石墨电极用途

石墨电极用途
石墨电极用途

一.石墨的用途

石墨的用途

由于石墨具有许多优良的性能,因而在冶金、机械、电气、化工、纺织、国防等工业部门获得广泛应用。

1 .作耐火材料

石墨的一个主要用途是生产耐火材料,包括耐火砖,柑祸,连续铸造粉,铸模芯,铸模洗涤剂和耐高温材料。近20 年来,耐火材料工业中两个重要的变化是镁碳砖在炼钢炉内衬中被广泛应用,以及铝碳砖在连续铸造中的应用。使石墨耐火材料与炼钢业紧密相连,全世界炼钢业约消耗70 %的耐火材料。

( l )镁碳砖镁碳耐火材料是60 年代中期,由美国研制成功,70 年代,日本炼钢业开始把镁碳砖用于水冷却电弧炉炼钢中。目前在世界范围内镁碳砖已大量用于炼钢,并已成为石墨的一种传统用途。80 年代初,镁碳砖开始用于氧气顶吹转炉的炉衬。目前英国用作氧气顶吹炼钢炉衬的材料大部分是镁碳砖,炉衬寿命为1000 次一1500 次,而日本,炉衬的寿命为2000 次一2500 次。

( 2 )铝碳砖铝碳耐火材料主要用于连续铸造、扁钢坯自位输管道的保护罩,水下喷管以及油井爆破筒等。在日本用连续铸造生产的钢占总生产量的90 %以上,英国为60 %。

( 3 )坩锅及有关制品用石墨制造的成型和耐火的坩锅及其有关制品,例如坩锅、曲颈瓶、塞头和喷嘴等,具有高耐火性,低的热膨胀性,熔炼金属过程中,受到金属浸润和冲刷时亦稳定,高温下良好的热震稳定性和优良的热传导性,所以石墨增祸及其有关制品被广泛用于直接熔融金属的工艺中。

传统的石墨粘土坩锅用含碳量大于85 %的鳞片石墨制造,通常石墨鳞片应大于100 目(BSS 筛),而目前国外在柑祸生产技术中的重要改进是,所用石墨的类型、鳞片大小和质量有了更大的灵活性;其次是用碳化硅石墨柑祸替代了传统的粘土石墨坩锅,这是随着炼钢工业中恒压技术的引进而产生的。采用恒压技术还可以使小鳞片石墨得到应用,在粘土石墨增祸中,含碳量达90 %的大鳞片石墨约占45 % ,而在碳化硅石墨坩锅中,大鳞片成分的含量仅占30 % ,石墨的含碳量降为80 %。

2 .炼钢

石墨和其他杂质材料用于炼钢工业时可作为增碳剂。渗碳使用的碳质材料的范围, 很广,包括人造石墨、石油焦、冶金焦炭和天然石墨。在世界范围内炼钢增碳剂用石墨仍是土状石墨的主要用途之一。

3 .作导电材料

石墨在电气工业中广泛用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层等等。其中以石墨电极应用最广,在冶炼各种合金钢、铁合金时,使用石墨电极,这时强大的电流通过电极导入电炉的熔炼区,产生电弧,使电能转化为热能,温度升高到2000 ℃ 左右,从而达到熔炼或反应的目的。此外,在电解金属镁、铝、钠时,电解槽的阳极也用石墨电极。生产金刚砂的电阻炉也用石墨电极作炉头导电材料。

电气工业中所使用的石墨,对粒度和品位要求很高。如碱性蓄电池和一些特殊的电碳制品,要求石墨粒度控制在150 目~325 目(o . lmm 一o . o42mm )范围内,品位90 % - 99 %以上,有害杂质(主要是金属铁)要求在10 %以下。电视机显像管所用的石墨,粒度要求在0 . 5 拜m 以下。

4 .作耐磨和润滑材料

石墨在机械工业中常作润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在一200 ℃ 一2000 ℃ 温度并在很高的滑动速度下(loom / S )不用润滑油工作。许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞环、密封圈和轴承,它们运转时,勿需加入润滑油,石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

5 .作耐腐蚀材料

石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好、渗透率低等特点,而广泛用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备。这些设备用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。

6 .作铸造、翻砂、压模及高温冶金材料

由于石墨的膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器皿的铸模,使用石墨后,黑色金属得到的铸件尺寸精确,表面光洁,成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。生产硬质合金等粉末冶金工艺,通常用石墨材料制成压模和烧结用的舟皿。单晶硅的晶体生长柑祸、区域精炼容器、支架、夹具、感应加热器等,都是用高纯石墨加工而成的。此外,石墨还可以作真空冶炼的石墨隔热板和底座,高温电阻炉炉管、棒、板、格棚等元件。

7 .用于原子能工业和国防工业

石墨具有良好的中子减速性能,最早作为减速剂用于原子反应堆中,铀一石墨反应堆是目前应用较多的一种原子反应堆。作为动力用的原子能反应堆中的减速材料应当具有高熔点、稳定、耐腐蚀的性能,石墨完全可以满足上述要求。作为原子反应堆用的石墨纯度要求很高,杂质含量不应超过几十个PPm ( PPm 为百万分之一),特别是其中硼的含量应小于O . SPPm 。在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇宙航行设备的零件,隔热材料和防射线材料。

8 .作防垢防锈材料

石墨能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用49 一59 ) ,能防止锅炉表面结垢。此外石墨涂在金属烟囱· 屋顶· 桥梁· 管道上可以防腐和防锈。

9 .石墨新用途

随着科学技术的不断发展,人们对石墨也开发了许多新用途。

柔性石墨制品。柔性石墨又称膨胀石墨,是70 年代开发的一种新的石墨制品。1971 年美国研究成功柔性石墨密封材料,解决了原子能阀门泄漏问题,随后德、日、法也开始研制生产。这种产品除具有天然石墨所具有的特性外,还具有特殊的柔性和弹性。因此,是一种理想的密封材料。广泛用于石油化工、原子能等工业领域。国际市场需求量逐年增长。

二,它有很多用途,可以用于锂离子电池负极,球型改性石墨可以作润滑剂,还可以制成石墨改性聚丙烯塑料,用来制作壳体、管板、封头、法兰及接管等零部件(耐腐蚀性能好;体积小,重量轻;耐温较高;无毒性、不结垢、不污染介质,也可用于食品工业),

石墨粉经3400℃ 以上的真空高温石墨化热处理而制成,石墨层间质密,晶体结构多,与其它石墨相比,导电性更好。将其添加于油墨、黏合剂、塑料、橡胶中,可制成导电、电磁屏蔽、防静电等制品如计算机、手机、电子医疗设备、电子仪器仪表等电子、电工、通讯产品的电磁屏蔽、防静电。并广泛应用于电子、机电、通讯、印刷、航空航天、军事等各个产业。

三.增碳剂

可以用作铸铁增碳剂的材料很多,常用的有人造石墨、煅烧石油焦、天然石墨、焦炭、无烟煤以及用这类材料配成的混合料。

1.人造石墨

上述各种增碳剂中,品质最好的是人造石墨。

制造人造石墨的主要原料是粉状的优质煅烧石油焦,在其中加沥青作为粘结剂,再加入少量其他辅料。各种原材料配合好以后,将其压制成形,然后在2500~3000℃、非氧化性气氛中处理,使之石墨化。经高温处理后,灰分、硫、气体含量都大幅度减少。

由于人造石墨制品的价格昂贵,铸造厂常用的人造石墨增碳剂大都是制造石墨电极时的切屑、废旧电极和石墨块等循环利用的材料,以降低生产成本。

熔炼球墨铸铁时,为使铸铁的冶金质量上乘,增碳剂宜首选人造石墨,为此,最好向附近用电弧炉炼钢的企业或电解铝生产企业购买废电极,自行破碎到要求的粒度。

2.石油焦

石油焦是目前广泛应用的增碳剂。

石油焦是精炼原油得到的副产品,原油经常压蒸馏或减压蒸馏得到的渣油及石油沥青,都可以作为制造石油焦的原料,再经焦化后就得到生石油焦。生石油焦的产量大约不到所用原油量的5%。美国生石油焦的年产量约3000万t。生石油焦中的杂质含量高,不能直接用作增碳剂,必须先经过煅烧处理。

生石油焦有海绵状、针状、粒状和流态等品种。

海绵状石油焦是用延迟焦化法制得的,由于其中硫和金属含量较高,通常用作锻烧时的燃料,也可作为煅烧石油焦的的原料。经锻烧的海绵焦,主要用于制铝业和用作增碳剂。

针状石油焦,是用芳香烃的含量高、杂质含量低的原料,由延迟焦化法制得的。这种焦炭具有易于破裂的针状结构,有时称之为石墨焦,煅烧后主要用于制造石墨电极。

粒状石油焦呈硬质颗粒状,是用硫和沥青烯含量高的原料,用延迟焦化法制得的,主要用作燃料。

流态石油焦,是在流态床内用连续焦化法制得的,呈细小颗粒状,结构无方向性,硫含量高、挥发分低。石油焦的煅烧,是为了除去硫、水分、和挥发分。将生石油焦于1200~1350℃煅烧,可以使其成为基本上纯净的碳。

煅烧石油焦的最大用户是制铝业,70%用以制造使铝矾土还原的阳极。美国生产的煅烧石油焦,用于铸铁增碳剂的约占6%。

各种石油焦制品的大致成分列于表1,供参考。

表1各种石油焦制品的大致成分(%)

品种固定碳硫灰分挥发分水分

生石油焦85~89 1~6 0.2~0.5 10~14 8~10

煅烧石油焦98.5 0.02~3.5 0.2~0.5 0.3~0.5 ≤0.5

合成炭制品99 0.01~0.03 0.1~0.5 —≤0.5

低硫合成碳制品99.9 0.01~0.03 0.01~0.03 —≤0.2

3.天然石墨

天然石墨可分为鳞片石墨和微晶石墨两类。

微晶石墨灰分含量高,一般不用作铸铁的增碳剂。

鳞片石墨有很多品种:高碳鳞片石墨需用化学方法萃取,或加热到高温使其中的氧化物分解、挥发,这种鳞片石墨产量不多、价格高,一般也不作增碳剂;低碳鳞片石墨中的灰分含量高,不宜用作增碳剂;用作增碳剂的主要是中碳石墨,但用量也不多。

天然石墨的大致成分见表2。

表2 天然石墨的大致成分(%)

品种固定碳硫灰分挥发分水分

鳞片石墨85~95 0.1~0.7 5~15 1~2 ——

微晶石墨60~85 0.1~0.2 20~40 1~2 0.5

4.焦炭和无烟煤

电弧炉炼钢过程中,可以在装料时配加焦炭或无烟煤作为增碳剂。由于其灰分和挥发分含量较高,感应电炉熔炼铸铁很少用作增碳剂。

关于铸铁行业常用的几种增碳剂的成分和堆密度,表3列出了一些典型的测定数据,供参考。

表3 常用增碳剂的成分和堆密度(典型的测定数据,供参考)

增碳剂碳含量(%)灰分(%)水分(%)挥发分(%)硫(%)氮(%)氢(%)堆密度的概略值(g/cm3)

人造石墨99.2 0.4 0.20 0.10 0.05 0.005 ― 0.84

鳞片石墨85.3 13.2 0.06 0.44 0.35 0.060 ― ―

煅烧石油焦(中硫) 96.5 0.4 0.40 0.30 1.50 0.600 0.15 0.77

煅烧石油焦(低硫) 98.3 0.4 0.10 0.20 0.30 0.080 0.04 0.800

干燥焦炭87.7 9.0 0.30 1.00 1.00 1.000 ― 0.64

优质

无烟煤90.0 2.5 2.00 3.5 0.25 0.600 1.10 0.64

沥青焦 97.0 0.5 0.50 0.5 0.4 0.700 0.20 0.55

四.石墨的用途

由于石墨具有许多优良的性能,因而在冶金、机械、电气、化工、纺织、国防等工业部

门获得广泛应用。

作耐火材料

石墨的一个主要用途是生产耐火材料,包括耐火砖,坩埚,连续铸造粉,铸模芯,铸模

洗涤剂和耐高温材料。近年来,耐火材料工业中两个重要的变化是镁碳砖在炼钢炉

内衬中被广泛应用,以及铝碳砖在连续铸造中的应用。使石墨耐火材料与炼钢业紧密相连,全世界炼钢业约消耗的耐火材料。

镁碳砖镁碳耐火材料是年代中期,由美国研制成功,年代,日本炼钢业开

始把镁碳砖用于水冷却电弧炉炼钢中。目前在世界范围内镁碳砖已大量用于炼钢,并已

成为石墨的一种传统用途。年代初,镁碳砖开始用于氧气顶吹转炉的炉衬。目前英国

用作氧气顶吹炼钢炉衬的材料大部分是镁碳砖,炉衬寿命为次次,而日本,

炉衬的寿命为次次。

铝碳砖铝碳耐火材料主要用于连续铸造、扁钢坯自位输管道的堡罩,水下喷

管以及油井爆破筒等。在日本用连续铸造生产的钢占总生产量的以上,英国为

坩埚及有关制品用石墨制造的成型和耐火的坩埚及其有关制品,例如坩埚、曲

颈瓶、塞头和喷嘴等,具有高耐火性,低的热膨胀性,熔炼金属过程中,受到金属浸润和冲刷时亦稳定,高温下良好的热震稳定性和优良的热传导性,所以石墨坩埚及其有关制品

被广泛用于直接熔融金属的工艺中。

传统的石墨粘土坩埚用含碳量大于的鳞片石墨制造,通常石墨鳞片应大于

目(-筛),而目前国外在坩埚生产技术中的重要改进是,所用石墨的类型、鳞片大小和

质量有了更大的灵活性其次是用碳化硅石墨坩埚替代了传统的粘土石墨坩埚,这是随

着炼钢工业中恒压技术的引进而产生的。采用恒压技术还可以使小鳞片石墨得到应用,

在粘土石墨坩埚中,含碳量达的大鳞片石墨约占/,而在碳化硅石墨坩埚中,大

鳞片成分的含量仅占,石墨的含碳量降为。

炼钢

石墨和其他杂质材料用于炼钢工业时可作为增碳剂。渗碳使用的碳质材料的范围

---------------------------------------5 第一篇石墨生产新工艺新技术

很广,包括人造石墨、石油焦、冶金焦炭和天然石墨。在世界范围内炼钢增碳剂用石墨仍是土状石墨的主要用途之一。

作导电材料

石墨在电气工业中广泛用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫

圈、电话零件、电视机显像管的涂层等等。其中以石墨电极应用最广,在冶炼各种合金钢、铁合金时,使用石墨电极,这时强大的电流通过电极导入电炉的熔炼区,产生电弧,使

电能转化为热能,温度升高到左右,从而达到熔炼或反应的目的。此外,在电解金

属镁、铝、钠时,电解槽的阳极也用石墨电极。生产金刚砂的电阻炉也用石墨电极作炉头

导电材料。

电气工业中所使用的石墨,对粒度和品位要求很高。如碱性蓄电池和一些特殊的电

碳制品,要求石墨粒度控制在目目范围内,品位

以上,有害杂质(主要是金属铁)要求在以下。电视机显像管所用的石墨,粒度

要求在以下。作耐磨和润滑材料

石墨在机械工业中常作润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,

而石墨耐磨材料可以在-温度并在很高的滑动速度下(/)不用润滑

油工作。许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞环、密封圈和轴承,它们

运转时,勿需加入润滑油,石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

作耐腐蚀材料

石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好、渗透率

低等特点,而广泛用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备。这些设备用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。

0作铸造、翻砂、压模及高温冶金材料

由于石墨的膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器皿的铸模,使用石

墨后,黑色金属得到的铸件尺寸精确,表面光洁,成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。生产硬质合金等粉末冶金工艺,通常用石墨材料制成压耐

烧结用的舟皿。单晶硅的晶体生长坩埚、区域精炼容器、支架、夹具、感应加热器等,都是用高纯石墨加工而成的。此外,石墨还可以作真空冶炼的石墨隔热板和底座,高温电阻

炉炉管、棒、板、格棚等元件。

1用于原子能工业和国防工业

0 ---------------------------------------6 第一章石墨生产新工艺新技术概述

石墨具有良好的中子减速性能,最早作为减速剂用于原子反应堆中,铀—石墨反应

堆是目前应用较多的一种原子反应堆。作为动力用的原子能反应堆中的减速材料应当

具有高熔点、稳定、耐腐蚀的性能,石墨完全可以满足上述要求。作为原子反应堆用的石

墨纯度要求很高,杂质含量不应超过几十个(为百万分之一),特别是其中硼的

含量应小于。在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇

宙航行设备的零件,隔热材料和防射线材料。

作防垢防锈材料

石墨能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约

用),能防止锅炉表面结垢。此外石墨涂在金属烟囱、屋顶、桥梁、管道上可以防腐

和防锈。

石墨新用途

随着科学技术的不断发展,人们对石墨也开发了许多新用途。

柔性石墨制品。柔性石墨又称膨胀石墨,是年代开发的一种新的石墨制品。

年美国研究成功柔性石墨密封材料,解决了原子能阀门泄漏问题,随后德、日、法也

开始研制生产。这种产品除具有天然石墨所具有的特性外,还具有特殊的柔性和弹性。

因此,是一种理想的密封材料。广泛用于石油化工、原子能等工业领域。国际市场需求

量逐年增长。

五.增碳剂分炼钢用增碳剂(中华人民共和国黑色冶金行业标准,YB/T 192-2001炼钢用增碳剂)和铸铁用增碳剂,以及其他一些添加材料也有用到增碳剂,譬如刹车片用添加剂,作摩擦材料。增碳剂属于外加炼钢、炼铁增碳原料。优质增碳剂是生产优质钢材必不可少的辅助添加剂。

增碳剂的原料有很多种,生产工艺也各异。并非市面上说采用石墨粉剂经压制成型,这种生产方式需要添加过多的粘结剂成型,含碳量一般达不到优质增碳剂的要求。压制后的石墨粉,因为是固体块状,没有多孔隙结构,所以吸收速度和吸收率不如煅烧、焙烧成型的增碳剂。优质增碳剂一般指经过石墨化的增碳剂,在高温条件下,碳原子的排列呈石墨的微观形态,所以称之为石墨化。石墨化可以降低增碳剂中杂志的含量,提高增碳剂的碳含量,降低硫含量。

增碳剂在铸造时使用,可大幅度增加废钢用量,减少生铁用量或不用生铁。目前绝大多数增碳剂都适用于电炉熔炼,也有少部分吸收速度特别快的增碳剂用于冲天炉。电炉熔炼的投料方式,应将增碳剂随废钢等炉料一起往里投放,小剂量的添加可以选择加在铁水表面。但是要避免大批量往铁水里投料,以防止氧化过多而出现增碳效果不明显和铸件碳含量不够的情况。增碳剂的加入量,根据其他原材料的配比和含碳量来定。不同种类的铸铁,根据需要选择不同型号的增碳剂。增碳剂特点本身选择纯净的含碳石墨化物质,降低生铁里过多的杂质,增碳剂选择合适可降低铸件生产成本。

六.石墨增碳剂与煤质增碳剂有着本质上的区别,一是原材料不同,石墨增碳剂是采用天然石墨经过筛选加工制成,煤质增碳剂是采用无烟煤锻烧制成;二是特性不同,石墨增碳剂具有低硫低氮低磷、耐高温、导电性好等,这些是优点是煤质增碳剂不具备的;三是吸收率不同,石墨增碳剂的吸收率在90%以上,这也是为什么固定碳含量较低(75%)的石墨增碳剂也能满足使用要求的原因;四是石墨增碳剂的价格相对较高,但综合使用成本却要低得多。

七.石墨电极的性质,用途,分类和技术标准之1

一、石墨的性质

石墨是碳的结晶矿物之一。1565年作为一种矿物被发现,1779年确定它的成分是碳,1789年定名为“石墨”(希腊文为“写”之意)。石墨的颜色为黑色,晶体为六方板状,但少见,一般呈薄片状或鳞片状,集合体呈土状,为隐晶质体。质软、硬度小,摩氏硬度为1-2,能污染纸张。比重2.1--2.3。具有一组极完全解理。

常温下石墨具有良好的化学稳定性,能耐酸、耐碱、耐有机溶剂的腐蚀,但高温时易氧化。

二、石墨的用途

由于石墨具有许多优良的性能,因而在冶金、机械、电气、化工、纺织、国防等工业部门获得广泛应用。1做耐火材料

石墨的一个主要用途是生产耐火材料,包括耐火砖,坩埚,连续铸造粉,铸模芯,铸模洗涤剂和耐高温材料.

坩埚及有关制品用石墨制造的成型和耐火的坩埚及其有关制品,例如坩埚、曲颈瓶、塞头和喷嘴等,具有高耐火性,低的热膨胀性,熔炼金属过程中,受到金属浸润和冲刷时亦稳定,高温下良好的热震稳定性和优良的热传导性,所以石墨坩埚及其有关制品被广泛用于直接熔融金属的工艺中.

2炼钢(最重要的来了

石墨和其他杂质材料用于炼钢工业时可作为增碳剂。渗碳使用的碳质材料的范围很广,包括人造石墨、石油焦、冶金焦炭和天然石墨。在世界范围内炼钢增碳剂用石墨仍是土状石墨的主要用途之一。

3作导电材料

石墨在电气工业中广泛用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层等等。其中以石墨电极应用最广,在冶炼各种合金钢、铁合金时,使用石墨电极,这时强大的电流通过电极导入电炉的熔炼区,产生电弧,使电能转化为热能,温度升高到2000度左右,从而达到熔炼或反应的目的。此外,在电解金属镁、铝、钠时,电解槽的阳极也用石墨电极。生产金刚砂的电阻炉也用石墨电极作炉头导电材料。

4作耐磨和润滑材料

石墨在机械工业中常作润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在-200---2000温度并在很高的滑动速度下不用润滑油工作。许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞环、密封圈和轴承,它们运转时,勿需加入润滑油,石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

5作耐腐蚀材料

石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好、渗透率低等特点,而广泛用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备。这些设备用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。

6作铸造、翻砂、压模及高温冶金材料

由于石墨的膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器皿的铸模,使用石墨后,黑色金属得到的铸件尺寸精确,表面光洁,成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。

7用于原子能工业和国防工业

8作防垢防锈材料

石墨能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用4-5g),能防止锅炉表面结垢。此外石墨涂在金属烟囱、屋顶、桥梁、管道上可以防腐和防锈

八.碳和石墨制品的主要用途

一、作为导电材料使用

用电弧炉或矿热电炉冶炼各种合金钢、铁合金或生产电石(碳化钙)、黄磷时,强大的电流通过炭素电极(或连续自焙电极———即电极糊)或石墨化电极导入电炉的熔炼区产生电弧,使电能转化成热能,温度升高到2000摄氏度左右,,从而达到冶炼或反应的要求。金属镁、铝、钠一般用熔盐电解制取,这时电解槽的阳极导电材料都是采用石墨化电极或连续自焙电极(阳极糊、有时用预焙阳极)。熔盐电解的温度一般在1000摄氏度以下。生产烧碱(氢氧化钠)和氯气的食盐溶液电解槽的阳极导电材料,一般都用石墨化阳极。生产金刚砂(碳化硅)使用的电阻炉的炉头导电材料,也是使用石墨化电极。

除上述用途外,炭和石墨制品作为导电材料广泛用于电机制造工业作为滑环和电刷,此外还用作干电池中的炭棒,探照灯或产生弧光用的弧光炭棒,水银整流器中的阳极等。

二、作为耐火材料使用

由于炭和石墨制品能耐高温和有较好的高温强度及耐腐蚀性,所以很多冶金炉内衬可用炭块砌筑,如炼铁炉的炉底、炉缸和炉腹,铁合金炉和电石炉的内衬,铝电解槽的底部及侧部。许多贵重金属和稀有金属冶炼用的坩埚、熔化石英玻璃等所用的石墨化坩埚,也都是用石墨化坯料加工制成的。作为耐火材料使用的炭和石墨制品,一般不应在氧化性气氛中使用。因为,无沦是炭或石墨在氧化性气氛的高温下很快烧蚀。

三、作为耐腐蚀的结构材料使用

经过用有机树脂或无机树脂浸渍过的石墨化电极,具有耐腐蚀性好、导热性好、渗透率低等特点,这种浸渍石墨又称为不透性石墨。它大量应用于制作各种热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备,广泛应用于石油炼制、石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的不锈钢等金属材料。不透性石墨生产已成为炭素工业的一个重要分支。

四、作为耐磨和润滑材料使用

炭和石墨材料除具有化学稳定性高的特性外,还有较好的润滑性能。在高速、高温、高压的条件下,用润滑油来改善滑动部件的耐磨性往往是不可能的。石墨耐磨材料可以在-200到2000摄氏度温度下的腐蚀性介质中并在很高的滑动速度下(可达100米/秒)不用润滑油而工作。因此,许多输送腐蚀性介质的压缩机和泵广泛采用石墨材料制成的活塞环、密封圈和轴承。它们运转时无需加入润滑剂。这种耐磨材料是用普通的炭或石墨材料经过有机树脂或液态金属材料浸渍而成。石墨乳剂也是许多金属加工(拔丝、拉管等)的良好润滑剂。

五、作为高温冶金及超纯材料生产用的结构材料

如生产单晶硅用的晶体生长坩埚、区域精炼容器、支架、夹具、感应加热器等,都是用高纯度石墨材料加工而成的。用于真空冶炼中的石墨隔热板和底座,高温电阻炉炉管、棒、板、格栅等元件,也是用石墨材料加工制成的。

六、作为铸模、压模使用

炭和石墨材料的热膨胀系数小,而且耐急冷急热性好,所以可以用作玻璃器皿的铸模和黑色金属及有色金属或稀有金属的铸模。用石墨铸模得到的铸件,尺寸精确,表面光洁,不加工即可直接使用或只要稍加工就可使用,因而节省了大量金属。生产硬质合金(如碳化钨)等粉末冶金工艺,通常用石墨材料加工压模、烧结用的舟皿。

七、在原子能工业及军事工业中的使用

石墨因为具有良好的中子减速性能,最早用于原子反应堆中作为减速材料。石墨反应堆是目前较多的一种原子反应堆。原子反应堆用的石墨材料必须具有极高的纯度。一些经过特殊处理的石墨(如在石墨表面渗入耐高温的材料)及再结晶石墨、热解石墨,具有在极高温度下较好的稳定性及较高的强度重量比。所以,它们可以用于制造固体燃料火箭的喷嘴、导弹的鼻锥、宇宙航行设备的零部件。

九石墨电极相关信息:(1)用于电弧炼钢炉

石墨电极主要用于电炉炼钢。电炉炼钢是利用石墨电极向炉内导入电流,强大的电流在电极下端通过气体产生电弧放电,利用电弧产生的热量来进行冶炼。根据电炉容量的大小,配用不同直径的石墨电极,为使电极连续使用,电极之间靠电极螺纹接头进行连接。炼钢用石墨电极约占石墨电极总用量的70~80%。

(2)用于矿热电炉

石墨电极矿热电炉主要用于生产铁合金,纯硅、黄磷、冰铜和电石等,其特点是导电电极的下部埋在炉料中,因此除电板和炉料之间的电弧产生热量外,电流通过炉料时由炉料的电阻也产生热量。每吨硅需消耗石墨电极150kg左右,每吨黄磷需消耗石墨电极约40kg。

(3)用于电阻炉

生产石墨制品用的石墨化炉、熔化玻璃的熔窑和生产碳化硅用的电炉等都是电阻炉,炉内所装物料既是发热电阻,又是被加热的对象。通常,导电用的石墨电极插入炉床端部的炉头墙中,故导电电极并不连续消耗。

此外,大量的石避电极毛坯还用于加工成各种坩埚、石墨舟皿、热压铸模和真空电炉发热体等异型产品。如在石英玻璃行业,每生产lt电熔管需用石墨电极坯料10t,每生产lt石英砖消耗电极坯料100kg。

十..石油焦以及锻后石油焦知识

一月 10th, 2010· 11:02 上午 @ admin - 没有评论

1石油焦

石油焦是黑色或暗灰色坚硬固体的石油产品,带有金属光泽,呈多孔性,是由微小石墨结晶形成粒状、柱状或针状构成的炭体物。石油焦组分是碳氢化合物,含碳 90-97%,含氢1.5-8%,还含有氮、氯、硫及重金属化合物。

石油焦是延迟焦化装置的原料油在高温下裂解生产轻质油品时的副产物。石油焦的产量约为原料油的

25-30%。其低位发热量约为煤的1.5-2倍,灰分含量不大于0.5%,挥发分约为11%左右,品质接近于无烟煤。

2石油焦的质量标准

延迟石油焦是指延迟焦化装置生产的生焦,也称普通焦,目前还没有相应的国家标准。现国内生产企业主要依据原中国石化总公司制定的行业标准SH0527- 92 生产。该标准主要根据石油焦硫含量分类,其中一级品、1 号焦适用于炼钢工业中制作普通功率石墨电极,也适用于炼铝业作铝用碳素;2 号焦用作炼铝工业中电解槽 (炉 )所用的电极糊和生产石墨电极,3 号焦用作生产碳化硅 (研磨材料 )及碳化钙 (电石),以及其它碳素制品,亦用于制造炼铝电解槽的阳极底块及用于高炉碳素衬砖或炉底构筑。

3石油焦的主要用途

石油焦的主要用途是电解铝所用的预焙阳极和阳极糊、碳素行业生产增炭剂、石墨电极、冶炼工业硅以及燃料等。

根据石油焦结构和外观,石油焦产品可分为针状焦、海绵焦、弹丸焦和粉焦4种:

(1)针状焦,具有明显的针状结构和纤维纹理,主要用作炼钢中的高功率石墨电极和超高功率石墨电极。由于针状焦在硫含量、灰分、挥发分和真密度等方面有严格质量指标要求,所以对针状焦的生产工艺和原料都有特殊的要求。

(2)海绵焦,化学反应性高,杂质含量低,主要用于炼铝工业及炭素行业。

(3)弹丸焦或球状焦:形状呈圆球形,直径0.6-30mm,一般是由高硫、高沥青质渣油生产,只能用作发电、水泥等工业燃料。

(4)粉焦:经流态化焦化工艺生产,其颗粒细(直径0.1-0.4mm),挥发分高,热胀系数高,不能直接用于电极制备和炭素行业。

4煅后石油焦

在炼钢用的石墨电极或制铝、制镁用的阳极糊(融熔电极)时,为使石油焦(生焦)适应要求,必须对生焦进行煅烧。煅烧温度一般在1300℃左右,目的是将石油焦挥发分尽量除掉。这样可减少石油焦再制品的氢含量,使使油焦的石墨化程度提高,从而提高石墨电极的高温强度和耐热性能,并改善了石墨电极的电导率。煅烧焦主要用于生产石墨电极、炭糊制品、金刚沙、食品级磷工业、冶金工业及电石等,其中应用最广泛的是石墨电极。生焦不经锻烧可直接用于碳化钙作电石主料,生产碳化硅和碳化硼作研磨材料。也可直接作为冶金工业鼓风炉用焦炭或高炉墙衬炭砖,也可作铸造工艺用致密焦等。

十一。石墨是碳质元素结晶矿物,它的结晶格架为六边形层状结构。具有导电性,与金刚石、碳60、碳纳米管等都是碳元素的单质,它们互为同素异形体.

石墨在工业上运用极广,用于制作冶炼上的高温坩埚、机械工业的润滑剂、制作电极和铅笔芯;广泛用于冶金工业的高级耐火材料与涂料、军事工业火工材料安定剂、轻工业的铅笔芯、电气工业的碳刷、电池工业的电极、化肥工业催化剂等。鳞片石墨经过深加工,又可生产出石墨乳、石墨密封材料与复合材料、石墨制品、石墨减磨添加剂等高新技术产品,成为各个工业部门的重要非金属矿物原料

十三。石墨(Graphite)的化学成分主要是单一的碳(C)元素(和金刚石的成分相同),是一种自然元素矿物.因为碳元素是非金属元素,所以说它非金属矿物;但是却有金属材料的导电,导热性能,还具有象有机塑料一样

的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等等一些良好的工艺性能,因此,

石墨在冶金,机械,电气,化工,纺织,轻工,建筑及国防等许多工业部门都得到了广泛的应用.

人类发现石墨这种矿物的历史极其远久.但在历史上对石墨的本质却存在过一些比较模糊的认识.在中国明朝的文献上可见到把煤和石墨相混淆的描述.美国在十六世纪发现石墨时,因石墨可以把手抹成铅黑色,所以误以为它含有铅,称它为"黑铅"(black lead).也正因为石墨容易沾污手的特性,它在发现不久就被人们用作书写材料.它的正式命名Graphite也是由希腊语的"书写"转化而来.

石墨是碳质元素结晶矿物,它的结晶格架为六边形层状结构。每一网层间的距离为3.40人,同一网层中碳原子的间距为1.42A。属六方晶系,具完整的层状解理。解理面以分子键为主,对分子吸引力较弱,故其天然可浮性很好。

石墨与金刚石、碳60、碳纳米管等都是碳元素的单质,它们互为同素异形体.

山东省莱西市为我国石墨重要产地之一,石墨探明储量687.11万吨,现保有储量639.93万吨.

石墨质软,黑灰色;有油腻感,可污染纸张。硬度为1~2,沿垂直方向随杂质的增加其硬度可增至3~5。比重为1.9~2.3。在隔绝氧气条件下,其熔点在3000℃以上,是最耐温的矿物之一。

自然界中纯净的石墨是没有的,其中往往含有Si02、A1203、Fe0、CaO、P2O5、Cu0等杂质。这些杂质常以石英、黄铁矿、碳酸盐等矿物形式出现。此外,还有沥青、CO2、H2、CH4、N2等气体部分。因此对石墨的分析,除测定固定碳含量外,还必须同时测定挥发分和灰分的含量。

石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。工业上,根据结晶形态不同,将天然石墨分为三类。

石墨由于其特殊结构,而具有如下特殊性质:

1)耐高温型:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。

2)导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷.

3)润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。

4)化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。

5)可塑性:石墨的韧性好,可年成很薄的薄片。

6)抗热震性:石墨在常温下使用能经受住温度的剧烈变化而不致破坏,温度突变时,石墨体积变化不大,不会产生裂纹。

名字来源:源于希腊文“graphein”,意为“用来写”。由德国化学家和矿物学家A. G. Werner 于1789命名;

化学组成:成分纯净者极少,往往含各种杂质;

类别:自然元素-非金属元素-碳族

晶系和空间群:六方晶系,P63/mmm;

晶胞参数:a0=0.246nm,c0=0.670nm;

形态:单晶体常呈片状或板状,但完整的很少见。集合体通常为鳞片状,块状和土状;

颜色:铁黑色;

条痕:光亮黑色

透明度:不透明

光泽:呈半金属光泽

硬度:1-2

解理和断口:平行解理极完全;

比重:2.21-2.26g/cm3

其他性质:薄片具挠性,有滑感,易污手,具有良好的导电性;

鉴定特征铁黑色,硬度低,一组极完全解理,有滑感和染手;

成因和产状:石墨是在高温下形成。分布最广是石墨的变质矿床,系由富含有机质或碳质的沉积岩经区域变质作用而成;

主要用途:

石墨在工业上用途很广,用于制作冶炼上的高温坩埚、机械工业的润滑剂、制作电极和铅笔芯;广泛用于冶金工业的高级耐火材料与涂料、军事工业火工材料安定剂、轻工业的铅笔芯、电气工业的碳刷、电池工业的电极、化肥工业催化剂等。鳞片石墨经过深加工,又可生产出石墨乳、石墨密封材料与复合材料、石墨制品、石墨减磨添加剂等高新技术产品,成为各个工业部门的重要非金属矿物原料

由于石墨具有许多优良的性能,因而在冶金、机械、电气、化工、纺织、国防等工业部门获得广泛应用。

1 .作耐火材料

石墨的一个主要用途是生产耐火材料,包括耐火砖,柑祸,连续铸造粉,铸模芯,铸模洗涤剂和耐高温材料。近20 年来,耐火材料工业中两个重要的变化是镁碳砖在炼钢炉内衬中被广泛应用,以及铝碳砖在连续铸造中的应用。使石墨耐火材料与炼钢业紧密相连,全世界炼钢业约消耗70 %的耐火材料。

( l )镁碳砖镁碳耐火材料是60 年代中期,由美国研制成功,70年代,日本炼钢业开始把镁碳砖用于水冷却电弧炉炼钢中。目前在世界范围内镁碳砖已大量用于炼钢,已成为石墨的一种传统用途。80年代初,镁碳砖开始用于氧气顶吹转炉的炉衬。目前英国用作氧气顶吹炼钢炉衬的材料大部分是镁碳砖,炉衬寿命为1000 次一1500 次,而日本,炉衬的寿命为2000 次一2500 次。

( 2 )铝碳砖铝碳耐火材料主要用于连续铸造、扁钢坯自位输管道的保护罩,水下喷管以及油井爆破筒等。在日本用连续铸造生产的钢占总生产量的90 %以上,英国为60 %。

( 3 )坩锅及有关制品用石墨制造的成型和耐火的坩锅及其有关制品,例如坩锅、曲颈瓶、塞头和喷嘴等,具有高耐火性,低的热膨胀性,熔炼金属过程中,受到金属浸润和冲刷时亦稳定,高温下良好的热震稳定性和优良的热传导性,所以石墨增祸及其有关制品被广泛用于直接熔融金属的工艺中。

传统的石墨粘土坩锅用含碳量大于85 %的鳞片石墨制造,通常石墨鳞片应大于100 目(BSS 筛),而目前国外在柑祸生产技术中的重要改进是,所用石墨的类型、鳞片大小和质量有了更大的灵活性;其次是用碳化硅石墨柑祸替代了传统的粘土石墨坩锅,这是随着炼钢工业中恒压技术的引进而产生的。采用恒压技术还可以使小鳞片石墨得到应用,在粘土石墨增祸中,含碳量达90 %的大鳞片石墨约占45 % ,而在碳化硅石墨坩锅中,大鳞片成分的含量仅占30 % ,石墨的含碳量降为80 %。

2 .炼钢

石墨和其他杂质材料用于炼钢工业时可作为增碳剂。渗碳使用的碳质材料的范围, 很广,包括人造石墨、石油焦、冶金焦炭和天然石墨。在世界范围内炼钢增碳剂用石墨仍是土状石墨的主要用途之一。

3 .作导电材料

石墨在电气工业中广泛用来作电极、电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件、电视机显像管的涂层等等。其中以石墨电极应用最广,在冶炼各种合金钢、铁合金时使用石墨电极,这时强大的电流通过电极导入电炉的熔炼区,产生电弧,使电能转化为热能,温度升高到2000 ℃左右,从而达到熔炼或反应的目的。此外,在电解金属镁、铝、钠时,电解槽的阳极也用石墨电极。生产金刚砂的电阻炉也用石墨电极作炉头导电材料。

电气工业中所使用的石墨,对粒度和品位要求很高。如碱性蓄电池和一些特殊的电碳制品,要求石墨粒度控制在150 目~325 目(o . lmm 一o . o42mm )范围内,品位90 % - 99 %以上,有害杂质(主要是金属铁)要求在10 %以下。电视机显像管所用的石墨,粒度要求在0 . 5 拜m 以下。

4 .作耐磨和润滑材料

石墨在机械工业中常作润滑剂。润滑油往往不能在高速高温、高压的条件下使用,而石墨耐磨材料可以在-200℃-2000℃温度并在很高的滑动速度下(loom / S )不用润滑油工作。许多输送腐蚀介质设备,广泛采用石墨材料制成活塞环、密封圈和轴承,它们运转时,勿需加入润滑油,石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。

5 .作耐腐蚀材料

石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好、渗透率低等特点,而广泛用于制作热交换器、反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵等设备。这些设备用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。

6 .作铸造、翻砂、压模及高温冶金材料

由于石墨的膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器皿的铸模,使用石墨后,黑色金属得到的铸件尺寸精确,表面光洁,成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。生产硬质合金等粉末冶金工艺,通常用石墨材料制成压模和烧结用的舟皿。单晶硅的晶体生长柑祸、区域精炼容器、支架、夹具、感应加热器等,都是用高纯石墨加工而成的。此外,石墨还可以作真空冶炼的石墨隔热板和底座,高温电阻炉炉管、棒、板、格棚等元件。

7 .用于原子能工业和国防工业

石墨具有良好的中子减速性能,最早作为减速剂用于原子反应堆中,铀一石墨反应堆是目前应用较多的一种原子反应堆。作为动力用的原子能反应堆中的减速材料应当具有高熔点、稳定、耐腐蚀的性能,石墨完全可以满足上述要求。作为原子反应堆用的石墨纯度要求很高,杂质含量不应超过几十个PPm ( PPm 为百万分之一),特别是其中硼的含量应小于O . SPPm 。在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇宙航行设备的零件,隔热材料和防射线材料。

8 .作防垢防锈材料

石墨能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用49 一59 ) ,能防止锅炉表面结垢。此外石墨涂在金属烟囱·屋顶·桥梁·管道上可以防腐和防锈。

9 .石墨新用途

随着科学技术的不断发展,人们对石墨也开发了许多新用途。

柔性石墨制品。柔性石墨又称膨胀石墨,是70 年代开发的一种新的石墨制品。1971 年美国研究成功柔性石墨密封材料,解决了原子能阀门泄漏问题,随后德、日、法也开始研制生产。这种产品除具有天然石墨所具有的特性外,还具有特殊的柔性和弹性。因此,是一种理想的密封材料。广泛用于石油化工、原子能等工业领域。国际市场需求量逐年增长。

制作半金属摩擦材料。自70 年代以来,离合器和自动衬广泛使用半金属摩擦材料。半金属摩擦材料是将

石墨和金属粉、钢纤维、陶土粉用合成树脂粘结而成。这些自动衬主要可用于高速设备,如飞机、卡车以

及越野车的制动装置和离合器片。近几年来,石棉逐渐被石墨所取代,在一些半金属衬面中,石墨的含量

已从1 %一2 %增加到巧%。该领域石墨消耗量取决于汽车工业的发展状况。

石墨何以能取代铜?

20世纪60年代,铜作为电极材料被广泛应用,使用率约占90%,石墨仅有10%左右;21世纪,越来

越多的用户开始选择石墨作为电极材料,在欧洲,超过90%以上的电极材料是石墨。铜,这种曾经占统治

地位的电极材料,和石墨电极相比它的优势几乎消失殆尽。是什么导致了这个戏剧性的变化?当然是石墨

电极的诸多优势。

(1)加工速度更快:通常情况下,石墨的机械加工速度能比铜快2~5倍;而放电加工速度比铜快2~3

倍;

材料更不容易变形:在薄筋电极的加工上优势明显;铜的软化点在1000度左右,容易因受热而产生变形;

石墨的升华温度为3650度;热膨胀系数仅有铜的1/30。

(2)重量更轻:石墨的密度只有铜的1/5,大型电极进行放电加工时,能有效降低机床(EDM)的负

担;更适合于在大型模具上的应用。

(3)放电消耗更小;由于火花油中也含有C原子,在放电加工时,高温导致火花油中的C原子被分

解出来,转而在石墨电极的表面形成保护膜,补偿了石墨电极的损耗。

(4)没有毛刺;铜电极在加工完成后,还需手工进行修整以去除毛刺,而石墨加工后没有毛刺,节约

了大量成本,同时更容易实现自动化生产;

(5)石墨更容易研磨和抛光;由于石墨的切削阻力只有铜的1/5,更容易进行手工的研磨和抛光;

(6)材料成本更低,价格更稳定;由于近几年铜价上涨,如今各向同性石墨的价格比铜更低,相同体

积下,东洋炭素的普遍性石墨产品的价格比铜的价格低30%~60%,并且价格更稳定,短期价格波动非常

小。

正是这种无可比拟的优势,石墨逐渐取代铜成为EDM电极的首选材料

十四。

石墨电极的用途

1)用于电弧炼钢炉

主要用于电炉炼钢。电炉炼钢是利用石墨电极向炉内导入电流,强大的电流在电极下端通过气体产生电弧放电,利用电弧产生的热量来进行冶炼。根据电炉容量的大小,配用不同直径的石墨电极,为使电极连续使用,电极之间靠电极螺纹接头进行连接。炼钢用石墨电极约占石墨电极总用量的70~80%。

(2)用于矿热电炉

矿热电炉主要用于生产铁合金,纯硅、黄磷、冰铜和电石等,其特点是导电电极的下部埋在炉料中,因此除

电板和炉料之间的电弧产生热量外,电流通过炉料时由炉料的电阻也产生热量。每吨硅需消耗石墨

右,每吨黄磷需消耗石墨电极约40kg。

(3)用于电阻炉

生产石墨制品用的石墨化炉、熔化玻璃的熔窑和生产碳化硅用的电炉等都是电阻炉,炉内所装电阻,又是被加热的对象。通常,导电用的石墨电极插入炉床端部的炉头墙中,故导电电极并不连

此外,大量的石避电极毛坯还用于加工成各种坩埚、石墨舟皿、热压铸模和真空电炉发热体等在石英玻璃行业,每生产lt电熔管需用石墨电极坯料10t,每生产lt石英砖消耗电极坯料100kg

关键字:石墨电极耐火材料

发布时间:2009-10-9 16:47:23

十五。

抗氧化石墨电极

抗氧化石墨电极,就是表面涂覆一层抗氧化保护层(石墨电极抗氧化剂)的石墨电极。它与普通石墨电极相比,其特点是:

①1500℃内有效防止石墨电极表面氧化。

②减低石墨电极消耗24%~50%。

③提高电极使用寿命26%~60%。

抗氧化石墨电极的加工工艺:

① 用普通的石墨电极,除去电极表面的灰尘、异物等粘附物后,可用刷,喷,浸等方法涂层。

② 在常温~150℃中施工。

③ 涂层后常温干燥半天以上,或在100~150℃ 下干燥30分钟。

④ 涂层量,原液1~1.2kg/㎡为一般标准

这项技术的推广使用可以带来这样的经济社会效应:

① 石墨电极单位消耗的较少,生产成本有一定的降低。例如某炼钢厂,按全年未发生停产一

周35根石墨电极左右,精炼处理165炉的消耗量计算,采用石墨电极抗氧化技术后,每年可节省

吨)电极,每年每吨超高功率电极16,900元人民币计算,可节省258.57万元人民币。

② 石墨电极所耗电能的较少,节约的单位炼钢电消耗量,节约了生产成本,节能!

③ 由于石墨电极换次数较少,就较少了操作工人劳动量和危险系数,提高了生产效率。

④ 石墨电极是高消耗和高污染产品,在节能减排环保提倡的几天,具有非常重要的社会意义十六。

石墨垫石墨垫

由纯石墨板或金属(齿板、平板、网)增强石墨板切割或冲压而成,具有众多卓越的密封性定、自润滑、耐腐蚀、不老化、不发脆等,在苛刻的工况条件能长期稳定的使用,极少需要维护。

不同金属薄板。型式可选无包边,内包边,外包边,内外包边。

石墨切割垫片是从纯石墨板打孔或切割而成的,它具有良好的防腐蚀性,耐高/低温,良好的高强度性,各种各样的圆型的复杂的几何垫片被广泛用于管道、阀门、泵、压力容器、热交换器、

机、空气压缩机、排气管、制冷机等。

碳素磨毛

碳素磨毛是使用碳纤维磨料丝(也称含磨料尼龙丝)制作的磨毛辊进行织物磨毛处理的方式。

但是针对碳素磨毛,国际上又出现了使用其他磨料制作的磨料丝。

大概有以下几种规格:

1 ,“碳素”,其实是碳化硅(也称金刚砂),与尼龙混合经某种催化剂耦合后拉成丝,颜色

也有绿色等,主要是磨料的颜色不同。

2 ,白刚玉,制作方式也是一样的,呈白色,纺织上很少用,但是效果跟碳化硅差不多。

3 ,陶瓷,制作方式也差不多,白色,但是陶瓷本身具备自锐性(使用过程中会碎裂,产生新

力减弱少),主要用于高硬度金属上,但是由于纺织面料比较柔软,所以自锐性无法很好的体现出

纤维的价格比较高,性价比不是很高。

4 ,微晶磨料,颜色很多,但是有些可能添加了色素,所以呈一定颜色。也具备自锐性,其自

不多,所以在纺织上也起不到很好的效果,但是价格明显比陶瓷高。

碳素磨毛由于价格较低,磨毛效果好,所以现在国际上还是使用最为广泛的。

膨胀石墨

碳是自然界最普遍的元素之一,碳化合物的成键方式和结构形式极其丰富,膨胀石墨便是其中一种新型碳素材料。早在l9世纪60年代初,Brodie将天然石墨与硫酸和硝酸等化学试剂作用后加热,发现了膨胀石墨,然而其应用则在百年之后才开始。从此,众多国家就相继展开了膨胀石墨的研究和开发,取得了重大的科研突破。

从现有的文献中可以查知,膨胀石墨是一种性能优良的吸附剂,尤其是它具有疏松多孔结构,对有机化合物具有强大的吸附能力,1 g膨胀石墨可吸附80 g石油,于是膨胀石墨就被设计成各种工业油脂和工业油料的吸附剂。

膨胀石墨极易吸附油类、有机分子及疏水性物质,用于水环保处理有着其它物质不可替代的效果。当它以粒状形式用于水面除油时,根据水面上油面积的大小以及油种类的不同,其用量为1~lo%/rn ,吸附时间可在15rain至数h不等。

膨胀石墨极易吸附油类、有机分子及疏水性物质,用于水环保处理有着其它物质不可替代的效果。当它以粒状形式用于水面除油时,根据水面上油面积的大小以及油种类的不同,其用量为1~lo%/rn ,吸附时间可在15rain至数h不等。

与其它吸附剂相比,膨胀石墨有许多优点。如采用活性炭进行水上除油,它吸附油后会下沉,且不易再生利用;还有一些吸附剂,如棉花、草灰、聚丙烯纤维、珍珠岩、蛭石等,它们在吸油的这给后处理带来困难;膨胀石墨对油类的吸附量大,吸油后浮于水面,易捕捞回收,再生利用处理挤压、离心分离、振动、溶剂清洗、燃烧、加热萃取等法,且不会形成二次污染。

石墨烯基材料做电极材料的机遇与挑战

石墨烯基材料做电极材料的机遇与挑战近年来,高性能电化学储能装置的需求量大幅上升,于是很多学者都开始投入到对更卓 越电极材料的开发和研究中。在这方面,石墨烯基材料吸引了大量目光。由于能提升现有设备性能,并使下一代设备更实用,石墨烯基材料被看作是前景深远的高性能电极材料。 碳材料广泛应用于不同的储能设备,并发挥着非常重要的作用。然而,由于多孔碳材料和纳米碳材料密度低,高碳含量电极的存储密度也总是很低,因而造成体积能量密度低。 尽管石墨烯也面临同样问题,甚至情况更严重,但经过石墨烯和电极结构设计的可控组合,还是可以得到高密度石墨烯基电极。此外,在许多情况下,组装的集成石墨烯基电极不含任何导电剂和粘结剂,因此能进一步帮助提升体积能量密度。

作为电化学储能装置的潜在电极材料,石墨烯具有许多其他传统碳材料和纳米碳材料所没有的优越性。石墨烯物理结构稳定、比表面积大、导电性良好,对大多数电化学储能装置来说,它几乎是一种完美材料。 此外,石墨烯的输出性能也取得了很多令人瞩目的进步:利用二维层状结构能构建出各种三维结构,还具备可调节的孔隙结构。我们在论文中综述了石墨烯基材料在液态锂离子电池、锂硫电池、锂氧电池、NIB和SC等方面的应用。我们研究发现,将石墨烯应用于这些装置,能大大提高其性能。 石墨烯的几个显著优势如下: 1.石墨烯在实际应用于非碳材料时,是一种有利的碳基材。它应用容易,比表面积大,使得在其表面实现其他活性成分的杂交和均匀散布更加容易,这也极大提高了这些成分的利用率。此外,利用石墨烯在两个活性粒子甚至是整个电极间构建互联的导电网络也是轻而易举。这样的网络有助于提高电极的循环稳定性。 2.通过在装置中使用石墨烯代替传统碳材料,能实现高体积能量密度。石墨烯为高体积能量密度装置的组装提供了潜在解决方案。 3.柔性石墨烯有望制造柔性储能装置。使用石墨烯及其组件可以制备出具有高度柔韧性的集流体,为我们提供了一种取代脆性金属集流体的方法。此外,利用石墨烯还能制备出集成柔性电极,有助于解决在反复弯曲过程中集流体活性材料分离的问题。 除了以上几点,石墨烯相较于传统碳材料还具有多种优越性能,可能有助于促进各种新型电池系统的实际应用。新近研究报告指出,高能室温钠硫电池通过碳/硫复合材料作为电极。我们可以预料,石墨烯可以进一步帮助提升这类电池的性能。还有研究发现,石墨烯基复合材料可作为锌空气电池的高效电催化剂。在种种结果之上,我们不难看出,石墨烯在未来能源储存装置应用中的巨大潜力。

石墨烯的十大用途

石墨烯是世界上已经发现的最薄、最坚硬的物质。美国一位工程师杰弗雷用形象地比喻了石墨烯的强度: 将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,如想用一支铅笔戳穿它,需要一头大象站在铅笔上。 这么薄而又坚硬的石墨烯有什么用途呢? 1、制造下一代超级计算机。石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。 2、制造“太空电梯”的缆线。科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。 3、可作为液晶显示材料。石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。 4、制造新一代太阳能电池。石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。 5、制造光子传感器。去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。 6、制造医用消毒品和食品包装。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。 7、创制“新型超强材料”。石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。 8、石墨烯适合制作透明触摸屏、透光板。

9、制造晶体管集成电路。石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。 10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途。

石墨电极

石墨电极 石墨电极(graphite electrode) 以石油焦、沥青焦为颗粒料,煤沥青为黏结剂,经过}昆捏、成型、焙烧、石墨化和机械加工而制成的一种耐高温的石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温为热源,使炉料熔化进行炼钢,其他一些电冶炼或电解设备也常使用石墨电极为导电材料。2000年全世界消耗石墨电极100万t左右,中国2000年消耗石墨电极25万t左右。利用石墨电极优良的物理化学性能,在其他工业部门中也有广泛的用途,以生产石墨电极为主要品种的炭素制品工业已经成为当代原材料工业的重要组成部门。 简史早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(https://www.360docs.net/doc/9113314288.html,wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32m mX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。 1.硅-石墨烯基复合材料在锂电池负极材料中的应用 石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。 高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

石墨电极的生产工艺流程和质量指标的及消耗原理知识讲解

石墨电极的生产工艺流程和质量指标的及 消耗原理

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混 捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑 多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于 易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟 焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中 硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石 墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结 构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具 有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青 原料生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合 物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。

石墨的主要用途

石墨的主要用途 石墨是元素碳的一种同素异形体,每个碳原子的周边连结著另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。碳是一种非金属元素,位于元素周期表的第二周期IVA族。拉丁语为Carbonium,意为“煤,木炭”,汉字“碳”字由木炭的“炭”字加石字旁构成,从“炭”字音。 石墨专业供应商青岛伯特利石墨制品有限公司是一家具有三十多年生产历史的石墨制品专业企业,该公司主要经营石墨轴承,高纯石墨模,石墨油,石墨底座,高纯石墨,高纯石墨模,管模等优质产品。广泛运用于冶金,机械,电子,化工,纺织,印染,食品,医疗等行业,并远销欧洲,东南亚等国家和地区。下面由他来告诉大家石墨的主要用途有哪些: 石墨主要用途 1、作耐火材料:石墨及其制品具有耐高温、高强度的性质,在冶金工业中主要用来制造石墨坩埚,在炼钢中常用石墨作钢锭之保护剂,冶金炉的内衬。 2.作导电材料:在电气工业上用作制造电极、电刷、碳棒、碳管、水银正流器的正极,石墨垫圈、电话零件,电视机显像管的涂层等。 3.作耐磨润滑材料:石墨在机械工业中常作为润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在200~2000 ℃温度中在很高的滑动速度下,不用润滑油工作。许多输送腐蚀介质的设备,广泛采用石墨材料制成活塞杯,密封圈和轴承,它们运转时勿需加入润滑油。石墨乳也是许多金属加工(拔丝、拉管)时的良好的润滑剂。 4.石墨具有良好的化学稳定性。经过特殊加工的石墨,具有耐腐蚀、导热性好,渗透率低等特点,就大量用于制作热交换器,反应槽、凝缩器、燃烧塔、吸收塔、冷却器、加热器、过滤器、泵设备。广泛应用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。 5.作铸造、翻砂、压模及高温冶金材料:由于石墨的热膨胀系数小,而且能耐急冷急热的变化,可作为玻璃器的铸模,使用石墨后黑色金属得到铸件尺寸精确,表面光洁成品率高,不经加工或稍作加工就可使用,因而节省了大量金属。生产硬质合金等粉末冶金工艺,通常用石墨材料制成压模和烧结用的瓷舟。单晶硅的晶体生长坩埚,区域精炼容器,支架夹具,感应加热器等都是用高纯石墨加工而成的。此外石墨还可作真空冶炼的石墨隔热板和底座,高温电阻炉炉管,棒、板、格棚等元件。 6、用于原子能工业和国防工业:石墨具有良好的中子减速剂用于原子反应堆中,铀一石墨反应堆是目前应用较多的一种原子反应堆。作为动力用的原子能反应堆中的减速材料应当具有高熔点,稳定,耐腐蚀的性能,石墨完全可以满足上述要求。作为原子反应堆用的石墨纯度要求很高,杂质含量不应超过几十个PPM 。特别是其中硼含量应少于0.5PPM 。在国防工业中还用石墨制造固体燃料火箭的喷嘴,导弹的鼻锥,宇宙航行设备的零件,隔热材料和防射线材料。 7.石墨还能防止锅炉结垢,有关单位试验表明,在水中加入一定量的石墨粉(每吨水大约用4~5 克)能防止锅炉表面结垢。此外石墨涂在金属烟囱、屋顶、桥梁、管道上可以防腐防锈。 8.石墨可作铅笔芯、颜料、抛光剂。石墨经过特殊加工以后,可以制作各种特殊材料用于有关工业部门。

石墨烯基超级电容器电极材料研究进展..

**大学研究生课程考试(查)论文2014——2015学年第二学期 《石墨烯基超级电容器电极材料研究进展》 课程名称:材料化学 任课教师: 学院: 专业: 学号: 姓名: 成绩:

石墨烯基超级电容器电极材料研究进展 摘要:超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文对近年来石墨烯基电极材料在两种不同类型超级电容器中的应用研究进行了综述。 关键词:超级电容器;石墨烯;导电聚合物;金属氧化物 随着人类社会赖以生存的环境状况的日益恶化,过多的CO2排放造成气候变化不稳定,人们对能源的开发和研究重点已经转移到绿色能源(如太阳能、风能等)上面[1, 2],但是它们是靠大自然的资源来储能和转化能量的,其发电能力极大程度要受到自然环境以及季节变化的影响,如果被广泛应用于日常生活,有很多不稳定性,这也是目前太阳能、风能领域的瓶颈。超级电容器,又称作电化学电容器,是一种既稳定又环保的新型储能元件。它具有充电时间短、使用寿命长、功率密度高、安全系数高、节能环保、低温特性好等优点。超级电容器在现代科技、工业、航天事业方面的应用都十分广泛,它代表了高储能技术的一次突破。目前,国内在相关方面做了许多研究,并实现了商业化生产。但是,它们的广泛应用还存在,例如,能量密低、成本过高等问题。 从原理出发,超级电容器可分为双电层电容器和法拉第赝电容器两类。两者均是由多孔双电极、电解质、集流体、隔离物4部分所构成(超级电容器结构如图1所示)。为了减小接触电阻,要求电解质和电极材料紧密接触;隔离物的电子电导要低,离子电导要高,以保证电解质离子顺利穿透。双电层电容器是利用双电极和电解质组成的双电层结构来实验充放电储能的。当在两电极上施加电压,电解质被电离产生正负离子,由于电荷补偿,正离子移向负电极,负离子移向正电极,这样就在电极与电解质界面处产生双电层。由于这个双电层是由相反电荷层构成,如同普通平板电容器一样,但是此双电层间距很小,是原子尺寸量

石墨电极知识

石墨电极 1、石墨电极,主要以、为原料,作结合剂,经、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能 对炉料进行加热熔化的导体,根据其质量指标高低,可分为普通功率、高功率和超高功率。 2、使用说明 (1)受潮湿的石墨电极,使用前要烘干。 (2)去除备用石墨电极孔上的泡沫塑料保护帽,检查电极孔内螺纹 是否完整。 (3)用不含油和水的压缩空气清理备用石墨电极表面和孔内螺纹; 避免用钢丝团或金属刷砂布清理。 (4)将接头小心地旋入备用石墨电极一端(不建议将接头直接装入 炉上撤换下来的电极)的电极孔内,不得碰撞螺纹。 (5)将电极吊具(建议采用石墨材质的吊具)拧入备用电极另一端的 电极孔内。 (6)起吊电极时,垫松软物到备用电极装接头一端的下面,以防止 地面碰损接头;用吊钩伸入吊具的吊环后吊起,吊运电极要平稳,防 止电极由B端松脱或与其它的固定装置碰撞。 (7)将备用电极吊到待接电极上方,对准电极孔后慢慢落下;旋转 备用电极,使螺旋吊钩与电极一起转动下降;在两支电极端面相距 10-20mm时,再次用压缩空气清理电极两个端面和接头的裸露部分; 在最后完全下放电极时,不可过猛,否则因猛烈碰撞,会导致电极 孔和接头的螺纹受损。 (1)用力矩扳手拧备用电极,直到两支电极的端面紧密接触为止 (电极和接头的正确连接夹缝小于0.05mm)。 石墨在大自然中非常普遍,并且石墨烯是人类已知强度最高的物质,但科学家可能仍然需要花费数年甚至几十年时间,才能找到一种将 石墨转变成大片高质量石墨烯"薄膜"的方法,从而可以用它们来为 人类制造各种有用的物质。据科学家称,石墨烯除了异常牢固外,

石墨烯的十大用途

For personal use only in study and research; not for commercial use 石墨烯的十大用途 石墨烯是世界上已经发现的最薄、最坚硬的物质。美国一位工程师杰弗雷用形象地比喻了石墨烯的强度:将一张和食品保鲜膜一样薄的石墨烯薄片覆盖在一只杯子上,如想用一支铅笔戳穿它,需要一头大象站在铅笔上。 这么薄而又坚硬的石墨烯有什么用途呢? 1、制造下一代超级计算机。石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。 2、制造“太空电梯”的缆线。科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。 3、可作为液晶显示材料。石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。 4、制造新一代太阳能电池。石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。 5、制造光子传感器。去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。 6、制造医用消毒品和食品包装。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。 7、创制“新型超强材料”。石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。 8、石墨烯适合制作透明触摸屏、透光板。 9、制造晶体管集成电路。石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。 10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途。

石墨电极材料的选择标准

石墨电极材料的选择标准 石墨电极材料选择的依据有很多,但主要的有四个标准: 1.材料的平均颗粒直径 材料的平均颗粒直径直接影响到材料放电的状况。材料的平均颗粒越小,材料的放电越均匀,放电的状况越稳定,表面质量越好。 对于表面、精度要求不高的锻造、压铸模具,通常推荐使用颗粒较粗的材料,如ISEM-3等;对于表面、精度要求较高的电子模具,推荐使用平均粒径在4μm 以下的材料,以确保被加工模具的精度、表面光洁度。材料的平均颗粒越小,材料的损耗情况就越小,各离子团之间的作用力就越大。比如:通常推荐在精密压铸模具、锻造模具方面,ISEM-7已足以满足要求;但客户对于精度要求特别高时,推荐使用TTK-50或ISO-63材料,以确保更小的材料损耗,从而保证模具的精度和表面粗糙度。 同时,颗粒越大,放电的速度就越快,粗加工的损耗越小。主要是放电过程的电流强度不同,导致放电的能量大小不一。但放电后的表面光洁度也随着颗粒的变化而变化。 2.材料的抗折强度 材料的抗折强度是材料强度的直接体现,显示材料内部结构的紧密程度。强度高的材料,其放电的耐损耗性能相对较好,对于精度要求高的电极,尽量选择强度较好的材料。比如:TTK-4可以满足一般电子接插件模具的要求,但有些有特殊精度要求的电子接插件模具,可以选用同等粒径,但强度略高的材料TTK-5材料。 3.材料的肖氏硬度 在对石墨的潜意识认识中,石墨一般会被认为是一种比较软的材料。但实际的测试数据及应用情况显示,石墨的硬度要比金属材料高。在特种石墨行业中,通用的硬度检验标准是肖氏硬度测量法,其测试原理与金属的测试原理不同。由于石墨的层状结构,使其在切削过程中有非常优越的切削性能,切削力仅为铜材料的1/3左右,机械加工后的表面易于处理。 但由于其较高的硬度,在切削时,对于刀具的损耗会略大于切削金属的刀具。与此同时,硬度高的材料在放电损耗方面的控制比较优秀。在我司的EDM用材料

电解池知识点归纳

电解池 第1课时 电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag +>Hg 2+>Fe 3+>Cu 2+>H +(酸溶液)>Pb 2+>Sn 2+>Fe 2+>Zn 2+>H +(水溶液)>Al 3+>Mg 2+>Na +>Ca 2+>K + 阳极:阳极金属或还原性强的离子先失电子 活性电极>S 2->I ->Br ->Cl ->OH ->N>S>F - 5、分析总结书写电解池电极反应的一般思路 ? 6、原电池和电解池的区别 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池一个概念 将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应极—失电子—发生氧化反应极—得电子—发生还原反应极—得电子—发生还原反应流向电子负极→外电路→正极阳极→外电路→阴极 电流正极→外电路→负极阴极→外电路→阳极 离子阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件 ②电解质溶液③闭合电路④自发进行的氧化还原反应②电解质溶液③闭合电路④外加直流电源相同点氧化还原反应

石墨坩埚分类以及主要用途

石墨坩埚分类以及主要用途 石墨具有独特的有限,在工业中被应用于不同的领域,就石墨坩埚来说,坩埚是以结晶形天然石墨为主体原料,可塑性耐火粘土作粘结剂,经与不同类型熟料配合而制成的主要应用于冶炼特种合金钢、熔化有色金属及其合金的耐火石墨坩埚。根据信瑞达石墨对石墨的了解,就产品的性能、用途而言,石墨坩埚分类以及主要用途 石墨具有独特的有限,在工业中被应用于不同的领域,就石墨坩埚来说,坩埚是以结晶形天然石墨为主体原料,可塑性耐火粘土作粘结剂,经与不同类型熟料配合而制成的主要应用于冶炼特种合金钢、熔化有色金属及其合金的耐火石墨坩埚。就产品的性能、用途而言,石墨坩埚是耐火材料的一个组成部分。 坩埚可分为石墨坩埚、粘土坩埚和金属坩埚三大类。在石墨坩埚中,又有普型石墨坩埚与异型石墨坩埚及高纯石墨坩埚三种。各种类型的石墨坩埚,由于性能、用途和使用条件不同,所用的原料、生产方法、工艺技术和产品型号规格也都有所区别。石墨坩埚的主体原料,是结晶形天然石墨。故它保持着天然右墨原有的各种理化特性。即:具有良好的热导性和耐高温性,在高温使用过程中,热膨胀系数小,对急热、急冷具有一定抗应变性能。对酸,碱性溶液的抗腐蚀性较强,具有优良的化学稳定性。 坩埚的型号规格较多,在应用时不受生产规模、批量大小和熔炼物质品种的限制,可任意选择,适用性较强,并可保证被熔炼物质的纯度。石墨坩埚,因具有以上优良的性能,所以在冶金、铸造、机械、化工等工业部门,被广泛用于合金工具钢的冶炼和有色金属及其合金的熔炼。并有着较好的技术经济效果。坩埚的种类大体分为三大类:第一类炼铜坩埚,其规格“号”,;第二类为炼铜合金坩埚,特圆形有100个号,圆形有100个号,第三种炼钢用的坩埚,有100个号。 坩埚规格(大小),通常是用顺序号大小表示的,1号坩埚具有能熔化1000g黄铜的容积,其重量为180g。坩埚在熔炼不同金属或合金时熔化量计算,可以坩埚的容重规格号,乘上相应金属和合金系数。坩埚的生产原料,可概括为三大类型。一是结晶质的天然石墨,二是可塑性的耐火粘土,三是经过煅烧的硬质高岭土类骨架熟料。近年来,开始采用耐高温的合成材料,如:碳化硅、氧化铝金刚砂及硅铁等做坩埚的骨架熟料。这种熟料对提高坩埚产品质量,增强坩埚密度和机械强度有着显著效果。坩埚的成型,有三种方法,较原始古老的成型方法是手塑成型。第二种是旋塑成型法第三种是压型成型法. 石墨坩埚系采用天然鳞片石墨、腊石、碳化硅等原料制成的高级耐火器皿,供冶炼、熔铸铜、铝、锌、铅、金、银以及各种稀有金属之用。 1、用后放置干燥处,切忌雨水侵入;使用前须缓慢烘烤到500摄氏度方可使用。 2、应根据坩埚容量加料,忌挤得太紧,以免金属发生热膨胀胀裂坩埚。 3、取出金属熔液时,最好用勺子舀出,尽量少用卡钳,若用卡钳等工具应与坩埚形状相符,避免局部受力过大而缩短使用寿命。

石墨烯透明电极

柔性光电子器件,如有机发光二极管与太阳能电池,已经引起了越来越多研究者的关注。而其中用到的电极材料也需要具备柔性,轻便,低成本等特点,同时可以大批量地生产。 目前主导光电子器件的氧化铟锡(ITO)电极由于机械稳定性差,而且铟资源的日益缺少导致其成本的不断提高。所以急需寻求一些可替代的环保的电极材料。过去几十年研究者们尝试了大量的新型电极材料,比如纳米碳管、金属网格与金属纳米线网等。最近,由于其高导电性、透明性、可弯曲性、空气与高温稳定性,石墨烯作为一种新型的柔性电子学与电极材料得到广泛认同。 迄今为止制备石墨烯透明电极有两种方法:一种是把石墨烯氧化物溶液旋涂在基底上,然后在高温下还原;另一种是利用化学气相沉积法(CVD)的方法在金属镍或者铜表面催化生长石墨烯,然后再转移到不同的基底上。前一种方法很容易制成薄膜,但是需要1000℃高温,所以对很多基底都不合适,像玻璃与聚对苯二甲酸乙二醇酯(PET)分别在500℃与250℃左右就开始融化。后一种方法尽管不需要太高温度,却要使用复杂的CVD设备,同时还需要转移石墨烯膜的额外程序。因此开发一种低成本、高产出,同时不需高温处理、真空设备与膜转移步骤的方法来制备石墨烯透明柔性电极很有必 要。 香港理工大学纺织制衣系郑子剑教授的研究组与陶晓明教授合作,发展了一种简便的制备高质量石墨烯复合电极(graphene composite electrode, GCE)的方法。他们首先制备磺酸化修饰的石墨烯氧化物,再进行原位水合肼还原,得到大量(克级)径向尺寸大于50微米、并具有良好水溶性的石墨烯片。将此石墨烯的溶液进一步用导电聚噻吩(poly(3,4-ethylenedioxythiophene): polystyrenesulfonate,PEDOT: PSS)掺杂所得到的石墨烯复合溶液,能够很好地旋涂在玻璃或者PET 的基底上。然后只需要在150℃下退火,便可以得到高导电率(80 Ω sq ? 1)和高透光率(80%)的石墨烯复合材料透明电极。在1000次弯曲测试中,电极显示了极好的稳定性,导电性没有明显降低。 使用该电极制备的有机发光二极管在发光效果上也比基于ITO电极的器件高出2倍。

电解池知识点归纳完整版

电解池知识点归纳 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电解池 第1课时电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag+>Hg2+>Fe3+>Cu2+>H+(酸溶液)>Pb2+>Sn2+>Fe2+>Zn2+>H+(水溶液)>Al3+>Mg2+>Na+>Ca2+>K+阳极:阳极金属或还原性强的离子先失电子

活性电极>S 2->I ->Br ->Cl ->OH ->N>S>F - 5、分析总结书写电解池电极反应的一般思路 6、 原电池和电解池的区别 【练习1】如图所示是电 解氯化铜溶液的装置,其中c 、d 为石墨电极,下列有关判断正确的是( ) A.a 为负极,b 为正极 B.a 为阳极,b 为阴极 C.电解过程中,d 电极质量增加 D.电解过程中,氯离子的浓度不变 随堂检测 1.关于原电池、电解池的电极名称,下列说法错误的是( ) A.原电池中失去电子的一极为负极 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池 一个概念将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应 极—失电子—发生氧化反应 极 —得电子—发生还原反应极 —得电子—发生还原反应流向 电子 负极→外电路→正极阳极→外电路→阴极电流正极→外电路→负极阴极→外电路→阳极离子 阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件②电解质溶液③闭合电路 ④自发进行的氧化还原反应 ②电解质溶液③闭合电路④外加直流电源 相同点 氧化还原反应

石墨的用途以及性质

石墨的用途以及性质 石墨是一种结晶形碳。由于石墨具有许多优良的性能,因而在冶金、机械、电气、化工、纺织、国防等工业部门获得广泛应用。作耐火材料:石墨的一个主要用途是生产耐火材料,包括耐火砖,柑祸,连续铸造粉,铸模芯,铸模洗涤剂和耐高温材料。 近20年来,耐火材料工业中两个重要的变化是镁碳砖在炼钢炉内衬中被广泛应用,以及铝碳砖在连续铸造中的应用。使石墨耐火材料与炼钢业紧密相连,全世界炼钢业约消耗70 %的耐火材料。镁碳砖镁碳耐火材料是60 年代中期,由美国研制成功,70 年代,日本炼钢业开始把镁碳砖用于水冷却电弧炉炼钢中。目前在世界范围内镁碳砖已大量用于炼钢,并已成为石墨的一种传统用途。80年代初,镁碳砖开始用于氧气顶吹转炉的炉衬。 青岛昊玉石墨制品有限公司是石墨,原料等产品专业生产加工的公司,拥有完整,科学的质量管理体系。青岛昊玉石墨制品有限公司的诚信,实力和产品质量获得业界的认可。矿区开采面积200万平方米,石墨储量丰富。现有职工360余名,各类技术人员30余人,质量检测人员12名,检验设备30余套,高技术的检验手段及一流的检验设备是提供客户满意产品的有力保障。产品加工技术先进,拥有矿山开采低,中,高鳞片石墨浮选到高纯石墨,微粉石墨,可膨胀石墨,石墨制品一整套的加工技术和设备,可生产加工上述各类石墨产品180多个品种。生产石墨系列制品20万吨,主要生产产品:石墨球,石墨粒(碎),石墨粉,增碳剂及石墨电极,石墨异形制品。广泛应用于钢铁,铸造,化工等。 公司生产的天然微晶石墨以其石墨化程度高,化学性能稳定,有害杂质少,含铁含硫量极低,且具有良好的耐高温,耐酸碱,抗氧化,可塑性,润滑性,导热性,导电性等优良性能而享誉国内外市场,广泛用于电池炭棒,钢铁,铸造材料,耐火材料,燃料,染料,电极糊,以及用作铅笔,焊条,电池,石墨乳剂,防腐剂,润滑剂,冶炼增碳剂,注定保护渣,石墨轴承等产品的配料,是全球有名的优质石墨矿产。下面就由昊玉石墨介绍下石墨的散热分析。 低散热、高续航:石墨散热片可以理解成PC电脑上的散热风扇,但由于石墨散热片的成本偏高,导致大部分厂商并不采用,目前采用石墨散热片的平板极为少见,希望做得更好。目前平板发热主要集中体现在CPU、屏幕及电池上,而思歌N7平板采用7.0英寸LED背光屏幕,耗电量更低,尺寸更薄,色彩更丰富,同时,得益于LP(LP/低功耗)CPU制程工艺、4600毫安时聚合物锂电池,再加上石墨散热片,可以提供更强的稳定性、更佳的散热效果以及更持久的续航能力。

石墨电极电火花加工性能的影响因素分析

石墨电极电火花加工性能的影响因素分析 影响石墨电极电火花加工性能的因素很多,各因素的合理配合对电火花加工特性有重要的影响。分析了主轴性能、脉冲电源及智能控制、工作液、电参数和加工极性选择等对石墨电极加工性能的影响,为生产实践提供了理论依据。 在电火花加工中如何正确选用石墨材料,并达到最佳的使用效果,不仅需考虑石墨电极材料牌号,同时要考虑加工参数及其机床性能等因素。影响石墨电极电火花加工性能(加工速度、加工表面粗糙度和电极损耗)的因素主要有机械系统性能、脉冲电源、控制系统、加工面积、放电参数、工件材料、工作液、电极形状、冲液方式等。本文根据国内外的有关研究着重从电火花机床、放电加工参数和加工材料等方面进行系统的分析和论述。 1 机床特性对石墨电极加工性能的影响 1.1 主轴性能的影响 主轴是电火花成形机的一个关键部件,它控制工件与工具电极之间的放电间隙。主轴的抬刀速度、传动速度和摇动方式直接影响生产率、表面粗糙度和加工稳定性等工艺指标。目前已普遍采用步进电动机、直流电动机或交流伺服电动机驱动主轴。 1.1.1 抬头排屑 主轴抬刀对于改善深槽(型腔)窄缝等微细加工的排屑,防止积碳和二次放电等现象有明显影响。发展高速抬刀是必然趋势。目前交流伺服电机驱动,抬刀速度一般可达3~5m/min[1]。日本Sadick公司AQ35L主轴采用直线电机控制,传动机构简单,不用滚珠丝杠,没有传动间隙,能实现高速度、高加速度移动,满足了EDM加工高速响应的要求。最大驱动力高达3000N,快进速度可达100m/min,最大加速度达到1g以上,能及时排除电蚀产物消除集中放电、二次放电。间隙不均匀性等得到极大的抑制,特别是对加工深槽窄缝能产生良好的效果[2]。例如:用端面面积为1mm×38mm、斜度1°的石墨片电极加工钢,深度达70mm,免冲液,粗加工用时2h10min,精加工用时1h30min,总共用3h40min,提高了加工速度。瑞士 Charmilles公司的ROBOFORM 35P机床,不但提高了主轴运动速度,还提高了坐标轴的运动速度,使电极交换时间节省35%。用截面20mm×20mm的电极,无冲液加工100mm深的型腔,加工时间仅为5h,表面粗糙度达到R max10μm。Makino EDNC系列抬刀速度在小型机床上是 2m/min,在大型机床上是10m/min。 1.1.2 主轴摇动 主轴的摇动功能可使加工表面均匀,得到高精度和高质量的加工表面。目前已有多种摇动方式,除了圆形和方形摇动外,还有六角、半圆柱、半球、三维射线、三维圆弧等摇动轨迹,遇到其他任意形状,可根据一个完整的轮廓建立所需的摇动方式。日本Mitsubishi EA系列电火花机床新开发的Orbit Pro摇动功能,电极以恒定运动进行加工,跟踪目标形状,实现高稳定加工;而常规摇动加工,沿目标形状一点一点连续加工,电极移动不平滑,变速移动,加工不稳定,两者对比如图1所示。 1.2 脉冲电源及智能化控制的影响 脉冲电源对电火花加工的生产率、表面质量、加工速度、电极损耗等都有很大的影响。

石墨烯-负极

Silicon-graphene battery triples lithium ion batteries density 28/10/2012 Batteries, System Operator Electric car range could triple with silicon-graphene breakthrough in lithium batteries. A new lithium-ion battery designed by CalBattery, with a silicon-graphene anode, promises a dramatic energy density breakthrough, according to a news release issued by the company on Friday. Energy density is the key measure of electric car batteries to determine driving range and ultimately the usefulness of the vehicle. It was the energy density improvements of lithium-ion batteries that enabled the resurgence of electric cars. But the current crop of lithium ion batteries do not allow for enough energy storage, and driving range, at a low enough cost, to get past the “too expensive” sniff test that is hindering electric car adoption today. The company is a finalist in the Dept of Energy?s 2012 Start UP America?s Next Top Energy Innovator challenge. Independent test results using full-cell lithium-ion battery cells designed by CalBattery demonstrate an energy density of 525 watt-hours per kilogram, and a specific anode capacity of 1,250 mili-amp-hours per gram.Most commercial batteries have an energy density in the 100-180 watt-hours per kilogram range, and specific anode capacity in the 325 mili-amp-hours per gram range.

电解池知识点归纳

电解池知识点归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电解池 第1课时电解原理 学习目标 1、理解电解原理,初步掌握一般电解反应两极反应物、产物的判断方法,能写出电极反应式和电解化学方程式。 知识归纳 1、电解:使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程,叫做电解。其实质是电解质溶液导电的过程。 电解池:把电能转化为化学能的装置,叫做电解池。 2、电极:(与电极材料无关)阳极:与电源的正极相连,发生氧化反应; 阴极:与电源的负极相连,发生还原反应。 3、构成条件:“三电一回路”①直流电源;②阴、阳电极;③电解质溶液或熔融电解质;④形成闭合回路。 4、(1)影响离子放电能力的因素:①离子得失电子的能力;②离子的浓度。 (2)离子的放电顺序:(物质在电解池的阴、阳两极发生反应的过程叫放电) 阴极:氧化性强的离子先得电子 Ag+>Hg2+>Fe3+>Cu2+>H+(酸溶液)>Pb2+>Sn2+>Fe2+>Zn2+>H+(水溶 液)>Al3+>Mg2+>Na+>Ca2+>K+ 阳极:阳极金属或还原性强的离子先失电子 活性电极>S2->I->Br->Cl->OH->N>S>F- 5、分析总结书写电解池电极反应的一般思路

6 、原电池和电解池的区别 【练习1】如 图所示是电解氯化铜溶液的装置,其中c 、d 为石墨电极,下列有关判断正确的是( ) 为负极,b 为正极 为阳极,b 为阴极 C.电解过程中,d 电极质量增加 D.电解过程中,氯离子的浓度不变 随堂检测 1.关于原电池、电解池的电极名称,下列说法错误的是( ) A.原电池中失去电子的一极为负极 B.电解池中与直流电源负极相连的一极为阴极 C.原电池中相对活泼的一极为正极 D.电解池中发生氧化反应的一极为阳极 2.若某装置发生反应:Cu+2H + Cu 2++H 2↑,关于该装置的有关说法正确的是( ) A.该装置一定为原电池 B.该装置为电解池 C.若为原电池,Cu 为正极 D.电解质溶液可能是稀硝酸 3.有关以下甲、乙、丙、丁四个图示的叙述正确的是( ) 负较活泼金属阳与电源正极相连正不活泼金属或非金属导体阴与电源负极相连三个①活动性不同的两个电极①两个电极原电池 电解池 一个概念将化学能转变为电能的装置将电能转变为化学能的装置两个电极 极—失电子—发生氧化反应 极—失电子—发生氧化反应 极 —得电子—发生还原反应极 —得电子—发生还原反应流向 电子 负极→外电路→正极阳极→外电路→阴极电流正极→外电路→负极阴极→外电路→阳极离子 阳离子→正极,阴离子→负极阳离子→阴极,阴离子→阳极 四个条件②电解质溶液③闭合电路 ④自发进行的氧化还原反应 ②电解质溶液③闭合电路④外加直流电源 相同点 氧化还原反应

相关文档
最新文档