蒸发结晶器浓缩结晶,分离、洗涤生产氢氧化锂湿精品,经烘干、筛分、除磁、包装得到氢氧化锂成品,母液返回到冷冻后溶液中用于生产氢氧化锂粗品。 氢氧化锂压滤渣经调浆、搅洗后返回浸出制浆岗位,对锂进行回收。碳酸锂生产 主要反应如下: Li2SO4+Na2CO3 Na2SO4+Li2CO3 Li2CO3+CO2+H2O 2LiHCO3 2LiHCO3 热解 Li2CO3+CO2+H2O

无水氢氟酸生产过程的危险有害因素分析(2020新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 无水氢氟酸生产过程的危险有害因素分析(2020新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

无水氢氟酸生产过程的危险有害因素分析 (2020新版) 无水氢氟酸是一种具有极强腐蚀性的酸。它的物理特性是液态温度范围宽,电导率高,极性大,沸点、凝固点、粘度及表面张力低,化学特性是碳氟链牢固且具有活泼的化学活性,几乎能与所有各种有机的或无机的化合物结合。氟化工作为我国目前新兴的精细化工行业,无水氢氟酸可广泛应用于工业、民用及国防军工工业。如广泛应用的氟塑料,氟橡胶、氟制冷剂、含氟涂料、含氟表面活性剂以及含氟医药制品等。 一、生产工艺过程 目前,世界上无水氢氟酸的工业化生产主要是走萤石路线,即以萤石粉(CaF2 )和硫酸(H2

S04 )反应制得。 国内大多生产厂家均采取以萤石粉(CaF2 )、硫酸(H2 S04 )、发烟硫酸为原料,在回转炉中加热反应生成粗氟化氢气体,经洗涤、冷却、冷凝、精馏、脱气得到无水氢氟酸产品,副产品为氟硅酸和含氟石膏。 其生产过程的主要化学反应式: CaF2 +H2 S04 →CaS04 +HF↑ 二、主要危险、危害因素分析 无水氢氟酸生产过程存在的危险、危害因素主要有:

单水氢氧化锂结块现象的原因分析及防治措施

单水氢氧化锂结块现象的原因分析及防治措施 单水氢氧化锂产品在贮存和运输过程中常常产生结块现象,结块后硬度骤升,不便于使用。本文通过对其结块现象的初步研究,找寻合适的防结块的方法。 2结块机理 以电子显微镜及X光衍射仪,通过对结块后的晶体表面进行研究,探询晶体物料结块的原因。目前关于晶体结块原因的理论有结晶理论和毛细管吸附理论。 2 · 1结晶理论 由于物理或化学的原因,使晶体表面溶解并重结晶,于是晶粒之间在接触点上形成了固体的联结,即形成晶桥,而呈现结块现象。 2 · 1. 1物理原因 通常是晶体物料与大气之间进行水分交换,如果物料是水溶性的,则当某温度下,空气中的水蒸气分压大于纯物料的饱和水溶液,在该温度下达到平衡蒸汽压时,晶体就从空气中吸收水分。空气湿度大于临界湿度时,晶体将吸湿;低于临界湿度时,晶体将保持干燥。晶体吸湿后,在晶粒表面形成饱和溶液,当空气中的湿度降低,由吸湿而形成的溶液将蒸发,晶粒在相互接触之点上,形成晶桥面粘连在一起。 2 · 1. 2化学原因 晶体表面上进行化学反应时,也会导致溶解重结晶。由于晶体产品中杂质的存在,晶粒的表面在接触中将产生化学反应或与空气中的物质02,C02等产生化学反应,或在晶粒间的液膜中发生复分解反应。 某些反应产物因溶解度低而析出,并导致结块。 2 · 2毛细管吸附理论 由于细小晶粒间毛细管吸附力的存在,使毛细管弯月面上的饱和蒸汽压低于外部的饱和蒸汽压,这样就为水蒸气在晶粒间的扩散造成条件。此外,物料虽然经过干燥,但总会含有一定量的湿分,且在物料内部存在一定的湿含量梯度,能将溶解的晶体物质带到各处,从而为晶粒间的晶桥提供了饱和 溶液,并导致晶体的结块。3影响结块的因素 影响结块的因素,就晶体产品本身来说,重要的是 粒度、粒度分布及晶习。均匀整齐的粒状晶体的结块倾向 最小,即使发生了结块现象,但由于晶块结构疏松,单位 体积的接触点也很少,故结成的块容易被破碎,见图1(a)。粒度参差不齐的粒状晶体,由于大晶粒之间的空隙 充填着较小的晶粒,单位体积中接触点增多,结块倾向较大,结成的块也不像前一种情况那样容易破碎,见图1 (b )0图1(c)中的晶体虽然整齐均匀,但由于晶粒为长 柱形,能挤在一起,也具有很大的结块倾向。图1(d) 所示的情况,其中晶体不但呈长柱形,而且又不整齐,能 更紧的挤在一起,结成空隙很小的晶块。这类晶体结块后 往往不易破碎。片状晶体也具有坏的结块特性。 d 晶粒形状对结块的影响 (a)大而均匀的粒状晶体;〈b)不均匀的粒状晶体汉c)大而均匀的长柱 状晶体;(d)不均匀的长柱状晶体。 影响结块的外部因素有贮存环境下的大气湿度、温度、压力及贮存时间等。4单水氢氧化锂工艺特性 4 · 1单水氢氧化锂的热重变化曲线 ℃ 220 A B 1 80 [ 40 100 AB:20、100 OC LiOH ? H20脱除附着水和结晶水。 BC:100、200 ℃ LiOH · H20脱除结晶水,使氢氧化锂转为无水氢氧化锂。 CD:200、500 ℃氢氧化锂的加热过程没有变化。 DE:500、720 ℃无水氢氧化锂分解为氧化锂。 EFG:720、1 100。C高温下,氧化锂能与大多数氧化物发生反应。 在产品生产过程中应控制烘干温度在AB段,才能得到合格的产品。 4 · 2单水氢氧化锂的差热曲线 图3单水氢氧 时间 化锂的差热曲线 由图3所示,脱结晶水开始温度为90、100 在生产中为防止单水氢氧化锂转为无水氢氧化锂,产品烘干温度不宜过高,应低于100 ℃,这与真空度大小有关。当真空度高时,可控制低温脱附着水,如生产上采用高于 100 ℃和低真空的干燥工艺,是不适合的,易造成产品局部过烘,生成无水氢氧化锂。同时,有些部位水分较多,在产品包装后易产生结块。因此应该为低温高真空烘干,保证产品的水分脱除均匀并能达到要求。 5单水氢氧化锂结块原因 单水氢氧化锂的结块,实际上是单水氢氧化锂晶体颗粒互相粘连,其内因是含附着水。产品中的附着水在晶体表面形成一层水膜,在外力作用下,晶体靠近接触,两个晶粒的饱和氢氧化锂液膜连通,形成接近处的共有液膜。在一定温度下,随着放置时间的延长,液膜中的水分逐渐挥发脱去。当液膜中的氢氧化锂达到饱和后,结晶析出,所产生的单水氢氧化锂小晶体连接了原来的两个晶粒,多数晶粒的这种互相连接,就造成了宏观上的结块。 产品结块多数发生在夏、秋季,外界水分是造成结块的因素,水分子借助于温度,以扩散、渗透、呼吸作用、毛细现象等方式进人产品内部。水分多少,与温度、时间和空气湿度有关,相对湿度越大,单位体积中的水分子含量越多,渗人的机会也越大。 6采取措施 (1)增大室内空间,使通风良好,降低包装室温度。 (2)增大产品结晶粒度,晶粒大不宜结块,晶粒愈小在一定外力作用下,晶粒接触机会愈多,易造成粘连成块。

高纯氢氟酸的介绍与生产

高纯氢氟酸的介绍与生产 一、概述 高纯氢氟酸英文名 hydrofluoric acid,分子式 HF,分子量 20.01。为无色透明液体,相对密度 1.15~1.18,沸点112.2℃,在空气中发烟,有刺激性气味,剧毒。能与一般金属、金属氧化物以及氢氧化物发生反应,生成各种盐类。腐蚀性极强,能侵蚀玻璃和硅酸盐而生成气态的四氟化硅。易溶于水、醇,难溶于其他有机溶剂。 高纯氢氟酸为强酸性清洗、腐蚀剂,可与硝酸、冰醋酸、双氧水及氢氧化铵等配置使用,主要应用于集成电路(IC)和超大规模集成电路(VLSI)芯片的清洗和腐蚀,是微电子行业制作过程中的关键性基础化工材料之一,还可用作分析试剂和制备高纯度的含氟化学品。目前,在国内基本上是作为蚀刻剂和清洗剂用于微电子行业,其它方面用量较少。 二、高纯氢氟酸的分类 国际SEMI(Semiconductor Equipment and Materials International)标准化组织根据高纯试剂在世界范围内的实际发展情况,按品种进行分类,每个品种归并为一个指导性的标准,其中包括多个用于不同工艺技术的等级,具体见下表1。 表1 SEMI国际标准等级 国内有的高纯试剂生产企业拥有自己的企业标准,其中,BV 系列标准比较常见,该标准共分为七个等级。如:北京化学试剂用的就是BV系列标准,具体见下表2。 表2 国内高纯试剂常用规格

目前,因各微电子生产企业对高纯氢氟酸要求的标准不同,可将其划分为四个档次:①低档产品,用于>1.2μmIC工艺技术的制作;②中低档产品,适用于0.8~1.2μmIC工艺技术的制作;③中高档产品,适用于0.2~0.6μmIC工艺技术的制作;④高档产品,适用于0.09~0.2μm和<0.09μm IC工艺技术的制作。三、制备方法与工艺 目前国内外制备高纯氢氟酸的常用提纯技术有精馏、蒸馏、亚沸蒸馏、气体吸收等技术,这些提纯技术各有特性,各有所长。有的提纯技术如亚沸蒸馏技术只能用于制备量少的产品,而有的提纯技术如气体吸收技术可以用于大规模的生产。因此,选择工艺技术路线时应视实际情况而定。另外,由于氢氟酸具有强腐蚀性,采用蒸馏工艺时所使用的蒸馏设备一般需用铂、金、银等贵金属或聚四氟乙烯等抗腐蚀性能力较强的材料来制造。 高纯氢氟酸生产装置流程布置要以垂直流向为主,原料无水氢氟酸和高纯水在上层,氢氟酸的提纯在中层,过滤、包装及储存在底层。因为原料(无水氢氟酸和高纯水)与中间产物可以依靠重力自上而下流动,避免用泵输送,节省能耗,降低生产成本。下面介绍一种精馏、吸收相结合的生产高纯氢氟酸的生产工艺。 将无水氢氟酸经过化学预处理后通过给料泵进入高位槽,再通过流量计控制进入精馏塔,通过精馏操作得到精制后的氟化氢气体,并将其送入吸收塔,精馏塔残液定期排放并制成工业级氢氟酸。在吸收塔中,通过加入经过计量后的高纯水,使精馏后的氟化氢气形成高纯氢氟酸,并且可采用控制喷淋密度、气液比等方法使高纯氢氟酸进一步纯化,得到粗产品。随后再经过超净过滤工序,使产品进一步混合和得到过滤,保证产品的颗粒合格。最后在净化室内进行包装得到最

氟化铝工艺流程

氟化铝产品的生产工艺 一、湿法生产工艺(属淘汰工艺): 硫酸和萤石高温反应后产生的气体,直接吸收成30%~35%的氢氟酸,与氢氧化铝在90℃左右合成为AlF3?3H2O,经过滤后,进入高温脱水干燥,最后得氟化铝AlF3成品。由于脱水时产生的水蒸汽回分解AlF3,因此,湿法氟化铝含量低,杂质多,水份含量高,堆密度低,流动性差。基本上不适应现代电解槽使用。化学指标为:F≥57% Al≥28% Na≤3.5% H2O≤7%。 二、干法生产工艺(干法氟化铝): 1、粗酸干法:硫酸和萤石高温反应后产生的气体,经过粗洗后进入流化床,与干燥后的氢氧化铝反应,在高温下生成氟化铝。由于粗洗后的氟化氢含量约96%,杂质较高,氟化铝产品的杂质也就比较高;特别是没有脱硅,使得氟化铝产品的二氧化硅含量达到0.25%。这些杂质会影响电解铝的质量,增加电解时的电耗。 F≥61% Al≥30% Na≤0.5% H2O≤0.5% SiO2≤0.28% P2O5≤0.04% Fe2O3≤0.1% SO42-≤0.5% 2、精酸干法:硫酸和萤石高温反应后产生的气体,经过粗洗、冷冻、脱气、精馏后进入蒸发器,此时氟化氢的含量一般为99.5%;蒸发出的氟化氢气体(含量接近100%)进入流化床,与湿氢氧化铝反应,在高温下生成氟化铝。由于氟化氢纯度高,这样生产的氟化铝质量很好,杂质很低,特别是二氧化硅含量只有0.02%,五氧化二磷含量只有0.007%,对电解铝的生产非常有利。F≥62%Al≥32% Na≤0.5%

H2O≤0.5%SiO2≤0.03%P2O5≤0.01%Fe2O3≤0.03%SO42-≤0.03%氟化铝,Aluminum fluoride 分子式:AlF3 分子量:83.98性状:白色晶体或粉末。25 ℃时的相对密度2.882,微溶于水、酸及碱溶液,不溶于大部分有机溶剂,在氢氟酸溶液中有较大的溶解度。无水氟化铝性质非常稳定;与液氨甚至与浓硫酸加热至发烟仍不起反应,与氢氧化钾共熔无变化,也不被氢气还原,加热不分解,但升华,升华温度1291℃。在300~400℃下可被水蒸气部分水解为氟化氢和氧化铝。有毒。 氟化铝产品用途:在铝的生产中作电解浴组分,用以降低熔点和提高电解质的电导率。用于生产酒精时作发酵的抑止剂。用作陶瓷外层釉彩和搪瓷釉的助熔剂、非铁金属的熔剂。在金属焊接中用于焊接液.用于制造光学透镜。还用作有机合成的催化剂及人造冰晶石的原料等。

王酸氢氟酸高纯石墨提纯工厂工艺

王酸氢氟酸法生产高纯石墨工厂工艺概述 朱公和 关键词石墨提纯石墨化学提纯 高纯石墨化学提纯产品纯度高、性能稳定,具有高产能、规模大的优势。在科技发展日新月异的今天,唯有化学提纯工厂生产的高纯石墨能够满足国内外市场的大部分需求。石墨化学提纯工厂的核心价值是工艺,工艺价值决定企业价值。因此,剖析高纯石墨化学提纯生产工艺的基本要素对指导企业生产,提高企业经济效益具有重要意义。 一、王酸氢氟酸高纯石墨提纯工艺的由来 某球形石墨工厂提纯分部采用氢氟酸、盐酸、硝酸工艺加工高纯球形石墨,是典型的用酸大户,可谓“酸老虎”。每吨球形石墨用酸成本为2400~2600元人民币。 如何解决用酸量过大的问题,工厂曾委托烟台某化工厂用氢氟酸、硫酸、盐酸混酸法[1]做了小样,8个样品纯度分别为99.17%~99.90%,小样不符合GB/T3518-2008高纯度石墨检验要求,且每吨石墨粉料提纯用酸成本为2344~3854元人民币。同期又参阅了张然、余丽秀《硫酸—氢氟酸分步提纯法制备高纯石墨研究》[2]一文,也未寻到更好的解决办法。 一般来说,定型一个化工工艺方案,应走小样→中试→放大中试→生产装置这个程式,但工厂不具备这些条件,那只能在生产装置上投料实验,边生产边实验,工艺思路是首先确定固液比,其次是逐步减少氢氟酸的用量,再者是减少盐酸、硝酸的用量。因为有盐酸、硝酸的存

在,其配伍运用“王水”[3]的基础理论,将盐酸与硝酸的比值定为3:1,形成弱王水,又由于有氢氟酸、盐酸、硝酸的强强结合,具有类似王水的作用。实际生产中的投料方案是循序渐进的,有欣喜、有困惑、有波折,更有坚持下去的信念,工艺最终定格在99%的球形石墨粉料,提纯至99.95~99.96%,用酸成本为1058元人民币;≥95%的-100目石墨粉料经粉碎后球形化,提纯纯度也稳定在99.95~99.96%,定型后的工艺方案每吨用酸成本节省1000多元人民币,且废酸废水治理也容易了许多。更可贵的是将纯度93%的+50目大鳞片中碳石墨通过碱酸法处理达到高碳,再用王酸氢氟酸法提纯,测定的8个样品中,4个样品纯度为99.95%,4个样品纯度为99.96%。 王酸氢氟酸法高纯石墨提纯工艺,经过工厂大生产的淬炼,具有产量大、纯度高,性能稳定,质量可靠,且生产设备的适用性好[4],生产操作简单,彻底跳出了石墨的纯度越高,用的酸量越大,酸浓度越高的怪圈,为石墨化学提纯工业趟出了新路子。 二、王酸氢氟酸法提纯工艺路线 王酸氢氟酸法提纯工艺路线(一)见图1 王酸氢氟酸法提纯工艺路线(二)见图2 三、工艺准则 1、工艺介质 H2O\HF\HCL\HNO3 2、工艺步骤与工艺参数C=95%~99% 表一

无水氟化氢工艺操作规程

反应岗位工艺操作规程 一、岗位任务及管辖范围 1、岗位任务: 本岗位的主要任务是将来自原料酸罐区的98%硫酸送到吸收塔后进入洗涤塔,将发烟酸输送到混酸槽,与从硫酸洗涤塔回流来的混酸酸进行混合后进入反应转炉与氟石粉进行反应. 2、管辖范围: 操作室内的DCS原料计量页面、反应粗制页面,硫酸、发烟酸计量,反应转炉,外混器,失重秤,运粉搅龙,洗涤塔等设备及其连接的管道,均由巡检配合反应岗位实行维护保养及正常操作。 二、生产原理及工艺流程 1、产品及物料的物化性质 萤石粉 萤石又称氟石,是一种天然的化石,萤石粉。化学成分: CaF2 。比重3.18。晶体结构:晶胞为面心立方结构,每个晶胞含有4个钙离子和8个氟离子。常见颜色:绿、蓝、棕、黄、粉、紫、无色等。 AHF生产用氟化钙的质量标准: 水分(烘干后)≤200ppm 100目透过率≥80% 氟化钙≥97% 二氧化硅≤1.5% 碳酸钙≤0.5% 98%浓硫酸

98%浓硫酸是一种无色无味油状液体。其中浓硫酸H2SO4的质量分数为98.3%,其密度为1.84g·cm-3,其物质的量浓度为18.4mol·L-1。98.3%时,熔点:10℃;沸点:338℃。硫酸是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶。浓硫酸溶解时放出大量的热。98%浓硫酸为不挥发,有吸水性(可做干燥剂),有脱水性(化学性质,使有机物炭化)和强腐蚀性。 AHF生产用浓硫酸的质量标准: 外观无色油状液体 硫酸≥98% 105%浓硫酸 发烟硫酸为无色油状液体,有强烈刺激臭,可与水以任何比例混合,并放出大量热。具有极强的脱水、氧化与磺化作用。当它暴露于空气中时,挥发出来的SO3和空气中的水蒸汽形成硫酸的细小露滴而冒烟,所以称之为发烟硫酸。20%发烟硫酸意即含游离三氧化硫20%;每100kg的20%发烟硫酸相当于104.5kg100%硫酸,故又称104.5%硫酸。 AHF生产用发烟硫酸的质量标准: 外观无色油状液体 硫酸≥104.5% 2、生产原理: 本项目无水氟化氢的生产采用通用的浓硫酸分解萤石矿粉的生产工艺,以萤石粉、浓硫酸、发烟硫酸为原料,在外加热的回转反应炉内进行反应制得氟化氢粗品,其反应原理可以用下列化学反应方程式表示: A、主反应: CaF2 + H2S04 = CaSO4 + 2HF↑ 本反应过程要求控制好一定的反应温度和配比,通过调节发烟硫酸的加入量,控制系统中的水分,避免水分过高对系统造成的腐蚀等影响。 B、可能发生的副反应的化学方程式为: SO 3 + H 2 O = H 2 S0 4 + 热量

《类似商品和服务区分表--基于尼斯分类第十一版》2018文本

《类似商品和服务区分表--基于尼斯分类第十一版》(2018文本) 第一类 用于工业、科学、摄影、农业、园艺和林业的化学品;未加工人造合成树脂,未加工塑料物质;灭火和防火用合成物;淬火和焊接用制剂;鞣制动物皮毛用物质;工业用粘合剂;油灰及其他膏状填料;堆肥,肥料,化肥;工业和科学用生物制剂。 【注释】 第一类主要包括用于工业、科学和农业的化学制品,包括用于制造属于其他类别的产品的化学制品。 本类尤其包括: ——感光纸; ——补轮胎用合成物; ——非食品用防腐盐; ——某些食品工业用添加剂,例如果胶,卵磷脂,酶和化学防腐剂; ——某些生产化妆品和药品用原料,例如:维生素,防腐剂和抗氧化剂; ——某些过滤材料,例如:矿物质材料,植物质材料和颗粒状陶瓷材料。 本类尤其不包括: ——未加工的天然树脂(第二类),半加工的树脂(第十七类); ——医用或兽医用化学制剂(第五类); ——杀真菌剂、除草剂和消灭有害动物制剂(第五类); ——文具用或家用粘合剂(第十六类); ——食品用防腐盐(第三十类); ——褥草(腐殖土的覆盖物)(第三十一类)。 0101 工业气体,单质 (一)氨* 010061,无水氨010066,氩010082,氮010092,一氧化二氮010093,氯气010183,氟010302,焊接用保护气体010326,工业用固态气体010328,干冰(二氧化碳)010333,氦010344,氢010359,氪010372,氖010401,工业用氧010413,氡010457,氙010551 ※液体二氧化硫C010001,三氧化硫C010002,液体二氧化碳C010003 (二)碱土金属010039,锑010074,砷010084,砹010086,钡010101,铋010125,碳010148,镥010153,铈010161,铯010163,镝010250,铒010276,铕010287,化学用硫华010299,工业用石墨010305,钆010318,镓010321,钬010345,化学用碘010365,工业用碘010368,镧010375,锂010379,汞010387,准金属010390,钕010400,磷010430,钾010447,镨010449,铼010463,铷010466,钐010470,钪010473,硒010479,硅010483,钠010485,硫010493,锶010498,锝010516,碲010517,铽010519,稀土010526,铊010532,铥010534,镱010552,钇010553,碱金属010560,化学用溴010585,石墨烯010715 ※钙C010004,工业硅C010005,结晶硅C010006,海绵钯C010007

无水氟化氢

无水氟化氢——以氟硅酸为原料年产20kt无水氟化 氢项目 工艺技术简介 一、产品简介: 中文名:无水氟化氢;氟化氢;无水氢氟酸 英文名:Hydrofluoric;AHF 分子式:HF 分子量:20. 01 理化性质:低温下为无色透明的液体,沸点19.54℃,熔点-83.37℃,密度1.13g/cm3(25℃)。在室温和常温下极易挥发成烟雾状。它的化学性质极活泼,能与碱、金属、氧化物以及硅酸盐等反应,在一定条件下能与水自由混合成氢氟酸。有强烈的刺激性气味,对眼、耳、鼻、喉粘膜有强腐蚀作用,对人的牙齿及骨骼有严重腐蚀性,并使之钙化。空气中最大允许浓度为1mg/m3;水溶液腐蚀性极强;剧毒。 用途:无水氟化氢广泛应用于原子能、化工、石油等行业。是强氟化剂;是制取元素氟、各种氟致冷剂、无机氟化物、各种有机氟化物的基本原料;还可配制成各种用途的有水氢氟酸,用于石墨制造和制造有机化合物的催化剂、玻璃刻蚀剂等。 市场容量:目前国内市场对无水氟化氢的需求约为85万吨(含生产氟化铝的消耗),出口量约18万吨。国内生产能力为115万吨,其中113万吨的生产工艺均为萤石粉与硫酸反应而成。 二、技术和工艺原理: 技术原理:

工艺方框图: 三、吨产品原材料与公用工程消耗量:

四、鼎盛公司的技术优势 1、生产工艺独特,国内首创。充分利用了磷肥生产企业副产氟硅酸中的氟,符合国家发展循环经济的要求。本技术已申请中国发明专利,专利号:201010148617.X。 2、本工艺的最大优势就是在氟化氢生产过程中,液氨和硫酸氢铵都是在系统内循环,理论上并不消耗。实际生产过程中有微量的挥发。 3、生产成本低廉,比用萤石粉和硫酸生产的氟化氢成本至少低30%以上;市场竞争力强。 4、氟化氢产品质量达到一级品或优级品。 5、自动化程度高,生产过程安全可靠。 6、清洁工艺生产,无污染。

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如F e2O3、LiH2PO4和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于700℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO4走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na2HPO4和FeCL3合成FePO4.2H2O,然后与CH3COOLi通过水热法合成LiFePO4。与高温固相法比较,水热法合成的温度较低,约150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Phostech的P2粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH4)2Fe(SO4)3.6H2O与H3PO4的混合溶液中,得到共沉淀物,过滤洗涤后,在惰性气氛下进行热处理,可以得到LiFePO4。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。 (5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。

钼蓝分光光度法之单水氢氧化锂和硅的测定

1 范围 本方法适用于工聚氯化铝业级单水氢氧化锂中质量分数0.00050%~0.050%硅的测定。 2 原理 试料以盐酸分解,在弱酸性介质中硅与钼酸铵形成硅钼黄杂多酸,以硫酸-草酸消除磷、砷的干扰,用抗坏血酸将硅钼黄还原为硅钼蓝。于分光光度计波长800nm处测量其吸光度。 3 试剂 3.1盐酸,1+1,优级纯。 3.2硫酸,3+97,优级纯。 3.3硫酸,33+67 优级纯。 3.4氨水,1+5,超纯。 3.5钼酸铵溶液,50g/L,必要时过滤。 3.6草酸溶液,50g/L,优级纯。 以上试剂均需贮存于塑料瓶中。 3.7抗坏血酸溶液,20g/L,用时现配。 3.8硅标准贮存溶液,100μg / mL: 称取0.2140g预先在1000℃灼烧1h并在干燥器中冷却至室温的二氧化硅,置于盛有1g无水碳酸钠(优级纯)的铂坩埚中,加入3g无水碳酸钠,在950~1000℃高温炉中熔融至熔体为亮红色并清澈透明,取出冷却,放入聚四氟乙烯烧杯中,用热水浸出,加热至溶液清亮,冷却,移入1000mL容量瓶中,以水稀释至刻度,混匀,立即移入塑瓶中。此溶液1mL含100μg硅。 3.9硅标准溶液,10μg / mL: 移取25.00mL100μg /mL硅标准贮存溶液,置于250mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL含10μg硅。 3.10硅标准溶液,1μg / mL: 移取10.00mL10μg /mL硅标准溶液,置于100mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL 含1μg硅。用时现配。 3.11对硝基酚指示剂溶液,1g/L。 用乙醇配制。

相关文档
最新文档