弹簧设计和计算

弹簧设计和计算
弹簧设计和计算

一. 弹簧按工作特点分为三组 二. Ⅰ组:受动负荷(即受力忽伸忽缩,次数很多)的弹簧,而且当弹簧损坏后将引起整个机构发

生故障.例如:发动机的阀门弹簧、摩擦离合器弹簧、电磁制动器弹簧等。 三. Ⅱ组:受静负荷或负荷均匀增加的弹簧,例如安全阀和减压阀的弹簧,制动器和传动装置

的弹簧等。 四. Ⅲ组:不重要的弹簧,例如止回阀弹簧手动装置的弹簧,门弹簧和沙发弹簧等。 五. 按照制造精度分为三级 六. 1级精度:受力变形量偏差为±5%的弹簧,例如调速器和仪器等需要准确调整的弹簧。 七. 2级精度:受力变形量偏差为±10%的弹簧,例如安全阀、减压阀和止回阀弹簧,内燃机

进气阀和排气阀的弹簧。 八. 3级精度:受力变形量偏差为±15%的弹簧,不要求准确调整负荷的弹簧,象起重钩和缓

冲弹簧、刹车或联轴器压紧弹簧等。 九. 名词和公式

1。螺旋角:也叫“升角”,计算公式是: 螺旋角的正切2

D t

tg πα=

; 式中:t---弹簧的节距; 2D ---中径。 一般压缩弹簧的螺旋角α=6~9°左右; 2。金属丝的展开长L=

α

πcos 1

2n D ≈n D 2π+钩环或腿的展开长; 式中:n 1=弹簧的总圈数; n=弹簧的工作圈数。

3。弹簧指数:是弹簧中径2D 与金属丝直径d 的比,又叫“旋绕比”,用C 来代表,即:d D C 2

=;

在实用上C ≥4,太小了钢丝变形很厉害,尤其受动负荷的弹簧,钢丝弯曲太厉害时使用寿命就短。

但C 也不能太大,最大被限制于C ≤25。C 太大,弹簧本身重量在巨大的直径上不断地颤动而发生摇摆,同时缠绕以后容易松开,直径难于掌握。一般C=4~9。 弹簧指数C 可按下表选取。

影响强度计算的弯曲程度,叫“曲度系数”,分别用下式表示:

压、拉弹簧曲度系数 C C C k 615

.04414+

--=; 扭转弹簧曲度系数 4

41

41--=C C k ;

为了便于计算,根据上面两个公式算出K 和K 1值,列成表2:

曲度系数K 和K 1表

钢的E=4101.2?(公斤力/毫米2); 铜的E=41095.0?(公斤力/毫米2)。

6.计算压缩、拉伸弹簧时,主要是受剪切应力。因此使用的是剪切弹性模数G 。

钢的剪切弹性模数G ≈8000(公斤力/毫米2

); 青铜的剪切弹性模数G ≈4000(公斤力/毫米2)。 7.工作圈数和支承圈

工作圈的作用是使弹簧沿轴线伸缩,是实际参加工作的圈数,又叫“有效圈数”,用n 来表示。 支承圈的功用,是用来保证压缩压缩弹簧在工作时轴线垂直于支承端面,但并不参加弹簧工作。因此,压缩弹簧的两端至少各要3/4圈拼紧,并磨平作为支承面。磨薄后的钢丝厚度约为1/4d ,尾部和工作圈贴紧。

重要的压缩弹簧,两端的结束点要在相反的两边,以使受力均匀。所以一般压缩弹簧的总圈数多带有半圈的,如326圈、2

110圈等。

压缩弹簧的工作圈是从按计算的螺旋角卷制时算起,而拉伸弹簧是从钩的弯曲处开始计算。

压缩弹簧必须有支承圈,扭簧和拉伸簧由于两端有腿或钩环,所以没有支承圈。 选择压缩弹簧工作圈的要点是:

必须考虑到安装地位的限制和稳定性,圈数不要太多,同时也要考虑到受力均匀和能耐冲击疲劳,因此圈数也不能太少。在一般情况下,压缩弹簧工作圈数选择是:

在不重要的静负荷作用下,n ≥2.5圈,经常受负荷或要求受力均匀时n ≥4圈,而安全阀弹簧对受力均匀的要求很严格,所以n ≥6圈。至于受动负荷如排气阀弹簧,也要求n ≥6圈。 n ≥7圈的弹簧,两头的支承圈数要适当加多,但每边不超过4

11圈。因此,总圈数为:

()5.2~5.11+=n n 。

8.刚度与弹簧指数、圈数的关系

压、拉弹簧的刚度是指产生1毫米的变形量所需要的负荷。扭转弹簧的“扭转刚度”是指扭转1°所需要的力矩。刚度越大,弹簧越硬。

我们知道,弹簧钢丝直径d 越粗,而材料的G 或E 越大时,弹簧刚度或扭转刚度也越大;相反的,中径D 2越大或工作圈数n 越多时,弹簧刚度也越小。因此它们的关系是:

压、拉弹簧的刚度n

D Gd P 3

24

`

8=,(公斤力/毫米); 扭转弹簧的扭转刚度n

D Ed M 24

`

3664=,(公斤力·毫米/度)。

9.单圈变形量

在负荷P 作用下,压缩、拉伸弹簧一圈的变形量,叫“单圈变形量”,用f 表示。如果已知单圈变形量f ,就可以求出总变形量F=fn 。

总变形量F 的计算公式是:4

3

28Gd

n

PD F =,(毫米); 将n=1代入,便得压、拉弹簧的单圈变形量4

3

2

8Gd PD f =,(毫米)。

单圈变形量的用处很大,它可以作为比较计算的基础。

10.抗拉极限强度b σ;允许弯曲工作应力[]σ,扭转弹簧的受力,主要是弯曲应力,所以应计算[]σ值;压、拉弹簧在工作时所产生的应力主要是扭转应力,在极限负荷P 3作用下所产生的应力,叫“允许扭转极限应力”,以τ来表示;在工作负荷P 2作用下所产生的应力叫“允许扭转工作应力,用[]τ来表示。

1.材料分类和性能,根据化学成分来分,弹簧钢大致分为几种,它的性能如下:

优质碳素钢(例如正、中、高级碳素弹簧钢丝)是廉价的弹簧钢,有相当好的耐疲劳强度。但是,如果含碳太高,在热处理时表面容易脱碳。此外,它不能在大于120°C的温度下正常工作。

低锰钢(例如60M

)价廉、脱碳少,但淬火后容易产生裂缝和热脆。

n

)来源比较广,容易热处理,可淬性高,缺点是表面容易脱碳,而且容易硅钢(例如60Si2M

n

石墨化。

VA)是耐疲劳和抗冲击最好的弹簧钢,有很高的机械性能,并能在400°C 铬钒钢(例如50C

r

以下工作,但价格比较贵,使用上受到限制。

不锈钢、青铜或锡锌青铜,有耐腐蚀的特点,所以在化学工业中多数都采用这种材料的弹簧,但是由于青铜类的材料不易热处理和机械性能差,所以一般机械都尽量避免采用这种弹簧材料。

在卷绕工艺上,弹簧材料可分为下面两中:

一种是冷绕的弹簧材料:当钢丝直径d≤8毫米时,一般都采用冷绕,因为有些弹簧钢丝经制造厂用特殊方法热处理后冷拉而成(例如琴钢丝或正、中、高级碳素弹簧钢丝)强度很高,冷绕后不必再淬火,但必须进行低温回火,以消除内应力(青铜丝也要采用冷绕后进行低温回火)。但是有的弹簧钢丝(例如60Si2M

n

)在出厂的时候没有经过热处理,冷卷成弹簧后,必须进行淬火和回火。

另一种是热卷弹簧材料:凡钢丝直径d>8毫米的,或弹簧指数C特别小的弹簧,或者是某些

合金弹簧钢丝(例如60Si2M

n 、50C

r

VA等),直径虽然不很大,但由于钢丝太硬,不容易冷绕,

也应该用热绕的方法制成弹簧,然后再进行淬火和回火。

b

9、10。

2.压、拉圆弹簧在Ⅲ组工作特点下,材料的τ值如表所示,而Ⅱ组工作特点的[τ]=0.8τ,Ⅰ组的[τ]=0.6τ,表中已打好折扣。

3.如用带钩腿的拉伸弹簧,τ值应降低25%。

4.如为扭转弹簧,则σ≈1.25τ。

b

b

b 表。

工作图

六.压缩、拉伸弹簧的计算

○1拉伸弹簧在卷绕过程中,使具有初应力时,圈数n=()3

2024

28D P P Gd F -;式中预加负荷[]τπ2

3

08KD d P =

七.扭转弹簧的计算 1.计算的基本问题

a.扭转弹簧和压、拉弹簧一样,计算的基本问题也是负荷、变形和应力的问题,但不以P 和F 来表示,而是用扭矩M 和扭转角?来表示负荷和变形。

b .扭转弹簧在M 2的作用下,所产生的内应力主要是弯曲应力[σ],而不是扭转应力[τ]。假如不知道材料的弯曲应力[σ],可以按下式换算: σ≈1.25τ或[σ]≈1.25[τ]。

一般弹簧的允许弯曲工作应力[σ],可以直接从表4中查出。

c .影响弹簧指数的曲度系数,以4

41

41--=C C K 来表示,它跟压、拉弹簧的K 不同,这点在表2

已区分清楚,查表时不要弄错。

d .当扭转弹簧在工作时,圈和圈之间将相靠紧摩擦的很厉害,因此建议:间距δ≈0.5毫米,并加润滑油。

e .对于压、拉螺旋弹簧的卷绕方向是左还是右旋,一般对工作,没影响(除非是串联或同心弹簧才用反向)。对于扭转弹簧,一定要注意它的旋向,不能弄错,否则就会造成报废。 扭转弹簧转动的方向不能采取逆转,那样会使弹簧张开而不能工作。正确的旋绕方法就象给钟表上发条一样,越旋越紧。

可是,这样又带来了副作用,当各圈在顺转收闭时,间隙过小的芯轴,就会被咬住转不动。因此,必须计算出在最大扭转角时的内径缩小值。从理论上讲,当扭转弹簧扭紧时,假定各圈为均匀地缩小,那末其内径的理论平均缩小值为:

?

?

+=

?n D D 36022;

根据上式,就不难求出扭转后的中径值360

2`

2?

+

?

=n n D D 和扭转后的内径d D D -=`

2

`1。 但是,事实上当扭转弹簧各圈收闭时,并不是各圈平均地缩小,而是两头略小,好像桶形一

样。尤其是靠近两腿处不成圆形地缩小,而最先碰到芯轴。因此,以上的计算扭转后的弹簧圈径尺寸仅是理论平均值。实际配芯轴时应比理论值要小,至于小多少,需要依靠试验或经验来判断。

2.计算的基本公式

(1)求扭矩M Pr =M ; 由材料力学,知 []

1

332K d M σπ=------------------------------------------------------

(A )

同理 21

3325.132M K d M ≥=

σ

π;

-----------------------------------------(A1) (2)求直径d 将公式(A )移项得 []

3

1

232σπK M d ≥;-----------------------(B )

当C=5,K 1=1.19 代入公式(B ),得估算直径的近似式[]

3

2

3.2σM d ≈;--(B1)

(3)求圈数n 222418064M D d E n ?=?π=()

()12212411520M M D d E --??π;-------------------------(C)

将公式(A )代入公式(C ),求得圈数的简式 []

σ?22

1360D Ed K n =

;------------(C1)

(4)求扭转角? 将上式移项,得最大工作扭矩下的扭转角

[]Ed

K nD 122360σ?=

--------------------------------------------------------------(D ) 或

'

22M M =

?;

--------------------------------------------------------------------(D1) 极限扭矩下的扭转角 '

33M M =

?;-----------------------------------------------(D2)

式中 扭转刚度 n D Ed M 24

'

3664=; 扭转刚度是指扭转1°所需要的力矩,单位是 公

斤力·毫米/度。

(5)扭转后中径'

2D 的理论平均值

360

2'2?

+

?

=n n D D ------------------------------------------(J )

扭转后内径的理论平均值 d D D -='

2'1;--------------------------------------(J1)

上面说过,为了考虑各圈并不平均地缩小,所以制造芯轴时的实际尺寸要比理论所计算的小。

(6)计算实例

例1.一根扭转弹簧的腿在垂直于腿的方向受负荷P 1=10公斤和

P 2=30公斤,这腿自弹簧圈的中心到受力作用线P 的垂直距离

r=20毫米(参看右图),求最小扭矩M 1和最大工作扭矩M 2。 解 由扭矩的定义知:

200

201011=?==r P M (公斤力·毫米);600

203022=?==r P M (公斤力·毫米)。

例2.一根由锡锌青铜制成的扭转弹簧,受静负荷,d=3毫米,D 2=15毫米,n=10圈。问当受

负荷时,弹簧扭到多少度以后仍然不至于永久变形?

解 (1)直接查表4得锡锌青铜的允许弯曲应力(受静负荷属于第Ⅱ组):

[σ]=40 公斤力/毫米2

(2)弹性模数 E=41095.0? 公斤力/毫米2; (3)弹簧指数 53

15

2===

d D C ;查表2得曲度系数K 1=1.19; (4)代入公式(C1)[]σ?221360D Ed K n =

,移项得在最大工作扭矩作用下的扭转角[]

Ed

K nD 122360σ?=

=

=??????3

1095.019.140

15103604

64°。 例3.一根扭转弹簧用在负荷均匀地增加的机构里,以知工作条件是:最小工作扭矩M 1=200公斤力·毫米,最大工作扭矩M 2=600公斤力·毫米,工作扭转角4012=-=???°,但是厂里只有d=5毫米的中级碳素弹簧钢丝,试核算能不能用?并求制造上的主要尺寸。 解 按本弹簧的工作特点,属于第Ⅱ组,计算步骤如下: (Ⅰ)根据弹簧的具体工作条件确定 (1)制造型式 普通N 型;(2)制造精度 3级; (Ⅱ)计算基本尺寸: (1)查表7得τ=65公斤力/毫米2,[τ]=52公斤力/毫米2,折算得:σ=1.25τ=1.25×65=81.3

公斤力/毫米2,[σ]=1.25[τ]=1.25×52=65公斤力/毫米2

; (2)弹簧指数 按表1选取C=6; (3)曲度系数 查表2得K 1=1.15; (4)钢丝直径 []

3

1

232σπK M d ≥=3

65

1416.315

.160032???=4.76,现在厂里有d=5毫米的钢丝,说明

可以用。决定取d=5毫米;

(5)中径 D 2=dC=5×6=30毫米;

(6)弹性模数 E=2.1×104公斤力/毫米2;

(7)工作圈数 n=()()

12212411520M M D d E --??π=()200600301152040

51416.3101.244-?????=11.9(圈),取n=12圈;

(8)扭转后中径的理论平均值 360

2'

2

?

+

?=n n D D =360

401212

30+

?

=29.7毫米(比D 2缩小0.3毫米);

(9)扭转后内径的理论平均值d D D -='

2

'1=29.7-5=24.7毫米; (10)弹簧刚度难 n D Ed M 24'

3664==12

3036645101.24

4????=10 公斤力·毫米/度;

(11)允许极限扭矩1

3332K d M σπ=

=

15

.1323

.8151416.33???=870公斤力·毫米>1.25M 2=750公斤力·毫

米,符合M 3≥1.25M 2的要求; (12)极限扭矩下的扭转角 '

33M M =

?=

10

870

=87°; (13)最大工作扭矩下的扭转角 '22M M =

?=10

600

=60°;

(14)最小工作扭矩下的扭转角 '

11M

M =

?=10200

=20°; (15)稳定性指标 因3?<123°可以不验算;

(16)间距 取δ=0.5毫米;

(17)节距 t=d+δ=5+0.5=5.5毫米;

(18)自由长度 H=n δ+(n+1)d+腿的轴向长度=12×0.5+(12+1)×5+腿的轴向长度=71毫米+腿的轴向长度; (19)螺旋角 2D t tg πα=

=30

1416.35.5?=0.058,α=3°20′;cos3°20′=0.998; (20)展开长 απcos 12n D L =+腿展开长=998

.012

301416.3??+腿展开长=1140毫米+腿展开长。

○1后面的近似式是假设C=5,K

1

=1.19时的d值作为估算时用,算出初步的D,就可以算出C

及K

1,再代入前面的精确公式求算d。

弹簧设计规范(全)

精心整理 弹簧设计规范 一、弹簧的功能 弹簧是一种弹性元件,由于材料的弹性和弹簧的结构特点,它具有多次重复地随外栽荷的大小而做相应的弹性变形,卸载后立即恢复原状的特性。很多机械正是利用弹簧的这一特点来满足特殊要求的。其主要功能有: ⑴、减振和缓冲,如车辆的悬挂弹簧,各种缓冲器和弹性联轴器中的弹簧等。 ⑵、测力,如测力器和弹簧秤的弹簧等。 ⑶、储存及输出能量,如钟表弹簧,枪栓弹簧,仪表和自动控制机构上的原动弹簧等。 计算方法。

三、弹簧使用的材料及其用途 弹簧钢的的主要性能要求是高强度和高屈服极限和疲劳极限,所以弹簧钢材用较高的含碳量。但是碳素钢的淬透性较差,所以在对于截面较大的弹簧必须使用合金钢。合金弹簧钢中的主要合金元素是硅和锰,他们可以增强钢的淬透性和屈强比。 弹簧材料使用最广者是弹簧钢(SUP)。碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如:65#,75#,85#。直径稍大,需用热成型工艺生产的弹簧多采用60Si2Mn,如汽车板簧,铁路车辆的缓冲簧。对于高应力的重要弹簧可采用50CrV,常用于高级轿车板簧,发动机气门弹簧等。其他弹簧钢材料还有:65Mn,50CrMn,30W4Cr2V等。 a、碳钢及合金钢:制造弹簧时,常加矽、锰、铬、钒及钼等金属元素于钢中,以增加弹簧之弹性及疲劳限度,且使其耐冲击。 因此要求弹簧材料具有较高的抗拉强度极限、弹性极限和疲劳强度极限,不易松弛。同时要求有较高的冲击韧性,良好的热处理性能等。常见的弹簧材料有优质碳素钢、合金钢和铜合金。几种主要弹簧材料的使用性能和许用应力见表2。

106 D

弹簧定数不清:kTd=(Ed4)/[3667D×N+389(a1+a2)] 荷重:P=(kTd×φd)/R 弯曲应力:σ=(Ed×φd)/(360D×N) σ=(32P×R)/(πd3)×kb (安全确认):kb=(4C2–C-1)/[4C(C-1)] 弯曲应力:容许限界以下 4.1、弹簧设计使用的基本公式 4.1.2、有初始张力的拉伸弹簧 +

Q CS 05 011-2015 后背门气弹簧设计计算方法

Q/CS 众泰控股集团有限公司企业标准 Q/CS 05.011-2015 后背门气弹簧设计计算方法(修订) 发布

前言 本标准由众泰汽车工程研究院车身部提出。 本标准由众泰汽车工程研究院车身部归口管理。 本标准由众泰汽车工程研究院车身部负责起草。 本标准主要起草人:黄子洲。 本标准第一次修订。 本次修订增加了“5.3.6高低温交变”,“5.4.0球销的插拔力”,对“5.3.8耐久性”进行了部分更新。

后背门气弹簧设计计算方法 1 范围 本标准规定了后背门气弹簧的技术要求、试验方法和设计计算等。 本标准适用于油气混合式及变阻尼式汽车用压缩气弹簧。 2 引用标准 QC/T 207—1996汽车用普通气弹簧 JB/T 10418—2004 气弹簧设计计算 JB/T 8064.1—1996 压缩气弹簧技术条件 GB/T 1771—91 色漆和清漆耐中性盐雾性能的测定 GB/T 1740—79 漆膜耐湿热测定法 GB 1800—79 公差与配合总论标准公差与基本偏差 GB/T 2348—93 液压气动系统及元件缸内径及活塞杆外径 GB 2349—80 液压气动系统及元件缸活塞行程系列 GB 2828—87 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB 6458—86 金属覆盖层中性盐雾试验(NSS 试验) GB 6461—86 金属覆盖层对底材为阴极的覆盖层腐蚀试验后的电镀试样的评级 GB/T 13913—92 自催化镍–磷镀层技术要求和试验方法 JB 2864—81 汽车用电镀层和化学处理 JB/Z 111—86 汽车油漆涂层 3气弹簧的术语、符号、定义 3.1 气弹簧 是指由一个密闭缸筒和可以在缸筒内滑动的活塞组件及活塞杆组成的以压缩气体为贮能介质的机构。气弹簧的外形及力-位移曲线如下图1。 图1

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

二级汽车减震器设计

摘要 在本文中,设计适合中国城市道路一般使用的双级双作用筒式减震器的。首先,根据汽车减震器阻尼系数的质量计算来确定气缸的结构参数,然后建立流体动力学模型,一个理想的标准减震器阻尼特性曲线首先选择,然后使用阻尼特性曲线的理想方法近似,对每个气门机构的设计计算,在此基础上,该阻尼器的整个设计,和主要部件的强度被检测。 关键词:二级减振器;流体力学模型;理想特性曲线;强度校核

Abstract Dual use it for general urban Chinese road design drum shock absorbers. First, the shock absorber damping coefficient, calculated according to the mass of the vehicle. Cylinder configuration parameters are determined. Then hydrodynamic model. Methods valve and the Department is calculated and designed, the way the damping characteristics of the shock absorbers ideal standard curve. After that, a group of dual-use drum shock absorber design. The main portion of the intensity of the shock absorber is checked. Key words: Double absorber; hydrodynamic model; characteristics of the ideal curve; strength checking

民用飞机气弹簧计分析

民用飞机气弹簧设计分析-机械制造论文 民用飞机气弹簧设计分析 唐行微 (上海飞机设计研究院结构部,中国上海201210) 【摘要】气弹簧是性能可靠和安装方便的定制结构件,相对于民机上使用的传统机械弹簧单元在重量上具备优势。本文介绍了气弹簧的组成结构和工作方式,通过民用飞机舱门设计中的工程实例简要描述了在民机舱门上气弹簧设计的方法,通过CATIA仿真来模拟气弹簧的安装及运行来优化气弹簧的各项基本参数,并且给出了民机气弹簧的可靠性计算标准。 关键词气弹簧;民机舱门;可靠性 0 前言 气弹簧是一种可以实现支撑、缓冲、制动、高度及角度调节等功能的零件,在工程机械中,主要应用于雷达罩、口盖、舱门等部位。气弹簧主要由活塞杆、活塞、密封导向套、填充物、压力缸和接头等部分组成,在密闭的缸体内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用在活塞杆横截面上的压力差完成气弹簧自由运动。工作时,惰性气体、油液通过活塞上的阻尼孔时产生阻尼作用,控制气弹簧的运行速度,其运行速度相对缓慢、动态力变化不大。在飞机结构舱门设计中经常使用弹簧作为机构功能实现的一部分单元,通常用于提供手柄回弹的回复力,机构运作的助力以及防止机构意外运动的过中心阻力。其中用于提供助力和阻力的弹簧通常为压缩弹簧,舱门设计中通常采用传统机械弹簧,这种设计存在两方面的劣势:一是传统机械弹簧其材料通常为321固溶钢或者15-5PH不锈钢,在重量上需要付出一定代价,二是目前航空领域弹

簧制造主要通过辅助工具手工弯制,其实际力学性能通常与设计目标存在一定差异且不稳定。气弹簧由于其安装方便,工作平稳,使用安全,成为汽车和机械制造等领域的标准配件。相对于传统机械弹簧,定制气弹簧在确保满足设计需求和重量上具备明显的优势,舱门机构中使用的多处弹簧单元均可使用气弹簧来替代。 本文根据实际舱门的结构特点及气弹簧在舱门上的具体应用,对安装在舱门上的气弹簧的运动状态进行了分析和研究,给出了具体舱门气弹簧的设计步骤,同时对于民机舱门在使用条件及可靠性方面做了基本的分析。 1 工程实例 某型民用飞机设计舱门重量为8.39kg。舱门重心与铰链臂中心转轴的距离为:360.367mm。由于门体、铰链臂(门体进行开关运动的中心) 和气弹簧构成一个杠杆系统。在门打开过程中,通过门体本身重力和气弹簧阻力的双重作用,控制门下降速度门在完全打开位置时,伸展到极限程度。 根据周边结构的实际可安装空间情况确定使用两个气弹簧,并将气弹簧的完全压缩力初步设计为门体重量的3 倍左右,考虑摩擦力等影响,将气弹簧的完全压缩力初步确定为300N。 下图为飞机航截面投影面,两侧气弹簧的安装相对于门体对称面为对称结构。

弹簧弹力计算公式详解

弹簧弹力计算公式详解 压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。 一、压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; ·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例: 线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 二、拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹

簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 ·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 三、扭力弹簧 ·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

弹簧设计计算

弹簧设计计算 弹簧在材料选定后,设计时需要计算出弹簧刚度F、中径D、钢丝直径d、有效圈数n、变形量f。 以下面弹簧设计为例; 1.计算弹簧受力: 假设弹簧端克服1个标准大气压,即推动钢球,则弹簧受力为: F=PA=1×105N/mm2×πd12 /4 其中d1——钢球通道直径 弹簧还须克服钢球下降重力: G=mρV=m×4ρπR3/3 其中R——钢球半径 弹簧受合力: F合=F+G 考虑制造加工因素,增加1.2倍系数 F′=1.2F合 2.选材料:(一般选用碳素弹簧钢丝65Mn或琴钢丝) 以65Mn为例,钢丝直径d=1.4mm 3.查表计算许用应力: 查弹簧手册8-10表中Ⅰ类载荷的弹簧考虑(根据阀弹簧受力情况而言) 材料的抗拉强度σb与钢丝直径d有关 查表2-30(选用D组): σb=2150~2450Mpa 安全系数K=1.1~1.3, 可取K=1.2, 则σb=1791.7~2041.7 Mpa

因此σb=1791.7Mpa(下限值) 查表2-103,取切变模量G=78.8×103Mpa 查表8-10,取许用切应力τs==0.5σb=0.3×1791.7=537.51Mpa 4.选择弹簧旋绕比C: 根据表8-4初步选取C=10 5.计算钢丝直径:d≥1.6√KFC/[τ] 其中K——曲度系数,取K=1.1~1.3 F——弹簧受力 6.计算弹簧中径: D=C d 7.计算弹簧有效圈数: n=Gd4f/8FD3则总圈数n总=n+n1(查表8-6) 8.计算试验载荷: Fs=πd3τs/8D 9.自由高度: H0=nt+1.5d 其中:t——初步估计节距t=d+f/n+δ1(δ1=0.1d) 查表8-7系列值H0取整数 10.节距计算: t=(H0-1.5d)/n 11.弹簧螺旋角:(此值一般符合=5°~9°) α=arctan(t/πD)

气弹簧安装方式

气弹簧的安装方式怎么计算? 气弹簧气动支撑杆的安装方法 1 气弹簧的特点 气弹簧是一根举力(本文用F表示)近似不变的伸缩杆,在汽车,飞机,医疗器械,宇航器材,纺织机械等领域都有广泛的应用。它的内部构造是一条可在密闭筒腔内作直线运动的活塞杆。密闭筒腔内充满由高压气体和可溶解部分高压气体的液体所构成的液2气两相混合体。气弹簧的举力由高压气体推动活塞杆产生。推动力决定于高压气体的压强。高压气体在液体中的溶解量随气体压缩增加(此过程对应气弹簧工作于压缩阶段),随气体膨胀而减少(此过程对应气弹簧工作于伸长阶段),使得密闭筒腔内的高压气体的密度始终维持一个近似恒值,也就是气压近似不变(即举力近似不变)。 2 气弹簧的安装研究 表面上看,将气弹簧安装到客车舱门上非常简单,实际上安装设计所要解决的问题远非所想象的简单。气弹簧在舱门上的一般安装状态已知安装信息只有门体(几何形状,质量,重心,材料等),铰链和开度α要求,未知安装信息却多达6个(X1,X2,Y1,Y2,Z,F)。而由数学理论知道,要解出6个未知数,必须要解出由这6个未知数构成的6个方程式组成的方程组。由此可见,要求设计人员从纯理论形态入手解决气弹簧的安装几乎是不可能的。因此,从工程角度切入,深挖安装信息,简化未知数,是解决气弹簧安装设计问题的关键所在。 2-11 力学分析 门体,铰链(门体作开关运动的中心)和气弹簧构成一个杠杆系统。由于气弹簧对铰心的力臂远小于门重对铰心的力臂,所以这是一个费力杠杆系统。即是说,气弹簧举力必须远大于门重才可以将门体支撑起来。这是一个很重要的隐蔽条件。有了这个条件,才可以初选多大举力的气弹簧。气弹簧的举力可以确定为门重的3倍左右。当然也可以确定为门重的2倍,4倍,5倍,6倍左右。对同一个门体来说,相对于气弹簧举力取3倍门重,当气弹簧举力取2倍门重时,气弹簧力臂要增大,工作行程要增大,总长度要增加,安装空间增大;反之,当气弹簧举力取4倍以上门重时,气弹簧力臂要减小,工作行程要减小,总长度要减小,安装空间减小。这可根据实际安装空间选取气弹簧举力。笔者在实际设计中常用3倍数。 2-12 确定气弹簧的上下安装点 气弹簧的总长度,工作行程是在确定上下安装点过程中确定的。确定气弹簧上下安装点是整个气弹簧安装设计的最难点。下面以单轴铰链门体为例来说明"两圆法"在进行气弹簧安装设计的应用。安装示意图及有关参数如图2所示。下面的计算是以门体为规则,匀质的理想模型(重心=几何中心)为基础进行的。门体在开门过程中对铰心O的力矩不断变化(小→大→小),有两个峰值,一个是最大值,位于门体处于水平位置(α=90°)时;一个是固定值,位于门体处于开尽位置(α=最大值)时。根据物理学杠杆平衡原理可知,门体要在气弹簧的作用下自动打开和开尽以后长时间不掉下来,气弹簧在门体处于这两个特殊位置时对铰心O的瞬时力矩必须大于等于门体在这两个特殊位置时门重对铰心O的瞬时力矩。由此可以确定气弹簧所需的最大力臂(R),最小力臂(r)分别为(列式,计算过程略): 最大力臂R=G (H/2-h)2F≈G H4F,(当Hmh时)最小力臂r=G (H/2-h) cos(α-90°)2F≈G H cos(α-90°)4F,(当Hmh时)式中G为门重,N;F为气弹簧举力,N;H为门高,mm;h为门顶到铰心的垂距,mm;α为门体最大开度,°;2为每个门使用两支气弹簧作支撑。以铰心O为圆心,以最力臂R,最小力臂r为半径分别作大小两个圆。作小圆的一条切线的延长线交大圆于A点,则A 点为气弹簧的上安装点。气弹簧的下安装点B则必然在此切线下方的某一点上。AB两点的距离L为气弹簧的总长度。需要说明的是:A点必须落在门体内侧并离门面板竖直距离20mm

弹簧设计规范(常用类型)

弹簧设计规范 一、弹簧的功能 弹簧是一种弹性元件,由于材料的弹性和弹簧的结构特点,它具有多次重复地随外栽荷的大小而做相应的弹性变形,卸载后立即恢复原状的特性。很多机械正是利用弹簧的这一特点来满足特殊要求的。其主要功能有: ⑴、减振和缓冲,如车辆的悬挂弹簧,各种缓冲器和弹性联轴器中的弹簧等。 ⑵、测力,如测力器和弹簧秤的弹簧等。 ⑶、储存及输出能量,如钟表弹簧,枪栓弹簧,仪表和自动控制机构上的原动弹簧等。 ⑷、控制运动,如控制弹簧门关闭的弹簧,离合器、制动器上的弹簧,控制内燃机气缸阀门开启的弹簧等。 二、弹簧的类型、特点和应用 弹簧的分类方法很多,按照所承受的载荷的不同,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种;按照形状的不同,弹簧可分为螺旋弹簧、碟形弹簧、环形弹簧、盘形弹簧和板弹簧等;按照使用材料的不同,弹簧可分为金属弹簧和非金属弹簧。各种弹簧的特点、应用见表1。 在一般机械中,最常用的是圆柱螺旋弹簧。故本章主要讲述这类弹簧的结构形式、设计理论和计算方法。

三、弹簧使用的材料及其用途 弹簧钢的的主要性能要求是高强度和高屈服极限和疲劳极限,所以弹簧钢材用较高的含碳量。但是碳素钢的淬透性较差,所以在对于截面较大的弹簧必须使用合金钢。合金弹簧钢中的主要合金元素是硅和锰,他们可以增强钢的淬透性和屈强比。 弹簧材料使用最广者是弹簧钢(SUP)。碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如:65#,75#,85#。直径稍大,需用热成型工艺生产的弹簧多采用60Si2Mn,如汽车板簧,铁路车辆的缓冲簧。对于高应力的重要弹簧可采用50CrV,常用于高级轿车板簧,发动机气门弹簧等。其他弹簧钢材料还有:65Mn, 50CrMn, 30W4Cr2V等。 a、碳钢及合金钢:制造弹簧时,常加矽、锰、铬、钒及钼等金属元素于钢中,以增加弹簧之弹性及疲劳限度,且使其耐冲击。 b、大型弹簧多用热作加工,即弹簧材料高温轧成棒,再高温加工成形后,淬火于780度~850度左右之油或水中,再施以400度~500度的温度回火。 c、小型弹簧,先经退火,再用冷作加工,捲成后再经硬化回火,如钢丝、琴钢丝或钢带。 d、琴钢丝是属高炭钢材(0.65~0.95%)制造,杂质少,直径常小于1/4时经过轫化处理后在常温抽成线,其机械性质佳,抗拉强度及轫性大,为优良的螺旋弹簧材料。 e、不锈钢丝用于易受腐蚀处,承受高温可用高速钢及不锈钢。 f、油回火线含碳量0.6~0.7%应含锰,0.6~1.0%常用于螺圈弹簧。 g、板弹簧常用0.9~1.0%之普通钢,其较高级者则使用铬钒钢及矽锰钢。 弹簧常在变载荷和冲击载荷作用下工作,而且要求在受极大应力的情况下,不产生塑性变形,因此要求弹簧材料具有较高的抗拉强度极限、弹性极限和疲劳强度极限,不易松弛。同时要求有较高的冲击韧性,良好的热处理性能等。常见的弹簧材料有优质碳素钢、合金钢和铜合金。几种主要弹簧材料的使用性能和许用应力见表2。

螺旋弹簧设计

螺旋弹簧设计 一、 弹簧设计参数 (1)弹簧丝直径d :制造弹簧的钢丝直径。 (2)弹簧外径o D :弹簧的最大外径。 (3)弹簧内径i D :弹簧的最小外径。 (4)弹簧中径D :弹簧的平均直径。计算公式:()/2o i i D D D D d =+=+ (5)弹簧节距p :除支撑圈外,弹簧相邻两圈对应点在中径上的轴向距离。 (6)有效圈数n :弹簧能保持相同节距的圈数。 (7)支撑圈数s n :为了使弹簧在工作时受力均匀,保证轴线垂直端面、制造时,常将弹簧两端并紧。并紧的圈数仅起支撑作用,称为支撑圈。一般有 1.5T 、2T 、2.5T ,常用的是2T 。 (8)总圈数t n :有效圈数与支撑圈的和,t s n n n =+。 (9)螺旋方向:有左右旋之分,常用右旋。 二、 弹簧其它参数 (1)旋绕比C 〈弹簧指数〉 D C d = 为了使弹簧本身较为稳定,不致颤动和过软,C 值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C 值不应过小。 常用旋绕比C 值 (2)计算补偿系数K 4144 C K C -=- (3)长细比b 弹簧自由长度与弹簧中径之比,0H b D =。

三、 弹簧正向设计流程 1. 弹簧丝直径d d ≥式中: C :旋绕比; K :计算补偿系数,4144 C K C -=-; max F :弹簧所受最大的力,max max s F k λ=; s k :弹簧的刚度。现代悬架设计过程中,弹性元件的刚度通常不等于悬架系统等效 刚度。当悬架系统存在杠杆比时,弹性元件的刚度近似等于悬架系统等效刚度与杠杆比平方的乘积,即2s k k i =?; i :悬架等效刚度作用力的力臂/弹性元件(弹簧)作用力的力臂; max λ:弹簧受力时的最大压缩量,等于弹簧处于平衡位置时的压缩量t s m g x k = 与车轮上跳至极限时的弹簧压缩量之和; []τ:弹簧材料的许用应力。 2. 弹簧工作圈数(有效圈数)n 对于压缩弹簧,弹簧的工作圈数38s Gd n C k = 。 式中: G :切变模量。 3. 弹簧节距p 选取螺旋角α,由arctan p D απ=可得节距p 。 对于压缩螺旋弹簧,推荐5~9α=??。 4. 弹簧自由长度0H 弹簧自由长度:0 1.5H np d =+。

举升门气弹簧布置与支撑力计算

举升门气弹簧布置与支撑力计算 单位:上海同捷科技股份有限公司姓名:许晓晖 拟晋级别:中级

举升门气弹簧布置与支撑力计算 许晓晖 摘要:气弹簧助力式开启机构是目前乘用车上经常采用的一种结构。目前国内汽车车身设计中,对于气弹簧布置、选用采用逆向方法较多。即以标杆样车为参照,来布置设计车,以标杆车使用的气弹簧为基础样件,然后通过CAE运动分析来进行校核。本文从正向设计出发,以举升门为例,详细介绍了举升门气弹簧的布置与支撑力计算的设计过程,为新车设计正向布置气弹簧提供借鉴。 关键词:举升门气弹簧布置 气弹簧是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。气弹簧与其它弹簧相比具有尺寸小、容易布置、可靠性高及弹力随行程的变化小等特点,可在-40℃——80℃范围内工作,温度对其弹力的影响不到4%。气弹簧在专业生产厂家均按标准化和系列化设计,使用和维修也更加方便。本文就汽车设计中经常应用的气弹簧布置,以举升门气弹簧的应用设计进行分析。 一、确认举升门铰链转轴中心位置 在举升门气弹簧应用设计之前必须确认:举升门两个铰链是否同轴;举升门在沿着铰链轴转动过程中与车身部件有无干涉(一般要求间隙应大于3mm);是否有气弹簧安装空间。铰链转轴中心是后续设计的基准。 二、确定举升门的开启角度 根据人机工程学分析来确定举升门的开度,目前对举升门开到最大位置车门下边沿的离地高度法规没有规定。依据整车总布置状态,确定该车型的举升门开启最大角度为94°,举升门最高点离地高度为2002mm。这样定义既考虑到人的头部不易碰到举升门下部最低点,也照顾到关门操纵时手部能很容易接触到拉手。 三、计算气弹簧上、下安装点的位置及有效行程 气弹簧和安装座通过带有螺纹段的轴销连接。气弹簧的安装点理论上是指气弹簧两端轴销上球头转动中心。有效行程是指气弹簧在车门关闭到车门完全开启长度变化的尺寸。 首先根据车身状态确定上安装点,具体要求: ●安装面应满足气弹簧运动不引起干涉的要求,必要时调整安装面; ●安装面内部设计适合强度要求的螺母加强板。

弹簧设计计算过程

弹簧设计计算过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

弹簧设计计算 已知条件: 弹簧自由长度H0= 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D= 弹簧直径d= 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=~ b σ=~*1716MPa=~ 取p τ=。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。

2 .33.22==d D C =(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K = 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 弹簧刚度663.2282.379834 34' ???==n D Gd P =mm 节距t=66 2.35.1795)2~1(0?-=-n d H =≈12 计算出来的自由高度H0=nt+=66*12+*= 压并高度Hb=(n+d=(66+*=216mm 弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3 431413.226683842.3798????==nD F Gd P = 螺旋角α=arctan(t/πD)=arctan(12/*)= 弧度= ° 弹簧展开长度L=1696 .0cos 683.22cos 1??=παπDn = ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(+)=,取值216mm 弹簧压并时的变形量为= 弹簧压并时的载荷为Fa=*= (4)螺旋弹簧的稳定性、强度和共振的验算 高径比b=H0/D==> n B c P H P C P >=0' 不稳定系数C B = ==0'H P C P B c **=

氮气弹簧

氮气弹簧常见问题 氮气弹簧的工作温度是多少 ? 工作温度: -6°C - 71°C 氮气弹簧最高的运行速度是多少 ? 最高运行速度: 35 m/min 氮气弹簧最高的工作压力是多少 ? 充气压力范围: 15 - 150 bar 充气媒介? 氮气 如何实现线形弹簧与氮气弹簧的转换 ? 如何决定氮气弹簧的数量 ? 1. 首先决定压力需求 在转换的过程中,第一步是要知道现有的模具所需的压力要求,如果您知道完成操作的所需压力,可直接采用相应吨位的氮气弹簧。 如果您不知道您所需总的压力,可通过计算模具中原有线形弹簧所提供的总压力求出。同时,您必须要清楚所需压力是初始压力(预压)还是最终压力(满冲程),一旦知道了这些,您可得到您所需总的压力需求。 找出线形弹簧压力的最常用的办法是查阅制造商的产品压力图表,通过图表,您可知道模具中线形弹簧的规格,颜色,预压和冲程,也可使用测压计来得出弹簧的压力。 当您得出模具中一只线形弹簧的压力,乘以弹簧的数量,也可得到总的压力。 例如:10 0.75 “ ( 19毫米)× 5 ” ( 127毫米)直径螺旋弹簧各自提供80磅。( 0.3千牛)的初始武力时预装0.75 “ ( 19毫米)。总数的初步武力= 80磅( 0.36千牛)× 10 =八〇〇磅。( 3.6千牛)武力2. 计算氮气弹簧数量 首先,氮气弹簧的直径要与线形弹簧的直径相符,氮气弹簧提供了所有与常用的线形弹簧相匹配的直径:从 .75" (19 mm) 到 2" (51 mm) ,当需要决定所需的氮气弹簧的数量时,可用相同直径压力最大的氮气弹簧的压力除以所需总的压力即可。通常情况下, 很少要求弹簧提供的压力与所需压力相同。但是,请记住,所提供的压力要在垫板上均匀分布,在设计时,您可采用较多具有较低压力的弹簧在模具中实现这个要求。

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0=796.8mm 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D=22.3mm 弹簧直径d=3.2mm 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa 取p τ=686.4MPa 。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =6.9688(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.379834 34' ???==n D Gd P =1.4147N/mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5* 3.2=796.8mm 压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm

圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值 内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比 b b=H0/D2 b在1~5.3的范 围内选取 自由高度或长度 H0H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨 H0=nd+钩环轴向长 度

平) 工作高度或长度 H1,H2,…,H n H n=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据要求变形量按式(16-11)计算n≥2 总圈数n1n1=n+(2~2.5)(冷 卷) n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数 为1/4,1/2,3/4整 圈。推荐用1/2圈 节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展 开长度 螺旋角αα=arct g(p/πD2) 对压缩螺旋弹簧,推荐α=5°~ 9°

(完整word版)弹簧设计技术条件

小型圆柱螺旋弹簧技术条件 GB 1973.1-89 中华人民共和国机械电子工业部1989-03-02批准1990-01-01实施 1 主题内容与适用范围 木标准规定丁小型圆柱螺旋弹簧的技术要求、试验方法和检验规则。 本标准适用于圆截面圆柱螺旋压缩、拉伸和扭转弹簧(以下简称弹簧)。弹簧材料的截面直径小于0.5 mm。 本标准不适用于特殊性能的弹簧。 2 引用标准 GB 191 包装储运图示标志 GB 1239.5 圆柱螺旋弹簧抽样检查 GB 1805 弹簧术语 GB 2828 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB 3123 硅青铜线 GB 3124 锡青铜线 GB 3134 铍青铜线 GB 4357 碳素弹簧钢丝 GB 4358 琴钢丝 GB 4459.4 机械制图弹簧画法 GB 4879 防锈包装 GB 6543 瓦楞纸箱 YB(T) 11 弹簧用不锈钢丝 3 技术要求 3.1 产品应符合本标准的要求,并按经规定程序批准的产品图样及技术文件制造。 3.2 极限偏差的等级 弹簧特性与尺寸的极限偏差分为1、2、3三个等级。各项目的等级应根据使用需要分别独立选定,并在图样上注明,未注明的则由制造厂从标准中选定。 3.3 压缩和拉伸弹簧的弹簧特性及其极限偏差 3.3.1 弹簧特性 压缩(或拉伸)弹簧的弹簧特性为指定高度(或长度)的负荷或刚度。 3.3.1.1 在指定高度(或长度)的负荷下,弹簧的变形量应在试验负荷时变形量的20%~80%之间。 试验负荷Ps:测定弹簧特性时在弹簧上允许承载的最大负荷。 试验应力τs:测定弹簧特性时在弹簧上允许承载的最大应力。 3.3.1.2 弹簧刚度在特殊需要时采用,其变形量应在试验负荷下变形量的30%~70%之间。 3.3.1.3 指定高度(或长度)时的负荷和刚度不得同时考核。 3.3.2 弹簧特性的极限偏差 3.3.2.1 指定高度(或长度)时负荷的极限偏差见表1。 3.3.2.2 刚度的极限偏差见表2。 3.4 尺寸及其极限偏差 3.4.1 弹簧外径(或内径) 弹簧的外径和内径不得同时考核,其极限偏差均按表3规定(弹簧的外径为D2,中径为D,内径为D1)。

常用弹簧材料及弹簧的设计计算过程

表1 弹簧常用材料及其许用应力 表2 弹簧钢丝的拉伸强度极限σB(MPa) 表3 常用旋绕比C值 表4 普通圆柱螺旋弹簧尺寸系列 表5 导杆(导套)与弹簧间的间隙 表6 通圆柱螺旋压缩及拉伸弹簧的结构尺寸 表1 弹簧常用材料及其许用应力(摘自GBl239-1976) 名称组别② 许用切应力 [τ] (MPa) 许用弯曲应 力 [σb] (MPa) 切变模量 G (MPa) 弹性模量 E (MPa) 推荐硬 度 (HRC) 推荐使 用温度 (℃) 特性及用途弹簧类别①弹簧类别① I类II类III类II类III类 碳素弹簧钢丝I组,II,IIa 组,III组 0.3σB ③ 0.4σB0.5σB0.5σB0.625σB 0.5≤d≤4 81400~ 78500 d>4 78500 0.5≤d≤4 203000~ 201000 d>4 196000 -40~ +120 强度高,韧性好, 适用于做小弹簧 特殊用 途碳素弹簧钢 丝甲组,乙组, 丙组 硅锰合 金弹簧钢丝47162878578598178500196000 45~ 50 -40~ +200 弹性好,回火稳定 性好,易脱碳,用 于制造大载荷弹簧 注:①弹簧按载荷性质分为三类: I类一受变载荷作用次数在106以上的弹簧; II类一受变载荷作用次数在103~105及冲击载荷的弹簧;III类一受变载荷作用次数在103下的弹簧。 ②碳素弹簧钢丝的组别见表2。

③弹簧材料的拉伸强度极限,查表2。 表2 弹簧钢丝的拉伸强度极限σB(MPa) 碳素弹簧钢丝特殊用途碳素弹簧钢丝重要用途弹簧钢丝钢丝直径 d(mm)I组II组IIa组III组 钢丝直径 d(mm) 甲组乙组丙组 钢丝直径 d(mm) 65Mn 0.32~0.6 0.63~0.8 0.85~0.9 1 1.1~1. 2 1.3~1.4 1.5~1.6 1.7~1.8 2 2.2 2.5 2.8 3 3.2 3.4~3.6 4 4.5~5 5.6~6 6.3~82599 2550 2501 2452 2354 2256 2157 2059 1961 1863 1765 1716 1667 1667 1618 1569 1471 1422 2157 2108 2059 2010 1912 1863 1814 1765 1765 1667 1618 1618 1618 1520 1520 1471 1373 1324 1226 1667 1667 1618 1618 1520 1471 1422 1373 1373 1373 1275 1275 1275 1177 1177 1128 1079 1030 981 0.2~0.55 0.6~0.8 0.9~1 1.1 1.2~1.3 1.4~1.5 2844 2795 2746 2697 2648 2599 2599 2501 2403 2550 2501 2452 2452 2354 2256 1~1.2 1.4~1.6 1.8~2 2.2~2.5 2.8~ 3.4 3.5 3.8~ 4.2 4.5 4.8~ 5.3 5.5~6 1765 1716 1667 1618 1569 1471 1422 1373 1324 1275

汽车螺旋弹簧离合器的设计

摘要 以内燃机在作为动力的机械传动汽车中,离合器是作为一个独立的总成而存在的。离合器通常装在发动机与变速器之间,其主动部分与发动机飞轮相连,从动部分与变速器相连。为各类型汽车所广泛采用的摩擦离合器,实际上是一种依靠其主、从动部分间的摩擦来传递动力且能分离的机构。离合器的主要功用是切断和实现发动机与传动系平顺的接合,确保汽车平稳起步;在换挡时将发动机与传动系分离,减少变速器中换档齿轮间的冲击;在工作中受到较大的动载荷时,能限制传动系所承受的最大转矩,以防止传动系个零部件因过载而损坏;有效地降低传动系中的振动和噪音。 本车设计采用单片螺旋弹簧离合器。本车采用的摩擦式离合器是因为其结构简单,可靠性强,维修方便,目前大多数汽车都采用这种形式的离合器。而采用干式离合器是因为湿式离合器大多是多盘式离合器,用于需要传递较大转矩的离合器,而该车型不在此列。采用螺旋弹簧离合器是因为螺旋弹簧离合器具有很多优点:首先,由于螺旋弹簧具有非线性特性,因此可设计成当摩擦片磨损后,弹簧压力几乎可以保持不变,且可减轻分离离合器时的踏板力,使操纵轻便;其次,螺旋弹簧的安装位置对离合器轴的中心线是对的,因此其压力实际上不受离心力的影响,性能稳定,平衡性也好;再者,螺旋弹簧本身兼起压紧弹簧和分离杠杆的作用,使离合器的结构大为简化,零件数目减少,质量减小并显著地缩短了其轴向尺寸;另外,由于螺旋弹簧与压盘是以整个圆周接触,使压力分布均匀,摩擦片的接触良好,磨损均匀,也易于实现良好的散热通风等。由于螺旋弹簧离合器具有上述一系列的优点,并且制造螺旋弹簧的工艺水平也在不断地提高,因而这种离合器在轿车及微型、轻型客车上已得到广泛的采用,而且逐渐扩展到载货汽车上。从动盘选择单片式从动盘是一位其结构简单,调整方便。压盘驱动方式采用传动片式是因为其没有太明显的缺点且简化了结构,降低了装配要求又有利于压盘定中。选择拉式离合器是因为其较拉式离合器零件数目更少,结构更简化,轴向尺寸更小,质量更小;并且分离杠杆较大,使其踏板操纵力较轻。 关键字:螺旋弹簧离合器螺旋弹簧离合器摩擦片减振盘

拉压扭簧计算公式弹簧刚度计算

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

车用气弹簧安装设计分析

车用气弹簧安装设计分析 作者:众泰控股集团有限公司 潘玉华 来源:AI 汽车制造业 目前国内汽车产品开发中,对于 气弹簧应用采用逆向的方法较多。其布置方法就是参照样车气弹簧在车身上大致的安装位置来布置新车,同时将原车气弹簧样件交给供应商依样去开发,这种开发过程没有依据其工作原理分析,缺乏严谨科学计算很难设计出最优的方案。所以必须从基本原理上寻求一种在汽车上布置气弹簧的科学方法来实现最终设计结果的正确性。下面就以汽车后背门气弹簧的布置安装设计为例进行分析。 确认后背门铰链转轴中心位置 在后背门气弹簧安装设计之前,应当对已经完成的数据进行验证。必须确认后背门两个铰链是否同轴;后背门在沿着铰链轴转动全过程中与车身周围有无干涉;气弹簧安装空间有无充分预留。 确定后背门的总质量及质心的位置 后背门的总质量是多项由金属和非金属材料组成部件的质量之和。包括后背门钣金件、后背门玻璃、后雨刮器系统、牌照灯及装饰板、后牌照、后背门锁及后背门内饰板等。在得知零部件密度的前提下,利用CATIA 的测量惯性命令可自动计算出重量和质心坐标点。 确定气弹簧在后背门上安装点的位置 这里气弹簧的安装点理论上是指气弹簧两端球头转动中心。气弹簧安装时一般采用活塞在上方,活塞杆在下方。气弹簧与门内板连接必须由装在后背门内板上的支架过渡,用以让开活塞外径及运动的空间。在门内板的内侧必须有加强螺母板用来安装气弹簧支架,后背门螺母板及支架的强度、后背门的刚度必须满足气弹簧最大受力状况需求。气弹簧在支架上的安装位即气弹簧的上安装点位置,此位置距铰链转轴中心的尺寸影响气弹簧需要的支撑力,在载荷力矩一定的条件下,该尺寸减少10%,气弹簧的支撑力增加将超过10%,同 时气弹簧的行程也会随之变化。设计的目标应在满足后背门开度及背门两侧方便接近的前

相关文档
最新文档