Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets

Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets
Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets

Synthesis of nano-sized ZnCo 2O 4anchored with graphene nanosheets as an anode material for secondary lithium ion batteries

Alok Kumar Rai,Trang Vu Thi,Baboo Joseph Paul,Jaekook Kim *

Department of Materials Science and Engineering,Chonnam National University,300Yongbong-dong,Bukgu,Gwangju 500-757,Republic of Korea

A R T I C L E I N F O Article history:

Received 26June 2014

Received in revised form 2September 2014Accepted 2September 2014

Available online 22September 2014Keywords:ZnCo 2O 4Graphene Composite

Anode material

Lithium-ion batteries

A B S T R A C T

ZnCo 2O 4/graphene and pure ZnCo 2O 4nanoparticles were synthesized by simple and low temperature urea-assisted auto-combustion method and annealed at 400 C for 5h in air atmosphere.The electron microscopy image of the obtained ZnCo 2O 4/graphene nanocomposite revealed that the ZnCo 2O 4nanoparticles were randomly distributed and anchored on the surface of reduced graphene nanosheets.The graphene nanosheets signi ?cantly reduced the particles size and suppressed the aggregation of ZnCo 2O 4nanoparticles as well as maintaining the good electrical conductivity of the overall sample.The size of the nanoparticles was in the range of 50–100nm and the size of nanoparticles in the nanocomposite sample in the range of 25–50nm.The electrochemical results showed that the ZnCo 2O 4/graphene nanocomposite electrode had greatly improved cycling stability with high reversible capacity of 755.6mAh g à1after 70cycles,and better rate capability of 378.1mAh g à1at 4.5C than pure ZnCo 2O 4nanoparticles (299.8mAh g à1after 70cycles and 302.4mAh g à1at 4.5C).The enhanced electrochemical performance of the nanocomposite could be ascribed to the positive synergistic effect of the combination of the ZnCo 2O 4nanoparticles and conducting graphene nanosheets.

?2014Elsevier Ltd.All rights reserved.

1.Introduction

In recent years,rechargeable lithium ion batteries (LIBs)have been successful for portable electronic devices,but their low energy density,high cost and poor cycling stability still prevent their applications in next-generation wireless communication devices,electric vehicles,hybrid electric vehicles,power tools,uninterrupted power sources,stationary storage batteries,and microchips.In addition,the graphite anode with low theoretical capacity (372mAh g à1)is also one of the major factors,lowering the present demands of LIBs.It is therefore necessary to ?nd better alternative anode materials.Among the new high-performance anode materials for next-generation LIBs,transition metal oxides have attracted much attention recently because of their advantage in high speci ?c capacity [1].Particularly,cobalt oxide (Co 3O 4)has been proposed as one of the most promising anode candidate because of its high capacity and excellent cycle life [1].However,the major limiting factors of Co 3O 4are its large volume expansion/contraction and severe particle aggregation associated with the Li +-ion insertion and extraction process,which lead to electrode pulverization and the loss of interparticle contact.However,many

efforts have been made to replace cobalt in Co 3O 4partially with environment friendly and less-expensive alternative elements (Zn,Cu,Ni,Mg and Fe),which undergo simultaneously conversion and alloying/de-alloying reactions together [2,3].As a result,among the Co-based spinels,ZnCo 2O 4is quite attractive because of its various advantages such as low toxicity,lower cost,and high thermal stability.More importantly,after Zn 2+is reduced to Zn during the discharge process,LiZn alloy is formed under further reduction of the corresponding metal [4].Therefore,an extra discharge capacity has been obtained from the formation of the Li –Zn alloy [4,5].In addition,by mixing two transition metal oxides,it is possible to combine their competitive advantages such as the ?exibility to alter the theoretical capacity and control the working voltages [2].Moreover,the incorporation of Zn can improve the cycling performance through the synergetic interac-tion between Co and Zn:both Zn and Co are electrochemically active with respect to Li +ion;and the presence of Zn in the cobalt oxide matrix and the presence of cobalt oxide in the ZnO matrix can be mutually bene ?cial for each other [6–8].However,like other transition metal oxides,ZnCo 2O 4also suffers from poor electrical conductivity and electrode pulverization,which is induced by its huge volume changes during the charge/discharge processes,resulting in fast capacity decrease and poor rate capability.Therefore,low conductivity and large volume changes during the cycle process need to be further improved.Two effective

*Corresponding author.Tel.:+82625301703;fax:+82625301699.E-mail address:jaekook@chonnam.ac.kr (J.Kim).https://www.360docs.net/doc/9c13096351.html,/10.1016/j.electacta.2014.09.0790013-4686/?2014Elsevier Ltd.All rights reserved.

Electrochimica Acta 146(2014)577–584

Contents lists available at ScienceDirect

Electrochimica Acta

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c t

a

strategies can solve these problems:making nanostructures to withstand the volume changes and making a graphene-based nanocomposite to enhance the electrical conductivity.However,to improve the electrochemical performance of the ZnCo2O4material, taking advantage of nanostructures is a popular method[3,6,8–11]. The electrochemical performance has been improved to an extent by manipulating nanostructures that resulted in increased active sites for Li+ion insertion/deinsertion reactions and short diffusion lengths for both lithium(Li+)ion and electrons(eà).On the other hand,graphene nanosheets,a single-atom-thick sheet of honey-comb carbon lattice,exhibits a number of intriguing unique properties,such as superior electronic conductivity,high surface area,large surface-to-volume ratio,good mechanical properties [1,12–14].Therefore,recently several metal oxide-graphene nano-composites have been reported as high performance electrode materials for rechargeable lithium ion batteries[1].

Therefore,by combining these two strategies,we have synthesized an anode material for high performance LIBs in which nano-sized ZnCo2O4particles are anchored with graphene nano-sheets.To the best of our knowledge,there is no report about the electrochemical behavior of the ZnCo2O4/graphene nanocompo-site as an anode synthesized by simple,cost-effective and facile approach at a relatively low temperature.However,in the present work,the ZnCo2O4/graphene nanocomposite was synthesized by a facile urea-assisted auto-combustion synthesis method combined with subsequent annealing treatment at low temperature of400 C for5h.Urea-assisted auto-combustion synthesis is an ef?cient and convenient method for preparing metal oxide nanoparticles at relatively low temperatures[1,15,16].This process produces sub-nanometer-size metal oxide nanoparticles by self-generated heat of reaction with very short reaction time.The advantage of urea is that it can form stable complexes with metal ions that increase the solubility and prevent the selective precipitation of the metal ions during water removal[1,15,16].In addition,the oxides that form after combustion are generally composed of very?ne particles with the desired stoichiometry linked together in a network structure.The sub-nanometer particles were randomly dispersed and anchored on the reduced graphene nanosheets during combustion.More importantly,it is also believed that urea-assisted auto-combustion synthesis is very effective for the fabrication of various mixed metal oxide nanoparticles composed of different metal cations[1,15,17].It is possible that the existence of secondary(impurity)metal cations may accelerate the electrochemical reaction by acting as a catalyst or act as a pillar to accommodate the strain induced by volume changes or it may also participate in the electrochemical reaction if it is electro-chemically active[1,15,17].The obtained nanocomposite electrode exhibited higher reversible capacity,better cycling stability and improved rate capability than pure ZnCo2O4nanoparticles.

2.Experimental

2.1.Preparation of Graphene Oxide and Graphene Nanosheets

In a typical synthesis method,graphene oxide(GO)is?rst synthesized by the modi?ed Hummers method[18],and the obtained GO colloidal suspension is kept at room temperature for a long time.Second,the obtained GO is reduced to graphene nanosheets by the polyol-based reduction method.Detailed preparation procedure for the reduction of graphene nanosheets can be found in our previous papers[13,14].

2.2.Materials Synthesis

The ZnCo2O4/graphene nanocomposite and pure ZnCo2O4 nanoparticle samples were synthesized by urea-assisted auto-combustion method and the detailed preparation procedure can be seen in the Scheme1.All the chemical reagents utilized in the study were of analytical grade and used without further puri?cation.Brie?y,zinc nitrate hexahydrate[(Zn(NO3)2.6H2O, 98%,Sigma Aldrich)and cobalt nitrate hexahydrate[(Co (NO3)2.6H2O,98%,Sigma Aldrich]with the stoichiometric ratio of1:2were dissolved in distilled water separately under continuous stirring at room temperature to obtain transparent solutions.After that,both solutions were mixed together with a prepared aqueous solution of urea(NH2CONH2,99%.Sigma Aldrich),and the ratio between urea and nitrates was maintained at20:12to allow for controlled combustion(urea:zinc nitrate=10: 6and urea:cobalt nitrate=10:6)[15].At the same time,10wt%of the reduced graphene nanosheets were also added to the mixed solution to allow the nanoparticles to anchor on the reduced graphene nanosheets.The obtained ternary mixed solution was evaporated on a hot plate using a magnetic stirrer at350 C under continuous stirring to remove excess water.During the evapora-tion,the homogeneously mixed solution turned viscous,eventu-ally becoming a gel.The formed gel slowly foamed,swelled,and ?nally burned on its own.In order to eliminate possible organic residues and to stabilize the microstructure of the ZnCo2O4/ graphene nanocomposite powder,the as-synthesized powder was subsequently annealed at400 C for5h in air atmosphere.For comparison,pure ZnCo2O4nanoparticles were also synthesized under the same condition without addition of graphene nano-sheets.The overall combustion reactions are represented,respec-tively as follows[17]:

Scheme1.Schematic illustration of the preparation of ZnCo2O4/graphene nanocomposite. 578 A.K.Rai et al./Electrochimica Acta146(2014)577–584

3Zn eNO 3T2t3Co eNO 3T2t10NH 2CONH 2tGraphene

àà!1=2O 2

ZnCO 2O 4=graphene t2ZnO tCoO t16N 2t20H 2O t10CO 2

(i)

3Zn eNO 3T2t6Co eNO 3T2t15NH 2CONH 2!30

3ZnCo 2O 4t24N 2t30H 2O t15CO 2

(ii)

The presence of N 2and O 2from air was not been taken into account in the reactions described.In the urea-assisted auto-combustion synthesis,the nitrate ions act as the oxidizer,while the urea acts as the fuel.The reaction products are ?nely divided into the metal oxide and the evolved gases N 2,CO 2,and H 2O.The excess urea also decomposes into ammonia and other gases.2.3.Materials Characterization

The crystalline phase of the samples were recorded by X-ray powder diffraction (XRD)on a Shimadzu X-ray diffractometer equipped with Cu K a radiation (l =1.5406?).The morphologies of the synthesized samples were examined using ?eld-emission scanning electron microscopy (FE-SEM,Hitachi S-4700)and ?eld-emission transmission electron microscopy (FE-TEM,Philips Tecnai F20,KBSI,Chonnam National University)operated at an accelerat-ing voltage of 200kV.The carbon content in both the annealed samples of ZnCo 2O 4/graphene nanocomposite and pure ZnCo 2O 4nanoparticles were determined by CHN element analysis on a Flash-2000Thermo Fisher.

2.4.Electrochemical Measurements

Electrochemical performances of the obtained samples were measured by assembling half-cells.The working electrode was prepared by mixing the active materials (ZnCo 2O 4/graphene nano-composite and pure ZnCo 2O 4),Super –P and polyvinylidene ?uoride binder in a weight ratio of 70:20:10in N-methyl-2-pyrrolidinone to form a homogenous slurry.The slurry was uniformly pasted on a copper foil current collector and then dried in a vacuum oven at 100 C for 12h.After that,the slurry was pressed between stainless steeltwin rollers and punched into circulardiscs.In a glove box under argon atmosphere,the half-cells were assembled as CR-2032coin-type cells.Metallic lithiumwas used as the counter electrode and the Celgard 2400membrane with glass ?ber was used as the separator.For the electrolyte,1M LiPF 6was dissolved in a mixture of ethylene carbonate and dimethyl carbonate at the volume ratio of 1:1.Cyclic voltammetry (CV)measurement of the electrodes were performed between 0to 3V (versus Li +/Li)using a Bio Logic Science Instrument (VSP 1075)at a scan rate of 0.1mV s à1.Galvanostatic testing of the coin cells was conducted using a programmable battery tester over the potential range 0.01–3.0V vs Li +/Li (BTS-2004H,Nagano,Japan).Electrochemical impedance spectroscopy (EIS)measurement of the electrodes were also carried out on same Bio Logic Science Instrument (VSP 1075).Before the measurements,the electrode was cycled for 10cycles and then measured in the frequency range from 0.01Hz to 1.0MHz.A small ac signal of 5mV in amplitude was used as the perturbation of the system throughout the tests.EIS was used to measure the electronic conductivities of the assembled cell using lithiumfoil acting as both the counter and reference electrodes.3.Results and Discussion

3.1.Crystal Structure and Morphology

Fig.1(a)and (b)shows the XRD patterns of the ZnCo 2O 4/graphene nanocomposite and pure ZnCo 2O 4samples,respectively

annealed at 400 C for 5h in air atmosphere.The major diffraction peaks in the XRD pattern of the annealed ZnCo 2O 4/graphene nanocomposite sample are well indexed with the cubic ZnCo 2O 4spinel phase [JCPDS card no.23–1390,space group Fd3m (227)].On the other hand,the nanocomposite sample also shows additional peaks in the pattern,which are well matched with ZnO (JCPDS card no.79–0205)and CoO (JCPDS card no.75–0533).The presence of these two metal oxides peaks are due to the decomposition of ZnCo 2O 4,which may have occurred due to the consumption of the reduced graphene nanosheets at elevated temperatures [1].An annealing temperature of 400 C was chosen as the carbonation temperature,because a carbon-rich polysaccharide tends to be carbonize at temperatures as low as 400 C [19].The XRD pattern of the annealed pure ZnCo 2O 4sample (Fig.1b)can be fully indexed as the standard cubic ZnCo 2O 4spinel phase.No signi ?cant impurities or other phases were observed,indicating the high purity of the product.

The surface morphologies and structures of the pure ZnCo 2O 4nanoparticles and ZnCo 2O 4/graphene nanocomposite samples are evaluated from the FE-SEM and FE-TEM images shown in Fig.2.As shown in Fig.2(a),the ZnCo 2O 4nanoparticles with different diameters tend to severely aggregate with each other.The agglomerated nanostructures of pure ZnCo 2O 4nanoparticles consist of spherical morphology of primary particles and found to be in the range of 50–100nm.It is well-known that aggregated large particles as an anode material lead to poor rate performance

Fig.1.X-ray diffraction patterns of (a)ZnCo 2O 4/graphene nanocomposite and (b)pure ZnCo 2O 4nanoparticles.

A.K.Rai et al./Electrochimica Acta 146(2014)577–584579

due to the long diffusion path for both electrons(eà)and lithium (Li+)ions transport during the Li+ion insertion/extraction process. After the introduction of reduced graphene nanosheets,the aggregation of ZnCo2O4nanoparticles was reduced and clearly anchored on the surface of reduced graphene nanosheets,as shown in Fig.2(b).The primary particles size was much smaller in the range of25–50nm than the size of the pure ZnCo2O4 nanoparticles.Therefore,graphene can prevent the aggregation of ZnCo2O4nanoparticles to a certain extent,possibly due to the partition effect of graphene nanosheets[1].The small nano-particles can provide short path lengths for both eàand Li+ions transport during the Li-ion insertion/extraction process,resulting in better rate capability.It is also reasonable to suggest that during the urea-assisted auto-combustion process,the nanoparticles are strongly anchored on the surface of the reduced graphene nanosheets at high density to facilitate rapid electron transport between the underlying graphene nanosheets[1].The morphol-ogies and structures of both samples are evaluated further using the FE-TEM images.Fig.2(c)shows the FE-TEM image of the pure ZnCo2O4nanoparticles,which con?rmed the packed structure and the aggregation of primary nanoparticles.Fig.2(d)shows the FE-TEM image of the ZnCo2O4/graphene nanocomposite sample.The ZnCo2O4nanoparticles are randomly dispersed on the surface and edges of the graphene nanosheets and the aggregation of these nanoparticles were prevented effectively.More importantly,there was a strong interfacial interaction between the ZnCo2O4nano-particles and the reduced graphene nanosheets because ZnCo2O4 nanoparticles were still anchored on the surface and edge of the

Fig.2.FE-SEM and FE-TEM images of pure ZnCo2O4nanoparticles(a and c)and ZnCo2O4/graphene nanocomposite(b and d)respectively.

Fig.3.Cyclic voltammograms of(a)ZnCo2O4/graphene nanocomposite and(b)pure ZnCo2O4nanoparticles electrodes.

580 A.K.Rai et al./Electrochimica Acta146(2014)577–584

reduced graphene nanosheets,and no obvious bare ZnCo2O4 nanoparticles were dispersed outside the reduced graphene nanosheets,even after a long time of sonication during the preparation of the TEM specimen.

In addition,to know the accurate percentage of carbon in the annealed samples,CHN analysis has been also performed.In this method,the samples are combusted and the amounts of carbon, hydrogen and nitrogen are determined by a gas chromatographic analysis of the combustion products.The percentage of carbon in the ZnCo2O4/graphene nanocomposite and pure ZnCo2O4nano-particles samples were found to be0.23%and0.09%,respectively. We believed that carbon easily reacted with some of oxygens in the material during heat treatment in air atmosphere and evaporated as CO or CO2[1].

3.2.Electrochemical Performance

Fig.3(a)and(b)shows the?rst three cyclic voltammogram(CV) curves of the electrodes made from ZnCo2O4/graphene nano-composite and pure ZnCo2O4nanoparticles,respectively,at a scan rate of0.1mV sà1in the potential range of0–3V.The?rst cycle is substantially different from the second one,which clearly shows an irreversible reduction in the?rst discharge.In the?rst cathodic scans of both electrodes,two peaks can be observed located at$ 0.43V and$0.63V for the ZnCo2O4/graphene nanocomposite electrode and$0.39V and0.74V for the pure ZnCo2O4nano-particles electrode.However,the?rst small cathodic peak can be assigned to the reduction of Zn2+to metal,accompanied by an irreversible reaction related to the decomposition of the organic electrolyte to form a solid electrolyte interphase(SEI)layer[4,20]. This SEI layer plays a major role in the irreversible capacity loss and obstruct the movement of lithium ions.The second strong peak can be attributed to the reduction of Co3+to Co[4,20].Two broad oxidation peaks are also observed at$1.69V and$2.09V for the ZnCo2O4/graphene nanocomposite electrode and$1.71V and 2.08V for the pure ZnCo2O4nanoparticles electrode,correspond-ing to the oxidation of Zn0to Zn2+and Co0to Co3+,respectively[3]. In the second and third cycles,the cathodic peak shifted to a higher potential of about$1.08V for both electrodes,indicative of different electrochemical reactions governing the two processes [6].From the second cycle onward,the reduction peaks in the cathodic scan and the oxidation peaks in the anodic scan overlap very well in the nanocomposite electrode than nanoparticles electrode,indicating that the ZnCo2O4/graphene nanocomposite electrode exhibits good stability and cyclability for the insertion and extraction of lithium ions.

The discharge/charge curves for the1st,2nd and10th cycles were recorded at a constant current rate of0.1C[1C=903mA gà1, corresponding to8.33mol of recyclable Li per mole of ZnCo2O4as per equations(iv)to(vii)]in a potential range between0.01–3.0V vs Li+/Li.Fig.4(a)and(b)shows the voltage-capacity pro?les of the ZnCo2O4/graphene nanocomposite and pure ZnCo2O4nanoparticle electrodes,respectively.From the voltage pro?les,the1st discharge curves of both electrodes exhibit large distinct plateaus between$0.9–1.0V,followed by a gradual voltage decrease to the cutoff potential of0.01V,which corresponds to the reduction of ZnCo2O4to Zn and Co,followed by the alloying of Zn with Li to LiZn [6,21].Most importantly,the ZnCo2O4/graphene nanocomposite

Fig.4.Discharge/charge pro?les of(a)ZnCo2O4/graphene nanocomposite and(b)pure ZnCo2O4nanoparticles electrodes.(c)Cycling performance at constant current rate of

0.1C and(d)comparison of the rate capability at various current rates between0.1C to4.5C.

A.K.Rai et al./Electrochimica Acta146(2014)577–584581

electrode also shows the additional reduction of ZnO to Zn at around0.68V along with the generation of amorphous Li2O [21,22].The large discharge plateau disappears in the later cycles, indicating irreversible reactions took place,such as electrolyte decomposition,or the formation of an SEI layer on the surface of the particles.In addition,from the second cycle onwards,the long discharge potential plateau is replaced by a long slope between 1.25and0.50V,well consistent with the previous reports[6,10]. Conversely,during charging,both Zn and Co metal can reversibly react with Li2O to form metal oxides at potentials above1.0V[21]. The discharge/charge electrochemical process can be clari?ed as follows:

ZnCo2O4+8Li++8eà!Zn+2Co+4Li2O(iii) Zn+Li++eà$LiZn(iv) Zn+Li2O$ZnO+2Li++2eà(v) 2Co+2Li2O$2CoO+4Li++4eà(vi)

2CoOt2

3

Li2O$

2

3

Co3O4t

4

3

Litt

4

3

eà(vii)

CHN analysis already con?rmed that the percentage of carbon is only0.23%and0.09%in the designed nanocomposite and pure ZnCo2O4nanoparticles samples respectively.However,the theo-retical capacity(C)of the ZnCo2O4/graphene nanocomposite can be calculated as follows[23]:

C theoretical?C ZnCo2O4?%mass ofZnCo2O4tC carbon

?%mass of carbon

?903mAh gà1?99:77%t744mAh gà1?0:23%

?902:6mAh gà1

The initial discharge and charge capacities of the ZnCo2O4/ graphene nanocomposite and pure ZnCo2O4nanoparticle electro-des are1211.5mAh gà1and861.4mAh gà1and1106.2mAh gà1and 784.7mAh gà1,respectively.In the case of nanocomposite,only the weight of the ZnCo2O4active material was taken into consideration in the calculation of speci?c capacity.The initial Coulombic ef?ciency was71%for both the electrodes.The irreversible capacity loss in the?rst cycle may be attributed to the formation of an SEI layer and the reduction of the metal oxide to metal with the formation of Li2O.After the1st cycle,the following charge/ discharge curves of both the electrodes tended to be stable and the Coulombic ef?ciency gradually increased with the cycle number, remaining almost$97%throughout the whole cycling process. Reversible discharge and charge capacities of871.1and831.5mAh gà1and867.2and848.3mAh gà1were achieved in the2nd and 10th cycles,respectively for ZnCo2O4/graphene nanocomposite electrode,which are much higher than those of the pure ZnCo2O4 nanoparticles electrode(795.4and767.6mAh gà1for the2nd cycle and784.1and771.1mAh gà1for the10th cycle).Author's believed that the less capacity of pure ZnCo2O4electrode is possibly because of its low electronic conductivity and its pulverization induced by huge volume changes during the charge/discharge processes, which could have led to the loss of electrical contact between the ZnCo2O4nanoparticles and the current collector,resulting in its fast capacity fading after few cycles,as observed in Fig.4(c).More importantly,the obtained capacities of the nanocomposite electrode is almost more than two times higher than the theoretical capacity of the commercially used graphite anode (372mAh gà1).In addition,the improved electrochemical performance of the nanocomposite electrode can be attributed to the synergistic effect between the ZnCo2O4nanoparticles and the conducting graphene nanosheets.The decreased size of the ZnCo2O4nanoparticles in the nanocomposite sample provided a large electrode/electrolyte interface area and shortened the Li+ ions diffusion path.More importantly,the anchoring of nano-particles to the graphene nanosheets in the nanocomposite prevented nanoparticles aggregation and also electrode cracking during continuous cycling.The graphene nanosheets served as reliable conductive channels between individual components of the active material and the current collectors.

Fig.4(c)shows the cycling performances of the ZnCo2O4/ graphene nanocomposite and pure ZnCo2O4electrodes at a constant current rate of0.1C for70cycles.Obviously,the nanocomposite electrode exhibits much higher reversible capacity and better cycling performance than the pure electrode.The reversible charge capacity of the pure ZnCo2O4nanoparticles electrode decreasing from784.7mAh gà1to only299.8mAh gà1with capacity retention of38%after70cycles.However,the ZnCo2O4/graphene nanocomposite electrode retained a reversible charge capacity of755.6mAh gà1from its initial reversibility charge capacity of861.4mAh gà1and showed88%of excellent capacity retention after same number of cycles.The high performance of the ZnCo2O4/graphene nanocomposite may be attributed to the large electrochemical active surface area and high electrical conductivity of the graphene nanosheets,which decreases the internal resistance in the lithium cells.In addition, the reduced graphene nanosheets also act as a buffer medium to overcome the problem associated with volume expansion/ contraction in lithium ion cells when ZnCo2O4nanoparticles react with lithium during lithium ion insertion/extraction.In the present case,it should be especially noted that10wt%of the added graphene nanosheets(even CHN analysis determines it as being very less such as0.23wt%after heat treatment at400 C)in the ZnCo2O4/graphene nanocomposite can provide improved electro-chemical performance and is the most appropriate for practical application to LIBs.

Fig.4(d)represents the rate capability of the ZnCo2O4/graphene nanocomposite and pure ZnCo2O4electrodes between current rates of0.1C to 4.5C after3cycles at each current rate.The

Fig. 5.Nyquist plots of ZnCo2O4/graphene nanocomposite and pure ZnCo2O4

nanoparticles electrodes measured in the frequency range between0.01Hz and

1.0MHz.

582 A.K.Rai et al./Electrochimica Acta146(2014)577–584

ZnCo2O4/graphene nanocomposite electrode illustrates better rate capability than the pure ZnCo2O4electrode at all investigated current rates.For example,the ZnCo2O4/graphene nanocomposite and pure ZnCo2O4nanoparticle electrodes exhibit reversible charge capacities of861.4mAh gà1and784.7mAh gà1at0.1C, 878.2mAh gà1and757.1mAh gà1at0.2C,822.8mAh gà1and707.9 mAh gà1at0.4C,738.6mAh gà1and650.5mAh gà1at0.8C,623.1 mAh gà1and554.3mAh gà1at1.6C,469.5mAh gà1and402.3mAh gà1at 3.2C and378.1mAh gà1and302.4mAh gà1at 4.5C, respectively.More importantly,when the current rate returns back to the initial C-rate of0.1C,the charge capacity can be recovered to the same initial value,indicating that the structure of both electrodes was stable during cycling.However,the ZnCo2O4/ graphene hetero-architecture not only suppresses the aggregation of ZnCo2O4nanoparticles but also prevents the restacking of the graphene nanosheets,resulting in a large electrode/electrolyte interface area.The large interface area not only provides more Li+ insertion/extraction sites,but also facilitates fast Li+ion transfer between the electrode and the electrolyte,thus leading to a large reversible capacity of the nanocomposite electrode.Most impor-tantly,we believe that among the above said reasons about the improvement of the electrochemical performance of the ZnCo2O4/ graphene nanocomposite sample,the synergistic effect between ZnCo2O4and ZnO and CoO components in the nanocomposite is also one of the major factors and needs to be considered in terms of capacity retention[21].In fact,many reports have shown that the outer material in a heterostructure can suppress the pulverization of the inner material during cycling[1,21,24].On the other hand, the presence of Co nanoparticles in the ZnCo2O4can provide an extra Li2O nanomatrix according to Eqs.(vi)and(vii),which improves the reversibility of the reaction corresponding to Eq.(v) [21,25],allowing the ZnO to be?xed at the heterojunction during lithiation and delithiation.In addition,the obtained values of electrochemical performances for both the electrodes are compa-rable than those reported for ZnCo2O4nanoparticles,but the synthesis adopted in the present study is very cost-effective and simple compared to that in the previously reported counterparts [7–9,21].

To understand the better electrochemical performance of the ZnCo2O4/graphene nanocomposite electrode,EIS measurements were also carried out on both the electrodes after10charge/ discharge cycles,as shown in Fig.5.It can be clearly seen that the impedance spectra are almost similar in shape for both the electrodes.The plots consist of a depressed semicircle in the high and middle frequency regions and a straight line in the low-frequency region.In the impedance spectroscopy,the high-frequency semicircle is attributed to the SEI?lm and/or contact resistance,while the semicircle in the medium-frequency region is assigned to the charge-transfer impedance at the electrode/ electrolyte interface.The inclined line at an approximate angle of45 to the real axis corresponds to the lithium-diffusion process within the electrodes(Warburg impedance)[1].For the lithium-ion batteries,the charge transfer resistance is a measure of the charge transfer kinetics[26],and the charge transfer process determines the rate of transfer reaction.The smaller the charge transfer resistance,the smaller the diameter of the semicircle. Obviously,the diameter of the semicircle of ZnCo2O4/graphene electrode is much smaller than that of pure ZnCo2O4nanoparticle electrode,demonstrating that the charge-transfer resistance is lower for ZnCo2O4/graphene nanocomposite material,which are in good agreement with results of the electrochemical performance, suggesting that the good conductivity network forms due to the introduction of graphene nanosheets.

To further understand the effects of the graphene nanosheets on the electrode integrity,the electrode surface of ZnCo2O4/ graphene nanocomposite and pure ZnCo2O4nanoparticles after 70cycles was observed.The ex-situ results are illustrated in Fig.6. As shown in Fig.6(a),the ZnCo2O4/graphene nanocomposite electrode maintains good geometric integrity without cracking. This also indicates that the active materials remain intact during cycling and thereby an excellent cycling stability of ZnCo2O4/ graphene nanocomposite electrode.On the contrary,the pure ZnCo2O4nanoparticles electrode cracks severely(Fig.6b),and even the ZnCo2O4nanoparticles are pulverized after70cycles.The structure destruction of pure ZnCo2O4nanoparticles due to the cycling is responsible for its gradually decrease capacity.By contrast,the introduction of graphene nanosheets provides a buffer for the volume change of the ZnCo2O4nanoparticles and enhances its structure stability.

4.Conclusions

A facile way to synthesize ZnCo2O4/graphene nanocomposite and pure ZnCo2O4nanoparticle by the use of urea-assisted auto combustion synthesis at low temperature of400 C is developed. The ZnCo2O4nanoparticles anchored on the surface of the reduced graphene nanosheets.In addition,the graphene nanosheets signi?cantly reduced the particles size and suppressed the aggregation of ZnCo2O4nanoparticles.The particles size was in the range of50–100nm for pure ZnCo2O4sample and the nanoparticles size in the nanocomposite sample was25–50nm. The ZnCo2O4/graphene nanocomposite electrode showed higher reversible capacity,excellent cycleability and higher rate capability than the pure ZnCo2O4nanoparticles electrode.The

Fig.6.Ex-situ FE-SEM images of ZnCo2O4/graphene nanocomposite(a)and pure ZnCo2O4nanoparticles(b)electrodes after70cycles of charging/discharging at current rate of0.1C.

A.K.Rai et al./Electrochimica Acta146(2014)577–584583

electrochemical performance of the nanocomposite sample was enhanced by the reduced graphene nanosheets,which can buffer the volume expansion and contraction as a?exible constraint and facilitate both the electron and lithium ion transfers in the ZnCo2O4/graphene nanocomposite sample as well as maintaining the good electrical conductivity of the overall electrode during the discharge/charge process.Additionally,we believe that the improved electrochemical performance of the ZnCo2O4/graphene nanocomposite sample is due to the synergistic effects not only between ZnCo2O4and graphene nanosheets but also between ZnCo2O4and ZnO and CoO.The electrochemical test results indicated that the ZnCo2O4/graphene nanocomposite prepared by the urea-assisted auto combustion method is a promising anode material with high capacity and better rate performance for lithium-ion batteries.

Acknowledgments

This work was supported by the Global Frontier R&D Program (2013-073298)on Center for Hybrid Interface Materials(HIM) funded by the Ministry of Science,ICT&Future Planning. References

[1]A.K.Rai,J.Gim,L.T.Anh,J.Kim,Partially reduced Co3O4/graphene nano-

composite as an anode material for secondary lithium ion battery,Electro-chim.Acta100(2013)63–71.

[2]J.Cabana,L.Monconduit,https://www.360docs.net/doc/9c13096351.html,rcher,M.R.Palacin,Beyond intercalation-based

Li-ion batteries:the state of the art and challenges of electrode materials reacting through conversion reactions,Adv.Mater.22(2010)E170–E192. [3]W.Luo,X.Hu,Y.Sun,Y.Huang,Electrospun porous ZnCo2O4nanotubes as a

high performance anode material for lithium-ion batteries,J.Mater.Chem.22 (2012)8916–8921.

[4]H.Liu,J.Wang,One-pot synthesis of ZnCo2O4nanorod anodes for high power

Lithium ions batteries,Electrochim.Acta92(2013)371–375.

[5]L.Zhou,H.B.Wu,T.Zhu,X.W.Lou,Facile preparation of ZnMn2O4hollow

microspheres as high-capacity anodes for lithium-ion batteries,J.Mater.

Chem.22(2012)827–829.

[6]Y.Sharma,N.Sharma,G.V.Subba Rao,B.V.R.Chowdari,Nanophase ZnCo2O4as

a high performance anode material for Li-ion batteries,Adv.Funct.Mater.17

(2007)2855–2861.

[7]C.C.Ai,M.C.Yin,C.W.Wang,J.Sun,Synthesis and characterization of spinel

type ZnCo2O4as a novel anode material for lithium ion batteries,J.Mater.Sci.

39(2004)1077–1079.

[8]Y.Qiu,S.Yang,H.Deng,L.Jin,W.Li,A novel nanostructured spinel ZnCo2O4

electrode material:morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries,J.Mater.

Chem.20(2010)4439–4444.

[9]D.Deng,J.Y.Lee,Linker-free3D assembly of nanocrystals with tunable unit

size for reversible lithium ion storage,Nanotechnology22(2011)355401.[10]N.Du,Y.Xu,H.Zhang,J.Yu,C.Zhai,D.Yang,Porous ZnCo2O4nanowires

synthesis via sacri?cial templates:high-performance anode materials of Li-ion batteries,Inorg,Chem.50(2011)3320–3324.

[11]B.Liu,J.Zhang,X.Wang,G.Chen,D.Chen,C.Zhou,G.Shen,Hierarchical three-

dimensional ZnCo2O4nanowire arrays/carbon cloth anodes for a novel class of high-performance?exible lithium-ion batteries,Nano Lett.12(2012) 3005–3011.

[12]A.K.Rai,L.T.Anh,J.Gim,V.Mathew,J.Kang,B.J.Paul,N.K.Singh,J.Song,J.Kim,

Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery,J.Power Sources244(2013)435–441.

[13]A.K.Rai,J.Gim,S.Kang,V.Mathew,L.T.Anh,J.Kang,J.Song,B.J.Paul,J.Kim,

Improved electrochemical performance of Li4Ti5O12with a variable amount of graphene as a conductive agent for rechargeable lithium-ion batteries by solvothermal method,Mater.Chem.Phys.136(2012)1044–1051.

[14]A.K.Rai,J.Gim,J.Song,V.Mathew,L.T.Anh,J.Kim,Electrochemical and safety

characteristics of TiP2O7–graphene nanocomposite anode for rechargeable lithium-ion batteries,Electrochim.Acta75(2012)247–253.

[15]A.K.Rai,L.T.Anh,J.Gim,J.Kim,One-step synthesis of CoO anode material for

rechargeable lithium-ion batteries,Ceram.Int.39(2013)9325–9330. [16]A.K.Rai,L.T.Anh,J.Gim,V.Mathew,J.Kim,Low temperature synthesis of

porous tin oxide anode for high-performance lithium-ion battery, Electrochim.Acta109(2013)461–467.

[17]A.K.Rai,J.Gim,T.V.Thi,D.Ahn,S.J.Cho,J.Kim,High rate capability and long

cycle stability of Co3O4/CoFe2O4nanocomposite as an anode material for high-performance secondary lithium ion batteries,J.Phys.Chem.C118(2014) 11234–11243.

[18]W.S.Hummers,R.E.Offeman,Preparation of graphitic oxide,J.Am.Chem.Soc.

80(1958)1339.

[19]X.W.Lou,J.S.Chen,P.Chen,L.A.Archer,One-pot synthesis of carbon-coated

SnO2Nanocolloids with improved reversible lithium storage properties,Chem.

Mater.21(2009)2868–2874.

[20]M.V.Reddy,K.Y.H.Kenrick,T.Y.Wei,G.Y.Chong,G.H.Leong,B.V.R.Chowdari,

Nano-ZnCo2O4material preparation by molten salt method and its electrochemical properties for lithium batteries,J.Electrochem.Soc.158 (2011)A1423–A1430.

[21]C.W.Lee,S.Seo,D.W.Kim,S.Park,K.Jin,D.Kim,K.S.Hong,Heteroepitaxial

growth of ZnO nanosheet bands on ZnCo2O4submicron rods toward high-performance Li ion battery electrodes,Nano Res.6(2013)348–355.

[22]M.Ahmad,S.Yingying,A.Nisar,H.Sun,W.Shen,M.Wei,J.Zhu,Synthesis of

hierarchical?ower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes,J.Mater.Chem.21(2011)7723–7729.

[23]H.Yang,T.Song,S.Lee,H.Han,F.Xia,A.Devadoss,W.Sigmund,U.Paik,Tin

indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability,Electrochim.Acta91(2013)275–281.

[24]W.Zhou,C.Cheng,J.Liu,Y.Y.Tay,J.Jiang,X.Jia,J.Zhang,H.Gong,H.H.Hng,T.

Yu,Epitaxial growth of branched a-Fe2O3/SnO2nano-heterostructures with improved lithium-ion battery performance,Adv.Funct.Mater.21(2011) 2439–2445.

[25]X.Xue,Z.Chen,L.Xing,S.Yuan,Y.Chen,SnO2/a-MoO3core-shell nanobelts

and their extraordinarily high reversible capacity as lithium-ion battery anodes,https://www.360docs.net/doc/9c13096351.html,mun.47(2011)5205–5207.

[26]M.Zhang,M.Jia,High rate capability and long cycle stability Fe3O4–graphene

nanocomposite as anode material for lithium ion batteries,J.Alloys and Comp.

551(2013)53–60.

584 A.K.Rai et al./Electrochimica Acta146(2014)577–584

普通员工辞职申请书范文【三篇】

普通员工辞职申请书范文【三篇】 尊敬的xx人力资源部: 您好! 因为个人职业规划和一些现实因素,经过慎重考虑之后,特此提出离职申请,敬请批准。 在xx工作一年多的时间里,我有幸得到了各位领导及同事们的倾心指导及热情协助,在本职工作和音乐专业技能上,我得到了很大水准的提升,在此感谢xx提供给我这个良好的平台,这个年多的工作经验将是我今后职业生涯中的一笔宝贵财富。 在这里,特别感谢各位领导在过去的工作、生活中给予的大力支持与协助;尤其感谢xx,xx等,一年来对我的信任和关照,感谢所有给予过我协助的同事们。 望批准我的申请,并请协助办理相关离职手续,在正式离开之前我将认真继续做好当前的每一项工作。 祝公司事业蓬勃发展,前景灿烂。 申请人:### 20xx年xx月xx日 【篇二】 尊敬的韩总: 作为一名在酒店工作了大半年的员工,我对酒店有着一种格外亲切的感觉。每一个人在他年轻的时候,都有很多第一次,我当然也不例外。

我的第一份工作是在酒店,我最青春的三年也是在酒店度过的。 在这里,我学会了很多东西,能够跟同事们在一起工作,我觉得很开心,这里的每一位都是我的大哥大姐,我的叔叔阿姨,是他们教给了 我在学校里面学不到的知识,如何为人、如何处事、如何工作……在 酒店里,领导们也对我十分的关心,从刚进入酒店开始,我就感受到 从上至下的温暖。因为我是酒店里年龄还一般,还不算小,也从来没 有在这么大的集体里生活过,自不过然的,心里面就会产生一种被呵 护的感觉。这是一种以前在集体里未曾有过的感觉,很温馨,很自豪,而且它一直陪伴着我,直到我离开…… 但这种感觉不会随着我的离开而走远,我想我永远也不会忘记, 毕竟我以前生活在一个温暖而又温馨的集体里。韩总,还记得第一次 跟您近距离接触和理解是在20xx.3.16号。随着时间的流逝,斗转星移,您多年积累的工作经验与个人才华也得到充分的施展。您是我们 酒店的经理。在我上班之前,制定了一系列的政策与方针,重新定位 了酒店的经营策略,持续地尝试新的机制与奖励、分配办法,力争让 酒店的经济效益持续迈上新高,也让酒店员工的福利待遇如芝麻开花 一般节节高樊。,这才是为员工谋利益的举动,这才是一位被员工在 心里面所认可的经理。 而我,作为这个集体的一份子,更加感觉到您对员工的关心与培养。您肯定想到,酒店要想在竞争激烈的社会中立于不败之地,人才 的培养与发展是不可忽视的环节之一。因为我自身水平的不足,近期 的工作让我觉得力不从心,所以想公司提出了辞呈,忘领导批准。 申请人:### 20xx年xx月xx日 【篇三】 尊敬的公司领导:

SAP四种安全库存的设置

安全库存只是一个笼统的说法,本文归纳了SAP四种安全库存(时间)的设置,用于增加计划过程中库存数量(时间)的弹性。为何安全库存能增加计划的弹性呢?因为在净需求计算(Net Requirements Calculation)中,Quantity available = Fixed receipts + Stock available for planning - Safety stock - requirements,若可用数量小于零,则报缺料,视为短缺数量(Shortage quantity)或需求数量(Net requriements),将用于批量计算并得出最终的获取建议。 Safety stock Safety stock partially available Dynamic safety stock Safety time 一、Safety stock 这就是“安全库存”了,安全库存的数量在计划中是不可用的。MRP中,若物料的数量低于安全库存水平,就会产生计划订单。安全库存在物料主数据MRP2视图设置。 二、Safety stock partially available 如果设置了安全库存,一低于该水平就会产生补货的请求,哪怕只是缺了一点,这增加了计划的工作量。为了弥补这个不足,我们可以在MRP Group中设置一个百分比,只有安全库存低于该百分比,补货请求方会产生。 三、Dynamic safety stock 动态安全库存就更加厉害了,它根据平均的日需求(Average daily requirements)数量,来确定未来几个时期的安全库存水平(数量等于若干个平均日需求):最小库存、目标库存、

范本政府申请报告范文

政府申请报告要怎么写呢?以下是为大家分享的3篇政府申请报告范文,供大家参考借鉴,欢迎浏览! 政府申请报告范文一: 关于向xx人民政府申请xx项目优惠政策的报告 xx人民政府: xx旅游地产暨现代农业建设项目是由(陕西xx集团)下属陕西xx房地产开发有限公司与xx房地产开发有限公司共同投资,根据《汉中市保护利用总体规划》,本着保护性利用自然资源的原则,在兼顾环境效益,合理利用生态资源,统筹城乡发展的基础上,力图打造的一个具有养生体验功能的高科技集旅游地产和现代农业示范区有机整合的地方发展项目。 一、xx旅游地产暨现代农业建设项目简介 xx旅游地产暨现代农业建设项目,将充分运用“文化传承、产品核心竞争力、价值附着”三大策略、“传统农业、现代农业、未来农业”三大板块、“互惠、分享、共赢”三大原则,进行整体规划。项目规划将综合考虑国家及汉中生态保护相关政策,把协调发展“三农问题”作为根本出发点。项目结合项目地良好的自然环境、当前现代农业的发展契机、西北地区休闲市场巨大需求,结合项目单位自身的人才、技术、管理、资金等资源等优势条件,利用农业为主线的链条式发展,以高端科技农业为主打,以规模特色农业为品牌,以休闲体验旅游为提升,将农业和旅游产业有机结合。建设国内外先进农业技术的引进转化示范区、农业专家课题示范区和自驾旅游集散中心。带动旅游观光、生态体验、餐饮住宿等辐射经济效益的升级。体现休闲自然的生活态度和生活方式,成为全国性的农业科技示范教育基地。实现第一产业、第二产业和第三产业的联动、互利和产业链升级发展。 xx项目以农业发展为基础,休闲养生体验为主题,旅游产业为拓展。项目实施后,将积极促进和改善xx区域的生态环境,打造优质生态宜居游乐生活,增进居民幸福度和营造社会和谐度。 项目总投入约亿,项目直接收益较高,可带来超过2亿的税收和6亿的衍生收益,并能解决农村剩余劳动力2000以上,可为这些劳动力带来每年2万元以上的收入,给武乡区域带来极大的综合效益。 二、项目投资单位简介 本项目投资单位:陕西xx房地产开发有限公司;具体实施单位:xx房地产开发有限公司;两公司均为陕西xx集团全资下属单位。 陕西xx集团是经由区政府领导、经贸局和xx房地产开发有限公司共同努力引入汉中,并成功注资落户的外来企业。 陕西xx集团,是以煤炭、电力为主导产业,以资源综合开发利用为宗旨,坚持节能环保发展观的新型能源企业。该公司先后被榆林市委、市人民政府授予“榆林市十佳企业”、“榆林市非公有制纳税十强企业”、“挂牌重点保护

辞职报告文本辞职报告范文大全

辞职报告文本辞职报告范文大全 辞职报告 (篇一) 尊敬的领导: 我很遗憾自己在这个时候向公司正式提出辞职申请。 来到公司也已经快两年了,在这近两年里,得到了公司各位同事的多方帮助,我非常感谢公司各位同事。正是在这里我有过欢笑,也有过泪水,更有过收获。公司平等的人际关系和开明的工作作风,一度让我有着找到了依靠的感觉,在这里我能开心的工作,开心的学习。或许这真是对的,由此我开始了思索,认真的思考。 但是最近我感觉到自己不适合做这份工作,同时也想换一下环境。我也很清楚这时候向公司辞职于公司于自己都是一个考验,公司正值用人之际,公司新的项目的启动,所有的后续工作在公司上下极力重视下一步步推进。也正是考虑到公司今后在这个项目安排的合理性,本着对公司负责的态度,为了不让公司因我而造成的决策失误,我郑重向公司提出辞职。 我考虑在此辞呈递交之后的2—4周内离开公司,这样您将有时间去寻找适合人选,来填补因我离职而造成的空缺,同时我也能够协助您对新人进行入职培训,使他尽快熟悉工作。 能为公司效力的日子不多了,我一定会把好自己最后一班岗,做好工作的交接工作,尽力让项目做到平衡过渡。离开这个公司,离开

这些曾经同甘共苦的同事,很舍不得,舍不得领导们的尊尊教诲,舍不得同事之间的那片真诚和友善。 在短短的两年时间我们公司已经发生了巨大可喜的变化,我很遗 憾不能为公司辉煌的明天贡献自己的力量。我只有衷心祝愿公司的业绩一路飙升!公司领导及各位同事工作顺利! (篇二) 尊敬的办公室人力资源管理领导: 我向公司正式提出辞职。 我自**日进入公司,到现在已经一年有余了,正是在这里我开始 踏上了社会,完成了自己从一个学生到社会人的转变。在过去的一 年多里,公司给予了我许多学习和锻炼的机会,开阔眼界、增长见识。我对公司给予的照顾表示忠心的感谢!但是,经过近段时间的思考, 我越来越迷惘!我越来越觉得现在的工作、生活离自己想要的越来越远。所以,我必须离开,去过我思想深处另一种有别于目前的生活。我想,生活应该是在选择到适合自己的道路以后,再持之以恒地坚持! 公司目前已经过了一年最忙的时间,是充电、整顿、储备人才的 时刻。相信,我的离开会很快有新生力量补充。因为这不是我想要的工作、生活状态,所以,我现在对工作没有激情、对生活也极其懒散。本着对公司负责的态度,为了不让公司其他同事受到我消极情绪 * ,也为了不让公司因为我出现业务上的纰漏等,我郑重向公司提出辞职,望公司给予批准! 祝公司稳步发展,祝公司的领导和同事们前程似锦、鹏程万里!

【优质】向政府写申请书范文-优秀word范文 (3页)

本文部分内容来自网络整理所得,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即予以删除! == 本文为word格式,下载后可方便编辑修改文字! == 向政府写申请书范文 向政府写申请书范文:企业向政府申请书范文 ******建设局: 为了更好的贯彻落实国家对资源综合利用的指导思想,促进合理的节约资源,提高资源利用率,保护环境实现经济社会的可持续发展的战略方针。 ************有限责任公司顺应形势发展,准备在******投资建设一条具有轻质、阻燃、保温、抗震性强并具有可持续发展的轻集料小型空心砌块建筑材 料生产线。 此项目的投资建设能达到节约能源、保护土地、变废为宝及综合治理环境 污染的目的。 投资建设此项目我公司具有以下优势: 一、轻集料小型空心砌块是以矿渣、炉渣、粉煤灰加有石硝为骨料,以水泥为胶结料,被广泛使用于工业与民用建筑的非承重砌块、承重砌块、保温块。 是一种节能、节土、利废的可持续发展的建筑材料。 该产品生产工艺无二次污染产生,市场前景广阔变废为宝,造福后代并具 有极高的社会效益和环境效益。 而我公司经营煤矿及煤炭销售多年,常年与矿渣、粉煤灰、水泥等物接触。 二、我公司为******热力公司供运供热用煤已有多年,合作非常融洽。

随着******城市建设规模的不断扩大,******热力公司现在每年冬季供热用煤需要4万多吨,为了保证冬季的正常供暖,秋季储存煤就非常关键,但是热力公司的场地有限,无法大量储存煤,加之供热产生的炉渣占地面积也很大。 为此双方约定由我公司申请30亩土地,其中一半无偿作为热力公司储煤场地,一半用于我公司建设轻集料小型空心砌块生产线使用,同时供热产生的炉渣及时运送到本厂作为生产原料。 充分体现了双方互利互惠的原则。 综上所述,建设轻集料小型空心砌块生产线,即符合国家产业政策,同时为确保******冬季正常供暖,热力公司秋季储煤的问题也得到了解决。 因此,恳请******建设局审批30亩土地作为************有限责任公司建设轻集料小型空心砌块生产线和******热力公司储煤场地为盼。 ************有限责任公司 20**年月日 向政府写申请书范文:向政府申请资金请示范文 县政府: XX镇政府办公楼建于X年X月,迄今XX年,由于该楼建筑时间长,加之建筑质量不好等原因,部分房间的墙体出现裂缝,虽小有修缮但仍存在屋顶掉块、墙围脱落等现象,该楼已存在安全隐患,不适宜继续办公,必须进行修缮。 经多方论证,修缮费用预算为XX万元,因镇政府资金短缺,特向县政府申请修缮办公楼经费,我们一定加强对招投标和工程质量的管理,指派专人负责办公楼修缮事宜,做到专款专用,严格质量、严格纪律,请予以支持为盼。 当否,请批示。 附:XX镇政府办公楼修缮预算开支一览表。 X县X镇人民政府

考研专业课学科分类-学科门类及下设一级学科二级学科

[编辑本段] 学科门类及下设一级学科二级学科 01 哲学 0101 一级学科:哲学 010101 马克思主义哲学010102 中国哲学 010103 外国哲学010104 逻辑学 010105 伦理学010106 美学 010107 宗教学010108 科学技术哲学 02 经济学 0201 一级学科:理论经济学 020101 政治经济学020102 经济思想史 020103 经济史020104 西方经济学 020105 世界经济020106 人口、资源与环境经济学 0202 一级学科:应用经济学 020201 国民经济学020202 区域经济学 020203 财政学020204 金融学 020205 产业经济学☆020206 国际贸易学 020207 劳动经济学020208 统计学 020209 数量经济学020210 国防经济 03 法学 0301 一级学科:法学 030101 法学理论030102 法律史 030103 宪法学与行政法学030104 刑法学 030105 民商法学(含:劳动法学、社会保障法学) 030106 诉讼法学030107 经济法学 030108 环境与资源保护法学030108 环境与资源保护法学030110 军事法学 0302 一级学科:政治学 030201 政治学理论030202 中外政治制度 030203 科学社会主义与国际共产主义运动 030204 中共党史(党的学说与党的建设) 030205 马克思主义理论与思想政治教育 030206 国际政治030207 国际关系 030208 外交学 注:0300206 行政学(部分)调至公共管理 0303 一级学科:社会学 030301 社会学030302 人口学 030303 人类学030304 民俗学(含:中国民间文学)

辞职申请书范文大全500字

辞职申请书范文大全500字 辞职申请书500字 辞职一般是提前30天向上级或公司递交辞职,无需公司批准,30天之后您就能顺利辞职了,以下是为大家搜集的范文,欢迎阅读! 尊敬的公司领导: 由于工作调动,现正式向公司提出调离原工作岗位。 舍不得,舍不得这里的人,舍不得自己曾经的付出。每一次出差、每一次报价、每一次谈判、每一次争吵,在飞机上、在吉普车上、在会议室里、在工地上,所有这一切,都充斥着我的记忆,那么清晰,就像是在昨天。但时间的指针总是忠诚地一步一步往前走,昨天终究会结束。 在公司四年半的时间里,我收获了很多,除了朋友和知识,更 重要的是,我到了成长的快乐。感谢命运,让我在最青春的年华里遇到了装备公司;感谢公司领导,你们的关注和欣赏让我一直充满自信,你们的指点和教诲让我在成长的路上少走了很多弯路;感谢公司的同事,和你们的沟通,轻松愉悦;感谢我自己,能够一直保持着一份纯净,真诚地付出,真诚地享受每一次收获。

鉴于目前的身体及生活状态,自认为不能够为公司创造更大的价值,现向公司提出辞职。 虽然我不能在这里继续“战斗”下去,但真心的希望,xx公司能够梦想成真,在世界的舞台上舞出属于自己的精彩。 此致 敬礼! 辞职人: 20xx年xx月xx日 尊敬的x总: 您好! 转眼间,我到公司已有X年了,这X年的工作时间里,虽然我的工作并不是尽善尽美,但在公司同事们的帮助,尤其是您的信任与教导下,我也努力的去完成每一项您布置给我的工作,都用了自己的

热情努力去对待。凭心而论,我开始对基础工程毫无了解,但在您这里我基本了解了基础工程,使我学到了很多东西,特别是一些做人的道理和对生活的理解。在这里,我真诚的对袁总说一声:谢谢您了! 但犹豫再三,经过了长时间的考虑,我还是写了这封辞职申请书。 加入公司以来,您对我的信任、教导与严格要求,令我非常感动,也成为激励我努力工作的动力。在您及同事们的热心指导与悉心帮助下,我在工程技术和管理能力方面都有了一定的提高。我常想,自己应该用一颗感恩的心,去回报您及公司对我的栽培,真的想用自己的努力去做好您交给的每一份工作任务,但自己的能力真的很有限,有很多地方没有做得能让您满意,所以对过去工作中失误与不足的地方,我真诚的对您说声抱歉,请您原谅! 经过这段时间的思考,我觉得我可能技术能力方面有所不足, 也缺少工作的积极性和脚踏实地的工作精神,没能很好的适应这个工作,所以一直没有把工作做到令您满意的程度。这是我在以后的人生中需要注意的地方,也是袁总经常教导我的地方,我一定会铭记于心! 再一次真诚地感谢您及公司全体同事对我的关爱与帮助!

安全库存设定要注意这几点

安全库存设定要注意这几点 企业日常运营充满诸多不确定因素,但是为了降低规模成本,企业的生产安排与市场的需求一样都是保持连续的。而合理的安全库存设定,可以将各种导致销售和生产中断的不确定因素所造成的损失降到最低。那么什么是安全库存?库存设定需重视哪些因素? 无论是按订单生产(make to stock)还是按库存生产(make to order),无论是生产,分销或者采购,合理的安全库存设定都是库存管理动态平衡的关键。 安全库存的定义: 安全库存(safety stock):为了防止诸如供应延迟或需求增加等不确定因素发生,设定一定的库存数量以保持生产和销售的连续性,即为安全库存。安全库存属于动态库存,也需要定期更新。 设定安全库存时,要考虑哪些因素? 1 产品生命周期 产品生命周期的特点一般并不明显。通常需要WMS工具所统计的历史数据,对市场的趋势进行长期的观察并作出判断。另外一种情况则是企业主动决策改变产品生命周期,同时将信息充分分享给预测和计划等岗位。反之,如果不能满足以上情况,那么对于安全库存的设定是非常不利的。在产品的生命周期初期,企业需要准备适当的库存以满足不断提升的需求,但是若产品未能达到市场预期,最终不得不EOL,那么前期设置的安全库存会对企业造成一定的损失。然而如果企业并没有准备一些安全库存,则可能因为缺货失去产品的市场份额。在产品生命周期末端,同样也会发生类似的情况。 2 企业与供应链其他节点公司谈判时所处的地位 谈判处于弱势方的企业需要通过设置较高水位的安全库存抵消供应的不稳定和需求的增加,以减少不确定性给企业带来的损失。而当企业处于强势地位时,则可以在做预测和计划时考虑到供应链节点的各种情况,加强其在供应链节点的领导地位。 3 产品的特性以及交易特点 产品的特性包括保质期,成本。交易特点则是指产品对于企业来说是日常,杠杆,瓶颈或者是关键物料,采购和生产及转仓的前置期。产品的价值,物流成本占产品价值比例,销售采购生产的稳定性和频率,产品的历史销售分析,未来销售的预测以及具体计划,需要考虑的因素非常多。但是每一项安全库存的设定,都可以按照2/8法则选取少数最为关键,对安全库存设定影响最大的因素。 4 企业是否具备专业人才 从上述观点来看,安全库存的设定复杂而且专业,错误的设定对于企业的运营影响很大。同时我们需要定期对安全库存进行review和修改。 无论是安全库存的设定者还是审批者,都需要具备基本的专业知识进行判断和决策。而不管是预测还是安全库存的建立,还是数据收集,分析,找到关键因素,确定权重,最终目的都是为了进行决策——计划。

简短辞职申请书范文大全

简短辞职申请书范文大全 想必每一位在职场混迹多年的职场人士都应曾经写过辞职信之类的。在现在这个发展速度如此之快的社会,跳槽也就成了常见现象。而离职前的辞职信是必写的。下面就是小编给大家带来的简短辞职申请书范文大全,希望大家喜欢! 尊敬的xx: 我自xx年来到公司,工作中得到公司和您的培养,个人得到了很大的成长,公司的文化和环境也令我工作得非常开心。 现由于个人原因,我不得不提出辞职,希望能于x年x月x日正式离职,请公司批准我的这份辞职书。并请公司在x月x日前安排好人员接替我的工作,我将尽心交接。 再次对您x年来的培养和指导表示衷心的感谢。 最后祝您及公司的所有同事一切顺利! 此致 敬礼 辞职人:xxx 20xx年x月x日 尊敬的X经理: 您好! 感谢公司在我入职以来的培养关心和照顾,从X年X月份来到[公司]至今,我学到了很多东西,今后无论走向哪里,从事什么,这段经历都是一笔宝贵的财富,我为在彩卡的这段工作经历而自豪。 而今,由于个人原因提出辞职,望领导批准。 辞职人: 20xx年x月x日

公司人事部: 我因为要去美国留学,故需辞去现在的工作,请上级领导批准。 公司的企业文化感化了我,我对公司是深有感情的。我留学归来之后,仍愿意回公司就职。 感谢公司领导和同事在工作中对我的关心和支持,并祝公司兴隆。 辞职人:xxx 20xx年x月x日 尊敬的公司领导: 在递交这份辞呈时,我的心情十分沉重。现在由于我的一些个人原因的影响,无法为公司做出相应的贡献。因此请求允许离开。 当前公司正处于快速发展的阶段,同事都是斗志昂扬,壮志满怀,而我在这时候却因个人原因无法为公司分忧,实在是深感歉意。 我希望公司领导在百忙之中抽出时间受理我的离职事项。 感谢诸位在我在公司期间给予我的信任和支持,并祝所有同事和朋友们在工作和活动中取得更大的成绩。 辞职人: 20xx年x月x日 尊敬的xx: 自xx年入职以来,我一直很喜欢这份工作,但因某些个人原因,我要重新确定自己未来的方向,最终选择了开始新的工作。 希望公司能早日找到合适人手开接替我的工作并希望能于今年5月底前正式辞职。如能给予我支配更多的时间来找工作我将感激不尽,希望公司理解!在我提交这份辞呈时,在未离开岗位之前,我一定会尽自己的职责,做好应该做的事。 最后,衷心的说:“对不起”与“谢谢”! 祝愿公司开创更美好的未来!

给政府写申请格式|向政府申请格式范文.doc

【个人简历范文】 申请意思是向上级说明理由,提出请求,有关向政府申请内容,欢迎大家一起来借鉴一下! 向政府申请书格式范文一 县人民政府 在县委、县府的领导和指挥下,在相关部门的大力支持下,县蚕丝公司、蚕种场的破产改制工作有序进行,现已进入人员安置阶段。 县蚕丝公司各类人员522人,其中在编正式职工408人,退休人员48人,退养蚕桑辅导24人,在岗蚕桑辅导员24人,长期临工4人,遗属定补人员4人。 按照批准的人员安置方案,根据债权、债务清算报告,经测算,人员安置费用6428万元,退付集资款162万元,支付兑发工资3185万元,共需资金11173万元。 因非整合资产的处置(已委托国土供应中心)尚需时日,按照县委、县府的安排布署,为了确保在今年6月底前破产终结,故特请示县政府先在县财政借支1000万元资金用于安置职工,待资产变现后再与县财政算帐。 以上请示可否,请批示。 日期 向政府申请书格式范文二 县财政局 年初以来,我们XXXX党委、镇政府为完成县委、县政府安排部署的各项重点工作任务,开展了大量工作,开局良好。 特别是今春气候倒春寒现象严重,持续雨雪灾害天气,造成农民不能及时种地,为帮助农民挖沟排涝、抢种春播以及解决特困户种地困难等,占用了一定资金,造成我镇目前办公经费十分紧张。 为保证机关正常运转,更好地完成全年各项工作任务,特申请财政局提前预拨经费10万元,解决我镇资金短缺困难。 特此请示,批准为盼。 XXXX人民政府

20XX年5月14日 向政府申请书格式范文三 xx人民政府 xx旅游地产暨现代农业建设项目是由(陕西xx集团)下属陕西xx房地产开发有限公司与xx房地产开发有限公司共同投资,根据《汉中市保护利用总体规划》,本着保护性利用自然资源的原则,在兼顾环境效益,合理的利用生态资源,统筹城乡发展的基础上,力图打造的一个具有养生体验功能的高科技集旅游地产和现代农业示范区有机整合的地方发展项目。 一、xx旅游地产暨现代农业建设项目简介 xx旅游地产暨现代农业建设项目,将充分运用“文化传承、产品核心竞争力、价值附着”三大策略、“传统农业、现代农业、未来农业”三大板块、“互惠、分享、共赢”三大原则,进行整体规划。项目规划将综合考虑国家及汉中生态保护相关政策,把协调发展“三农问题”作为根本的出发点。项目结合项目地良好的自然环境、当前现代农业的发展契机、西北地区休闲市场巨大需求,结合项目单位自身的人才、技术、管理、资金等资源等优势条件,利用农业为主线的链条式发展,以高端科技农业为主打,以规模特色农业为品牌,以休闲体验旅游为提高,把农业和旅游产业有机结合。建设国内外先进农业技术的引进转化示范区、农业专家课题示范区和自驾旅游集散中心。带动旅游观光、生态体验、餐饮住宿等辐射经济效益的升级。体现休闲自然的生活态度和生活方式,成为全国性的农业科技示范教育基地。实现第一产业、第二产业和第三产业的联动、互利和产业链升级发展。 xx项目以农业发展为基础,休闲养生体验为主题,旅游产业为拓展。项目实施后,将积极促进和改善xx区域的生态环境,打造优质生态宜居游乐生活,增进居民幸福度和营造社会和谐度。 项目总投入约12亿,项目直接收益较高,可带来超过2亿的税收和6亿的衍生收益,并能解决农村剩余劳动力2000以上,可为这些劳动力带来每年2万元以上的收入,给武乡区域带来极大的综合效益。 二、项目投资单位简介 本项目投资单位陕西xx房地产开发有限公司;具体实施单位xx房地产开发有限公司;两公司均为陕西xx集团全资下属单位。 陕西xx集团是经由区政府领导、经贸局和xx房地产开发有限公司共同努力引入汉中,并成功注资落户的外来企业。 陕西xx集团,是以煤炭、电力为主导产业,以资源综合开发利用为宗旨,坚持节能环保发展观的新型能源企业。该公司先后被榆林市委、市人民政府授予“榆林市十佳企业”、“榆林市非公有制纳税十强企业”、“挂牌重点保护企业”等荣誉称号,被榆林市工商局授予“重合同、守信用”单位,被神府经济开发区评为“先进企业”,被省农行授予“AAA级企业”称

工作报告之向政府申请报告范文

向政府申请报告范文 【篇一:写给市政府的项目请示】 入近20万经费,历时半年,对 征地200~300亩,设计招生3000~4000人。目前一期资金 已经筹措完毕,随时可以到位进入征地程序。建设工期预计一 年时间,全部基建完成后,预计2012年下半学期即可实现新生 入学。一期工程时间预计在2011年5月~2012年1月,预计 投资6000~8000万元人民币;二期工程时间预计在2012年 2月~2012年6月,预计投资5000万元人民币。 教师的培训和指导,并有管理人员长期入驻本校监督管理。为 我们的要求是:政策上的优惠;土地价格的优惠;协调有关部门加 快我们的工作进度。 恳请尽快答复! 项目联系人: 2010年4月7日 【篇二:土地用地申请报告范文】 土地用地申请报告范文申请人:胡xxx 住所地:xx省xx市xxx村 法定代表人:胡xx 申请事项:申请人因建养鸡场需要,特此依法向宝丰县人民政府申 请养殖用地30亩。 事实与理由: 申请人是已毕业的大学生,大学期间通过自学与实践掌握了一定的 养殖知识与技能,形成了自己的养殖理论体系,并决定开办自己的 养殖场,同时带动本村村民一起走发家致富的道路。特向宝丰县人 民政府申请土地建立一座存栏量为一万只的肉鸡养殖场,建设完毕 后可以向本村村民提供工作岗位,提高部分村民的经济收入。在政 府的支持与引导下,通过自己坚持不懈的努力与奋斗,逐步扩大养 殖规模,建立养殖小区,采取基地加农户、包回收的模式进行运作,从而实现养殖、销售一条龙服务,带动本村乃至本乡养殖业的发展,实现共同富裕。现根据《畜牧业法》、《中华人民共和国土地承包法》、《中华人民共和国土地管理法》及《中华人民共和国土地使

大学本科学科专业设置与就业的相关性分析

大学本科学科专业设置与就业的相关性分析 ——对本科毕业生的网上调查 一、问题的提出 在本研究中,学科专业设置是学校微观层面上的涵义,以学科专业内容为主,并涉及到相关的学科专业制度。 在学科专业设置与就业的相关性这一问题上,有两类基本看法:一种看法认为,学科专业设置应该增强职业针对性,并与就业紧密相关。持这种观点的主要是用人部门和毕业生;另一种看法则认为,学科专业设置应该拓宽口径,增强专业的适应性,持这种观点的主要是高等学校和政府教育主管部门。 我们认为,进行学科和专业设置的改革,关键的问题之一在于在倾听多方面的意见,考虑多方面的需求。正是基于这种原因,我们进行了这次针对已经毕业并参加工作的大学本科毕业生的调查,希望能为相关的改革提供可借鉴的依据。 二、调查结果分析 本次调查的对象是1985~2002年间就业的大学本科毕业生。样本覆盖了11个学科的毕业生,男女比例大约为2:1。我们选取了除西藏、海南外其余全国29个省(自治区、直辖市)的中等规模以上的大学本科院校,采取网上问卷调查的方法。本次调查回收问卷1047份,有效问卷919份,有效率达87.8%。其中,男生626份,占68.1%;女生293份,占31.9%。 1.所学专业与所从事工作的相关性 (1)主观看法和实际情况的总体调查 有关这一问题我们进行了两个方面的调查:一是对毕业生在/所学专业是否应该与所从事工作相关这一问题上的主观看法的调查;另一方面是对毕业生所学专业与实际所从事工作相关程度的实际情况的调查。调查结果显示,超过半数的大学毕业生认为“所学专业与工作岗位相关”这一点重要或者非常重要,另有不到20%的毕业生认为不太重要或不重要,持中间态度的人数约占30%。目前毕业生所学专业与实际所从事工作相关程度高和很高的人占调查总人数的41.9%,不相关和较低的占24.3%,相关程度一般的占33.7%。 通过相关分析可以看出,那些认为所学专业与从事工作相关很重要的人,他们在实际中确实也从事着与专业相关程度很高的工作,反之亦然。无论是观念上还是实际中,所从事工作应该与所学专业密切相关这一观点,不断被就业市场的需求所强化。因为大部分用人单位都希望接受专业对口的学生,以便他们能够较快承担起实际工作。 (2)不同学科毕业生所学专业与所从事工作相关程度的差异 不同学科毕业生所学专业与所从事工作在相关程度上差异十分显著。具体来说,所学专业与所从事工作不相关比例最高的是哲学、历史学,而相关程度高和很高的则有教育学、文学、医学、农学。 (3)所学专业与所从事工作相关程度不高的原因分析 总的来说,毕业生普遍认为,所学专业与所从事工作相关程度不高的原因主要有三点,

离职申请书怎么写范文5篇

离职申请书怎么写范文5篇 工作当中几乎每个人都会有经历辞职,那么大家知道离职申请书怎么写吗?下面就是给大家带来的离职申请书怎么写范文5篇,希望大家喜欢! 辞职报告怎么写模板 辞职理由 辞职之前必须想好理由,不管是世界那么大,我想去看看。还是老子就是不想干了。 书面格式 标题:标题一般有辞职报告、辞职书、辞职函、辞职申请等不同的写法,书面一般多用辞职书 称谓:在工作中称呼一般都是“尊敬的XXX”格式,你想谁递交辞职书就写TA的尊称。 正文: ①空格2字符,问好。如:您好。

②辞职理由,短到几个字,长到几百字,个人自由发挥。例如:世界那么大,我想去看看。 ③尾段可以写写对公司的祝福等等。如:祝公司业绩蒸蒸日上。 结语:结尾要求写上表示敬意的话。如“此致——敬礼”等。 署名:写上自己的名字,辞职人:XXX 。署名的格式,为*末尾换行后起,然后署名下面加上日期. 日期:辞职报告写的当天日期,当然公司的规定不同,可以灵活的变动。 注意事项 不要说上司坏话。如果你认为有必要向管理层反映一下上司的问题,要尽量以委婉的言辞口头提出。 不要满纸抱怨,抨击公司制度。 不要指责同事,尤其忌讳把同事的“罪行”白纸黑字写在辞职书上。 离职申请书范文【一】 尊敬的罗总: 您好!

首先感谢您在我工作期间对我照顾与支持,感谢公司给我这个平台,让我锻炼让我成长。 很遗憾在这个时候向xx正式写出辞职报告,或许我还不是正式职工,不需要写这封辞职信。当您看到这封信时我大概也不在这里上班了。 来到这里也快两个月了,开始感觉这里的气氛就和一个大家庭一样,大家相处得融洽和睦。在这里有过欢笑,有过收获,当然也有过痛苦。虽然多少有些不快,不过在这里至少还是学了一些东西。在这一个多月的工作中,我确实学习到了不少东西。然而工作上的毫无成就感总让自己彷徨。我开始了思索,认真地思考。思考的结果连自己都感到惊讶——或许自己并不适合xx 这项工作。而且到这里来工作的目的也只是让自己这一段时间有些事可以做,可以赚一些钱,也没有想过要在这里发展。因为当初连应聘我都不知道,还是一个朋友给我投的资料,也就稀里糊涂地来到了这里。一些日子下来,我发现现在处境和自己的目的并不相同。而且我一直以为没有价值的事情还不如不做,现在看来,这份工作可以归为这一类了。n多的时间白白浪费掉了。我想,应该换一份工作去尝试了。 离开这里,离开这些曾经同甘共苦的同事,确实很舍不得,舍不得同事之间的那片真诚和友善。但是我还是要决定离开了,我恳请xx和领导们原谅我的离开。

仓储企业安全库存管理方法

编号:SM-ZD-31179 仓储企业安全库存管理方 法 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

仓储企业安全库存管理方法 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 1、目的 为推进企业安全库存管理,加强对公司原辅料、备品(备件)、成品库存的安全管理,防止缺货、断货、积压等行为对公司的生产经营造成影响,保障公司生产经营正常进行。 2、适用范围 适用于公司所有原辅料、备品(备件)、成品。 3、术语 安全库存:是指当不确定因素已导致更高的预期需求或导致完成周期更长时的缓冲存货,安全库存用于满足提前期需求 采购周期:指采购方决定订货并下订单、供应商确认、订单处理、生产计划、原料采购、质量检验、发运的整个周期时间。 4、职责 4.1 生产管理处与物资采购处负责共同制定原辅料的安

全库存,报主管领导审批。 4.2装备能源处负责制定备品(备件)的安全库存,报主管领导审批。 4.3销售公司与生产管理处共同负责制定成品的安全库存,报主管领导审批。 4.4仓储运输处负责根据安全库存管理原辅料、成品库存。 4.5装备能源处负责根据安全库存管理备品(备件)库存。 5、工作程序 5.1生产计划编制人员每月结合成品的安全库存表制定公司月度生产计划。 5.2采购人员结合原辅料、备品(备件)的安全库存表制定公司月度采购计划,依据采购计划进行采购。 5.3仓库管理人员每日根据安全库存检查原辅料、备品(备件)库存数量,发现数量小于或超出规定时,需及时通知相关采购人员。 5.4仓库管理人员每日根据安全库存检查成品库存数量,

2011学科专业目录[1]

学科目录 学科目录适用于学士、硕士、博士的学位授予与人才培养,并用于学科建设和教育统计分类等工作,在人才培养和学科建设中发挥着指导作用和规范功能。学科目录分为学科门类、一级学科(本科教育中称为“专业类”)和二级学科(本科专业目录中称为“专业”)三级。学科门类和一级学科是国家进行学位授权审核与学科管理、学位授予单位开展学位授予与人才培养工作的基本依据,二级学科是学位授予单位实施人才培养的参考依据。学科门类是对具有一定关联学科的归类,其设置应符合学科发展和人才培养的需要,并兼顾教育统计分类的惯例。一级学科是具有共同理论基础或研究领域相对一致的学科集合,原则上按学科属性进行设置。二级学科是组成一级学科的基本单元。 我国先后施行过四份学科专业目录。第一份是1983年3月国务院学位委员会第四次会议决定公布、试行的《高等学校和科研机构授予博士和硕士学位的学科专业目录(试行草案)》。第二份是1990年10月国务院学位委员会第九次会议正式批准的《授予博士、硕士学位和培养研究生的学科、专业目录》(简称《专业目录》)。第三份是1997年国务院学位委员会、国家教育委员会联合发布的《授予博士、硕士学位和培养研究生的学科、专业目录(1997年颁布)》。第四份是2011年2月国务院学位委员会第二十八次会议审议批准的《学位授予和人才培养学科目录(2011年)》。 一、根据国务院学位委员会、教育部印发的《学位授予和人才培养学科目录设置与管理办法》(学位〔2009〕10号)的规定,《学位授予和人才培养学科目录》分为学科门类和一级学科,是国家进行学位授权审核与学科管理、学位授予单位开展学位授予与人才培养工作的基本依据,适用于硕士、博士的学位授予、招生和培养,并用于学科建设和教育统计分类等工作。学士学位按本目录的学科门类授予。 二、本目录是在原《授予博士、硕士学位和培养研究生的学科、专业目录(1997年颁布)》和《普通高等学校本科专业目录(1998年颁布)》的基础上,经过专家反复论证后编制。 三、本目录中注明可授不同学科门类学位的一级学科,可分属不同学科门类,此类一级学科授予学位的学科门类由学位授予单位的学位评定委员会决定。 四、本目录中学科门类和一级学科的代码分别为二位和四位阿拉伯数字。 五、附《专业学位授予和人才培养目录》。 01 哲学 0101 哲学 02 经济学 0201 理论经济学 0202 应用经济学 03 法学 0301 法学 0302 政治学 0303 社会学

申请离职书范文6篇

申请离职书范文6篇 Sample application for resignation 编订:JinTai College

申请离职书范文6篇 小泰温馨提示:辞职报告是个人离开原来的工作岗位时向单位领导或上级组织提请批准的一种申请书,是解除劳动合同关系的实用文体。本文档根据辞职报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:申请离职书范文 2、篇章2:申请离职书范文 3、篇章3:申请离职书范文 4、篇章4:酒店离职申请范文 5、篇章5:酒店离职申请范文 6、篇章6:酒店离职申请范文 为离职写一份离职申请书,本文是小泰为大家整理的申请离职书范文,仅供参考。 篇章1:申请离职书范文

您好!首先感谢您在百忙之中抽出时间阅读我的离职信。 我是怀着十分复杂的心情写这封离职信的。自我进入公司之后,由于您对我的关心、指导和信任,使我获得了很多机遇和挑战。经过这段时间在公司的工作,我在酒店领域学到了很多知识,尤其是办公室合规的相关方面,积累了一定的经验,对此我深表感激。 由于自身存在很多尚不完善的地方,想通过继续学习来 进一步加强自己的能力。为了不因为我个人原因而影响公司的工作,决定辞去目前的工作。我知道这个过程会给公司带来一定程度上的不便,对此我深表歉意。 我会尽快完成工作交接,以减少因我的离职而给公司带 来的不便。为了尽量减少对现有工作造成的影响,我请求在公司的员工通讯录上保留我的手机号码一段时间,在此期间,如果有同事对我以前的工作有任何疑问,我将及时做出答复。 非常感谢您在这段时间里对我的教导和照顾。在平安的 这段经历于我而言非常珍贵。将来无论什么时候,我都会为自己曾经是平安公司的一员感到荣幸。我确信这段工作经历将是我整个职业生涯发展中相当重要的一部分。

企业向政府申请书范文

企业向政府申请书范文 ******建设局: 为了更好的贯彻落实国家对资源综合利用的指导思想,促进合理的节约资源,提高资源利用率,保护环境实现经济社会的可持续发展的战略方针。************有限责任公司顺应形势发展,准备在******投资建设一条具有轻质、阻燃、保温、抗震性强并具有可持续发展的轻集料小型空心砌块建筑材料生产线。此项目的投资建设能达到节约能源、保护土地、变废为宝及综合治理环境污染的目的。 投资建设此项目我公司具有以下优势: 一、轻集料小型空心砌块是以矿渣、炉渣、粉煤灰加有石硝为骨料,? 以水泥为胶结料,被广泛使用于工业与民用建筑的非承重砌块、承重砌块、保温块。是一种节能、节土、利废的可持续发展的建筑材料。该产品生产工艺无二次污染产生,市场前景广阔变废为宝,造福后代并具有极高的社会效益和环境效益。而我公司经营煤矿及煤炭销售多年,常年与矿渣、粉煤灰、水泥等物接触。 二、我公司为******热力公司供运供热用煤已有多年,合作非常融洽。随着******城市建设规模的不断扩大,******热力公司现

在每年冬季供热用煤需要4万多吨,为了保证冬季的正常供暖,秋季储存煤就非常关键,但是热力公司的场地有限,无法大量储存煤,加之供热产生的炉渣占地面积也很大。为此双方约定由我公司申请30亩土地,其中一半无偿作为热力公司储煤场地,一半用于我公司建设轻集料小型空心砌块生产线使用,同时供热产生的炉渣及时运送到本厂作为生产原料。充分体现了双方互利互惠的原则。 综上所述,建设轻集料小型空心砌块生产线,即符合国家产业政策,同时为确保******冬季正常供暖,热力公司秋季储煤的问题也得到了解决。因此,恳请******建设局审批30亩土地作为 ************有限责任公司建设轻集料小型空心砌块生产线和******热力公司储煤场地为盼。 ************有限责任公司 2011年? 月? 日

学科门类、专业类和专业之间的关系

学科门类、专业类和专业之间的关系 我国高等学校本科教育专业设置是按“学科门类”“专业类”“专业”三个层次来设置。即一个学科门类下面设置若干专业类,一个专业类下面设置若干专业。 学科是高校教学、科研等的基本功能单位,是对高校人才培养、教育教学、科学研究等隶属范围的相对界定。新专业目录中把学科划分为12大门类:哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、管理学、艺术学。不同的学科就是不同的科学知识体系。如经济学学科门类包含经济、财政、金融、贸易等领域的知识,工学学科门类包含机械、仪器、材料、电子、土建、地矿、化工、轻工纺织、航空航天、环境安全、食品科学等领域的知识。 专业类是在同一学科知识体系下,根据知识面侧重的不同而分解出来的不同专业类别。如理学分为数学类、物理学类、化学类、天文学类、地理科学类、大气科学类、海洋科学类、地球物理学类、地质学类、生物科学类、心理学类、统计学类。这些专业门类具有相同的理学特性,但相互之间又侧重不同的知识范畴。 专业比专业类更加具体,是在一个专业门类里派生出来的具体方向。在一个学科,可以组成若干专业。如土木类就包含土木工程、建筑环境与能源应用工程、给排水科学与工程、建筑电气与智能化四个专业。在不同学科之间也可以组成跨学科专业。如过程装备与控制工程,横跨机械工程和化学工程两个学科。 学科和专业的核心区别在于其构成和目标不同。学科的构成要包含研究的对象或研究的领域,即独特的、不可替代的研究对象;理论体系,即特有的概念、原理、命题、规律等所构成的严密的逻辑化的知识系统;方法论,即学科知识的生产方式。专业的构成要素主要包括:专业培养目标、课程体系和专业人员。培养目标即专业活动的意义表达。课程体系是社会职业

相关文档
最新文档