STC89C52单片机T2定时器串口发送C程序

STC89C52单片机T2定时器串口发送C程序
STC89C52单片机T2定时器串口发送C程序

实验三单片机定时计数器实验

实验三单片机定时/计数器实验 1、实验目的 1、学习计数器的使用方法。 2、学习计数器程序的编写。 3、学习定时器的使用方法。 4、学习定时器程序的编写。 5、熟悉汇编语言 2、实验说明 1、8051内部定时计数器T0,按计数器模式和方式1工作,对P3.4(T0)引脚进行计数。将其数值按二进制数在P1口驱动LED灯上显示出来。 2、用CPU内部定时器中断方式计时,实现每一秒钟输出状态发生一次反转 3、实验仪器和条件 计算机 伟福实验箱(lab2000P) 4、实验内容 1、8051内部定时计数器T0,按计数器模式和方式1工作,对P3.4(T0)引脚进行计数。将其数值按二进制数在P1口驱动LED灯上显示出来。 2、外部事件计数脉冲由P3.4引入定时器T0。单片机在每个机器周期采样一次输入波形,因此单片机至少需要两个机器周期才能检测到一次跳变。这就要求被采样电平至少维持一个完整的机器周期,以保证电平在变化之前即被采样。同时这就决定了输入波形的频率不能超过机器周期频率。 3、用CPU内部定时器中断方式计时,实现每一秒钟输出状态发生一次反转 4、定时器有关的寄存器有工作方式寄存器TMOD和控制寄存器TCON。TMOD

用于设置定时器/计数器的工作方式0-3,并确定用于定时还是用于计数。TCON 主要功能是为定时器在溢出时设定标志位,并控制定时器的运行或停止等。 5、在例程的中断服务程序中,因为中断定时常数的设置对中断程序的运行起到关键作用,所以在置数前要先关对应的中断,置数完之后再打开相应的中断。 五、思考题 1、使用其他方式实现本实验功能; 2、改为门控方式外部启动计数; 3、如果改为定时间隔为200us,如何改动程序; 4、使用其他方式实现本实验功能,例如使用方式1,定时间隔为10ms,如何改动程序。 六、源程序修改原理及其仿真结果 思考题一:使用其他方式实现本实验功能 方法一: movTMOD, #00000100b;方式0,记数器 movTH0, #0 movTL0, #0 setbTR0;开始记数;由于方式0的特点是计数时使用TL0的低五位和八位 TH0,故用加法器a用“与”(ANL)取TL0的低五位,再用yiwei子程序实现TH0的低三位变为高三位与TL0相加,这样赋给P1时就是八位计数的结果。 Loop: mova,TL0 anla,#1fh

STC89C52单片机详细介绍

STC89C52是一种带8K字节闪烁可编程可檫除只读存储器(FPEROM-Flash Programable and Erasable Read Only Memory )的低电压,高性能COMOS8的微处理器,俗称单片机。该器件采用ATMEL 搞密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。 单片机总控制电路如下图4—1: 图4—1单片机总控制电路 1.时钟电路 STC89C52内部有一个用于构成振荡器的高增益反相放大器,引

脚RXD和TXD分别是此放大器的输入端和输出端。时钟可以由内部方式产生或外部方式产生。内部方式的时钟电路如图4—2(a) 所示,在RXD和TXD引脚上外接定时元件,内部振荡器就产生自激振荡。定时元件通常采用石英晶体和电容组成的并联谐振回路。晶体振荡频率可以在1.2~12MHz之间选择,电容值在5~30pF之间选择,电容值的大小可对频率起微调的作用。 外部方式的时钟电路如图4—2(b)所示,RXD接地,TXD接外部振荡器。对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。 示,RXD接地,TXD接外部振荡器。对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。 RXD接地,TXD接外部振荡器。对外部振荡信号无特殊要求,只要求保证脉冲宽度,一般采用频率低于12MHz的方波信号。片内时钟发生器把振荡频率两分频,产生一个两相时钟P1和P2,供单片机使用。

单片机开发板的制作步骤

单片机开发板的制作步骤 单片机技术自发展以来已走过了近20年的发展路程。单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机实验板普遍称为单片机开发板、也有单片机学习板的称呼。比较有名的例如电子人DZR-01A单片机开发板。 单片机开发板是用于学习51、STC、AVR型号的单片机实验设备。根据单片机使用的型号又有51单片机开发板、STC单片机开发板、AVR单片机开发板。常见配套有硬件、实验程序源码、电路原理图、电路PCB图等学习资料。例如电子人单片机开发板,针对部分学者需要特别配套有VB上位机软件开发,游戏开发等教程学习资料。开发此类单片机开发板的公司一般提供完善的售后服务与技术支持。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。 单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。 而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。高端的32位Soc单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 常见配套资源如下:

单片机定时器详解

一、MCS-51单片机的定时器/计数器概念 单片机中的定时器和计数器其实是同一个物理的电子元件,只不过计数器记录的是单片机外部发生的事情(接受的是外部脉冲),而定时器则是由单片机自身提供的一个非常稳定的计数器,这个稳定的计数器就是单片机上连接的晶振部件;MCS-51单片机的晶振经过12分频之后提供给单片机的只有1MHZ的稳定脉冲;晶振的频率是非常准确的,所以单片机的计数脉冲之间的时间间隔也是非常准确的,这个准确的时间间隔是1微秒; MCS-51单片机外接的是12MHZ的晶振(实际上是,所以,MCS-51单片机内部的工作频率(时钟脉冲频率)是12MHZ/12=1MHZ=1000000次/秒=1000000条指令/秒=1000000次/1000000微秒=1次/微秒=1条指令/微秒;也就是说,晶振振荡一次,就会给单片机提供一个时钟脉冲,花费的时间是1微秒,此时,CPU会执行一条指令,经历一个机器周期;即:1个时钟脉冲=1个机器周期=1微秒=1条指令; 注:个人PC机上的CPU主频是晶振经过倍频之后的频率,这一点恰好与MCS-51单片机的相反,MCS-51单片机的主频是晶振经过分频之后的频率; 总之:MCS-51单片机中的时间概念就是通过计数脉冲的个数来测量出来的;1个脉冲=1微秒=1条指令=1个机器周期; MCS-51单片机定时器/计数器的简单结构图: 8051系列单片机有两个定时器:T0和T1,分别称为定时器和定时器T1,这两个定时器都是16位的定时器/计数器;8052系列单片机增加了第三个定时器/计数器T2;它们都有定时或事件计数功能,常用于时间控制、延时、对外部时间计数和检测等场合; 二、定时器/计数器的结构

单片机定时器实验程序

ORG 0000H LJMP START ORG 001BH ;定时器/计数器1中断程序入口地址 LJMP INT ORG 0100H START: MOV TMOD,#10H ;计数器置为方式1 MOV TL1,#0B0H ;装入时间常数 MOV TH1,#03CH SETB ET1 ;允许定时器T1中断 SETB EA ;允许总中断 SETB TR1 ;开始计数 MOV R0,#05H ;05是进入中断的次数LOOP: MOV R1,#00H MOV R2,#26H ;灯的状态循环次数LOOP1: MOV A,R1 ACALL TABLE MOV P1,A INC R1 LOOP2: CJNE R0,#00H,LOOP2 MOV R0,#05H DJNZ R2,LOOP1 LJMP LOOP TABLE: INC A ;从表中取显示码入累加器 MOVC A,@A+PC RET DB 0FFH,0FEH,0FCH,0F8H,0F0H,0E0H,0C0H,80H,0H DB 01H,03H,07H,0FH,1FH,3FH,7FH,0FFH,00H,0FFH,0FEH DB 0FDH,0FBH,0F7H,0EFH,0DFH,0BFH,07FH,0BFH,0DFH DB 0EFH,0F7H,0FBH,0FDH,0FEH,0FFH,00H,0FFH,00H INT: CLR TR1 ;停止计数 DEC R0 ;计数值减一 MOV TL1,#0B0H ;重置时间常数初值 MOV TH1,#03CH SETB TR1 ;开始计数 RETI ;中断返回 END

将T1改为T0,并且溢出间隔为0.05s ORG 0000H LJMP START ORG 001BH ;定时器/计数器1中断程序入口地址 LJMP INT ORG 0100H START: MOV TMOD,#01H ;计数器置为方式1 MOV TL1,#78H ;装入时间常数 MOV TH1,#0CH SETB ET0 ;允许定时器T1中断 SETB EA ;允许总中断 SETB TR0 ;开始计数 MOV R0,#05H ;05是进入中断的次数 LOOP: MOV R1,#00H MOV R2,#25H ;灯的状态循环次数 LOOP1: MOV A,R1 ACALL TABLE MOV P1,A INC R1 LOOP2: CJNE R0,#00H,LOOP2 MOV R0,#05H DJNZ R2,LOOP1 LJMP LOOP TABLE: INC A ;从表中取显示码入累加器 MOVC A,@A+PC RET DB 0FFH,07FH,3FH,1FH,0FH,07H,03H,01H,00H DB 80H,81H,0C1H,0C3H,0E3H,0E7H,0F7H,0FFH DB 00H,0FFH,00H,0FFH,0EFH,0E7H,0C7H,0C3H,83H,81H,01H,00H DB 01H,03H,07H,0FH,1FH,3FH,7FH,0FFH INT: CLR TR1 ;停止计数 DEC R0 ;计数值减一 MOV TL1,#78H ;重置时间常数初值 MOV TH1,#0CH SETB TR1 ;开始计数 RETI ;中断返回 END

51单片机定时器秒表设计程序

51单片机定时器秒表设计程序 #include typedef unsigned char UINT8; typedef unsigned int UINT16; code UINT8 SEGMENT[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; code UINT8 SHU[10] ={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10}; code UINT8 SELECT[8] ={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe}; #define S1 0x0e #define S2 0x0d #define S3 0x0b #define S4 0x07 sbit SPEAK=P3^5; sbit P3_3=P3^3; UINT8 mSecond,Second; void Delay(UINT16 t) { UINT16 i,j; for(i=0;i

STC89C52单片机用户手册

STC89C52RC单片机介绍 STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。 主要特性如下: 增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051. 工作电压:~(5V单片机)/~(3V单片机) 工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz 用户应用程序空间为8K字节 片上集成512字节RAM 通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O口用时,需加上拉电阻。 ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/,TxD/)直接下载用户程序,数秒 即可完成一片 具有EEPROM功能 具有看门狗功能 共3个16位定时器/计数器。即定时器T0、T1、T2 外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒 通用异步串行口(UART),还可用定时器软件实现多个UART 工作温度范围:-40~+85℃(工业级)/0~75℃(商业级) PDIP封装 STC89C52RC单片机的工作模式 掉电模式:典型功耗<μA,可由外部中断唤醒,中断返回后,继续执行

原程序 空闲模式:典型功耗2mA 正常工作模式:典型功耗4Ma~7mA 掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备 STC89C52RC引脚图 STC89C52RC引脚功能说明 VCC(40引脚):电源电压 VSS(20引脚):接地 P0端口(~,39~32引脚):P0口是一个漏极开路的8位双向I/O口。作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。

STC89C52单片机用户手册

STC89C52F单片机介绍 STC89C52F单片机是宏晶科技推出的新一代高速 /低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。 主要特性如下: * 增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051. * 工作电压:5.5V?3.3V (5V单片机)/3.8V?2.0V (3V单片机) * 工作频率范围:0?40MHz相当于普通8051的0?80MHz实际工作频率可达48MHz *用户应用程序空间为8K字节 * 片上集成512字节RAM * 通用I/O 口(32个),复位后为:P1/P2/P3/P4是准双向口 /弱上拉,P0 口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O 口 用时,需加上拉电阻。 * ISP (在系统可编程)/IAP (在应用可编程),无需专用编程器,无需专用仿真器,可通过串口( RxD/P3.0,TxD/P3.1 )直接下载用户程序,数秒 即可完成一片 * 具有 EEPROM能 *具有看门狗功能 * 共3个16位定时器/计数器。即定时器T0、T1、T2 * 外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒 * 通用异步串行口( UART,还可用定时器软件实现多个 UART * 工作温度范围:-40?+85C(工业级)/0?75C(商业级) * PDIP封装 STC89C52F单片机的工作模式 *掉电模式:典型功耗<0.1吩,可由外部中断唤醒,中断返回后,继续执行原程序

单片机的电路原理

单片机的电路原理 单片机技术自发展以来已走过了近20年的发展路程。单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机实验板普遍称为单片机开发板、也有单片机学习板的称呼。比较有名的例如电子人DZR-01A单片机开发板。 单片机开发板是用于学习51、STC、AVR型号的单片机实验设备。根据单片机使用的型号又有51单片机开发板、STC单片机开发板、AVR单片机开发板。常见配套有硬件、实验程序源码、电路原理图、电路PCB图等学习资料。例如电子人单片机开发板,针对部分学者需要特别配套有VB上位机软件开发,游戏开发等教程学习资料。开发此类单片机开发板的公司一般提供完善的售后服务与技术支持。单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。 单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。 而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。高端的32位Soc单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 常见配套资源如下: 1、硬件实验板及其配件如:连接线、CPU芯片、流水灯、点阵显示、ds18b20温度检测、彩色TFT液晶屏,SD卡,游戏开发(推箱子游戏)、收音机、mp3解码等。 2、实验程序源码,包含汇编源程序、C语言源程序。 3、电路原理图、PCB电路图。 4、实验手册、使用手册。 5、针对单片机开发板的详细讲解视频。 6、附加PCB设计制作、VB软件开发等计算机学习资料 1、8个LED灯,可以练习基本单片机IO操作,在其他程序中可以做指示灯使用。

(完整版)STC89C52RC单片机手册

STC89C52单片机用户手册 [键入作者姓名] [选取日期]

STC89C52RC单片机介绍 STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。 主要特性如下: 1.增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意 选择,指令代码完全兼容传统8051. 2.工作电压:5.5V~ 3.3V(5V单片机)/3.8V~2.0V(3V单片机) 3.工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作 频率可达48MHz 4.用户应用程序空间为8K字节 5.片上集成512字节RAM 6.通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉, P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O口用时,需加上拉电阻。 7.ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无 需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程 序,数秒即可完成一片 8.具有EEPROM功能 9.具有看门狗功能 10.共3个16位定时器/计数器。即定时器T0、T1、T2 11.外部中断4路,下降沿中断或低电平触发电路,Power Down模式可 由外部中断低电平触发中断方式唤醒 12.通用异步串行口(UART),还可用定时器软件实现多个UART 13.工作温度范围:-40~+85℃(工业级)/0~75℃(商业级) 14.PDIP封装 STC89C52RC单片机的工作模式 掉电模式:典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序

单片机定时器实验报告

XXXX大学信息工程与自动化学院学生实验报告 (2009 —2010 学年第二学期) 课程名称:单片机开课实验室: 2010年 5月14日 一.实验目的: 掌握定时器T0、T1的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 二.实验原理: MCS-51单片机内设置了两个可编程的16位定时器T0和T1,通过编程,可以设定为定时器和外部计数方式。T1还可以作为其串行口的波特率发生器。 定时器T0由特殊功能寄存器TL0和TH0构成,定时器T1由TH1和TL1构成,特殊功能寄存器TMOD控制定时器的工作方式,TCON控制其运行。定时器的中断由中断允许寄存器IE,中断优先权寄存器IP中的相应位进行控制。定时器T0的中断入口地址为000BH,T1的中断入口地址为001BH。 定时器的编程包括: 1)置工作方式。 2)置计数初值。 3)中断设置。 4)启动定时器。 定时器/计数器由四种工作方式,所用的计数位数不同,因此,定时计数常数也就不同。

在编写中断服务程序时,应该清楚中断响应过程:CPU执行中断服务程序之前,自动将程序计数器PC内容(即断点地址)压入堆栈保护(但不保护状态寄存器PSW,更不保护累加器A和其它寄存器内容),然后将对应的中断矢量装入程序计数器PC使程序转向该中断矢量地址单元中以执行中断服务程序。定时器T0和T1对应的中断矢量地址分别为000BH 和001BH。 中断服务程序从矢量地址开始执行,一直到返回指令“RETI”为止。“RETI”指令的操作一方面告诉中断系统该中断服务程序已经执行完毕,另一方面把原来压入堆栈保护的断点地址从栈顶弹出,装入到程序计数器PC,使程序返回到被到中断的程序断点处,以便继续执行。 因此,我们在编写中断服务程序时注意。 1.在中断矢量地址单元放一条无条件转移指令,使中断服务程序可以灵活地安排在64K 字节程序存储器的任何空间。 2.在中断服务程序中应特别注意用软件保护现场,以免中断返回后,丢失原寄存器、累加器的信息。 3.若要使执行的当前中断程序禁止更高优先级中断,可以先用软件关闭CPU中断,或禁止某中断源中断,在返回前再开放中断。 三.实验内容: 编写并调试一个程序,用AT89C51的T0工作方式1产生1s的定时时间,作为秒计数时间,当1s产生时,秒计数加1;秒计数到60时,自动从0开始。实验电路原理如图1所示。 计算初值公式 定时模式1 th0=(216-定时时间) /256 tl0=(216-定时时间) mod 256

STC89C52RC单片机的特点

STC89C52RC 单片机介绍 STC89C52RC 单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051 单片机,12 时钟/机器周期和 6 时钟/机器周期可以任意选择。 主要特性如下: 1. 增强型8051 单片机,6 时钟/机器周期和12 时钟/机器周期可以任意选择,指令代码完全兼容传统8051. 2. 工作电压:5.5V? 3.3V (5V单片机)/3.8V?2.0V (3V单片机) 3. 工作频率范围:0?40MHz,相当于普通8051的0?80MHz,实际工作频率可达 48MHz 4. 用户应用程序空间为8K 字节 5. 片上集成512 字节RAM 6. 通用I/O 口(32 个)复位后为:,P1/P2/P3/P4 是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O 口用时,需加上拉电 阻。 7. ISP (在系统可编程)/IAP (在应用可编程),无需专用编程器,无需专用仿 真器,可通过串口(RxD/P3.0,TxD/P3.1 )直接下载用户程序,数秒即可完成一片 8. 具有EEPROM 功能 9. 具有看门狗功能 10. 共3 个16 位定时器/计数器。即定时器T0、T1、T2 11. 外部中断4 路,下降沿中断或低电平触发电路,Power Down 模式可由外部中断低电平触发中断方式唤醒 12. 通用异步串行口(UART ),还可用定时器软件实现多个UART 13. 工作温度范围:-40?+85 C (工业级)/0?75 C(商业级) 14. PDIP 封装 STC89C52RC 单片机的工作模式 掉电模式:典型功耗<0.1卩可由外部中断唤醒,中断返回后,继续执行原程序 空闲模式:典型功耗2mA 典型功耗正常工作模式:典型功耗4Ma?7mA 典型功耗掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备 STC89C52RC 引脚功能说明 VCC (40 引脚):电源电压 VS S(20 引脚):接地 P0端口(P0.0?P0.7 P0.7, 39?32引脚):P0 口是一个漏极开路的8位双向I/O 口。作为输出端口,每个引脚能驱动8 个TTL 负载,对端口P0 写入每个引脚能驱动写入“1”时,可以作为高阻抗输入。在访问外部程序和数据存储器时在访问外部程序和数据 存储器时,P0 口也可以提供低8 位地址和8 位数据的复用总线位数据的复用总线。此时,P0 口内部上拉电阻有效。在Flash ROM 编在程时,P0 端口接收指令字节端口接收指令字节;而在校验程序时,则输出指令字节则输出指令字节。验证时,要求外接上拉电阻。 P1端口(P1.0?P1.7, 1?8引脚):P1 口是一个带内部上拉电阻的8位双向I/O 口。P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。P1 口作输入口使用时,因为 有内部上拉电阻,那些被外部拉低的引脚会输出一个电流()。 此外,P1.0 和P1.1 还可以作为定时器/计数器 2 的外部技术输入(P1.0/T2 )和定时器/计数器 2 的触发输入(P1.1/T2EX ),具体参见下表: 在对Flash ROM 编程和程序校验时,P1 接收低8 位地址。

单片机定时器程序

实验十一定时器实验三 一、实验要求 1.将P2口和四个数码管的数据口相连,P1口和位选线相连接,电路用共阳极; 2.数码管显示4位从前两位分钟、后两位为秒;分钟和秒的值从00到59增加; 3.实现定时器1S的定时,每1S时间到时,使秒钟加一,当秒钟为60时,显示为00 秒,分钟加一;当分钟为60时,显示为00分,从新开始一个小时的计时。 #include //定义8051寄存器头文件 #define SEG7P P2 //定义数码管就接口在P2口 #define SCANP P1 //定义P3口为数码管位选口unsigned char TAB[]={ 0xc0,0xf9,0xa4,0xb0,0x99, //数字0~4的码值 0x92,0x83,0xf8,0x80,0x98 }; //数字5~9的码值unsigned int show_s,show_m; //定义变量show_s,show_m void Get_disp(char show_s1,char show_m1); //声明赋值函数 void Display(); //声明显示函数 void delay_ms(int x); //声明延时函数 char disp[4]; //定义显示数字数组 char scan[4]={0xfe,0xfd,0xfb,0xf7}; //定义位选扫描数组 main() //主程序的开始 { SEG7P=0xff; //赋初值关闭数码管 IE=0x82; //开启中断总开关和定时器0开关 TMOD=0x01; //设置模式为1 TR0=1; //开启定时器0 TH0=(65535-50000)/256; //设置定时器初值,计数高八位 TL0=(65535-50000)%256; //计数低八位 while(1) //无穷循环 { Get_disp(show_s,show_m); //调用赋值函数 Display(); //调用显示函数} } /*****定时器0中断子函数*****/ void TF_0(void) interrupt 1 { int T; TH0=(65535-50000)/256; //重新转载定时器的初值 TL0=(65535-50000)%256; T++; //计数自增 if(T==20) //判断T { T=0; //T回到初值 show_s++; //秒自增

单片机定时器详解教程文件

单片机定时器详解

一、MCS-51单片机的定时器/计数器概念 单片机中的定时器和计数器其实是同一个物理的电子元件,只不过计数器记录的是单片机外部发生的事情(接受的是外部脉冲),而定时器则是由单片机自身提供的一个非常稳定的计数器,这个稳定的计数器就是单片机上连接的晶振部件;MCS-51单片机的晶振经过12分频之后提供给单片机的只有1MHZ的稳定脉冲;晶振的频率是非常准确的,所以单片机的计数脉冲之间的时间间隔也是非常准确的,这个准确的时间间隔是1微秒; MCS-51单片机外接的是12MHZ的晶振(实际上是11.0592MHZ),所以,MCS-51单片机内部的工作频率(时钟脉冲频率)是12MHZ/12=1MHZ=1000000次/秒=1000000条指令/秒 =1000000次/1000000微秒=1次/微秒=1条指令/微秒;也就是说,晶振振荡一次,就会给单片机提供一个时钟脉冲,花费的时间是1微秒,此时,CPU会执行一条指令,经历一个机器周期;即:1个时钟脉冲=1个机器周期=1微秒=1条指令; 注:个人PC机上的CPU主频是晶振经过倍频之后的频率,这一点恰好与MCS-51单片机的相反,MCS-51单片机的主频是晶振经过分频之后的频率; 总之:MCS-51单片机中的时间概念就是通过计数脉冲的个数来测量出来的;1个脉冲=1微秒=1条指令=1个机器周期; MCS-51单片机定时器/计数器的简单结构图:

8051系列单片机有两个定时器:T0和T1,分别称为定时器和定时器T1,这两个定时器都是16位的定时器/计数器;8052系列单片机增加了第三个定时器/计数器T2;它们都有定时或事件计数功能,常用于时间控制、延时、对外部时间计数和检测等场合; 二、定时器/计数器的结构 8051单片机的两个定时器T0和T1分别都由两个特殊功能寄存器组成;T0由特殊功能寄存器TH0和TL0构成,而T1则是由TH1和TL1构成; 作为定时器使用时,定时器计数8051单片机片内振荡器输出经过12分频后的脉冲个数,即:每个机器周期使定时器T0/T1的寄存器值自动累加1,直到溢出,溢出后继续从0开始循环计数;所以,定时器的分辨率是时钟振荡频率的1/12; 作为计数器使用时,通过引脚T0(P3.4)或T1(P3.5)对外部脉冲信号进行计数,当输入的外部脉冲信号发生从1到0的负跳变时,计数器的值就自动加1;计数器的最高频率一般是时钟振荡频率的1/24; 由此可知,不论是定时器还是计数器工作方式,定时器T0和T1均不占用CPU的时间,除非定时器/计数器T0和T1溢出,才可能引起CPU中断,转而去执行中断处理程序;所以说,定时器/计数器是单片机中效率高而工作灵活的部件; 三、定时器/计数器的工作模式 除了可选择定时器和计数器的这两种工作方式外,每个定时器/计数器都有4种工作模式; 在模式0、1和2时,T0和T1的工作模式相同;在模式3时,两个定时器/计数器的工作模式不同; 工作模式0: 由TL0的低5位和TH0的全部8位共同构成一个13位的定时器/计数器;定时器/计数器启动后,定时或计数脉冲个数加到TL0上,从预先设置的初值(时间常数)开始累加,不断递增1;当

单片机60s定时器程序c语言

单片机60s定时器程序c语言 #include /////变量定义 sbit led0=P1^0; sbit led1=P1^1; sbit led2=P1^2; sbit led3=P1^3; int tion=0; int tey[]={0XC0,0XF9,0XA4,0XB0,0X99,0X92,0X82,0XF8,0X80,0X90}; int cx=0; int kx=0; ///子函数 void time(int x); //延时函数定义 void LED(); //显示函数定义 ///////////// ////////主函数/// ///////// void main() {TMOD=0X1; TH0=0X3C; TL0=0XB0; IE=0X82; TR0=1; while(1) {LED();}} //延时子函数// void time(int x) {for(x=0;x<200;x++);} //显示子函数// void LED() {led0=0; led1=1; led2=1; led3=1; P0=0XBF; time(1); led1=0; led2=1; led0=1;

led3=1; P0=tey[kx]; time(1); led2=0; led1=1; led0=1; led3=1; P0=tey[cx]; time(1); led3=0; led0=1; led1=1; led2=1; P0=0xBF; time(1); } //中断函数// void teyond()interrupt 1 {TH0=0X3C; TL0=0XB0; tion++; if(tion==20) {tion=0; cx++; P0=tey[cx]; if(cx==10) {cx=0; kx++; P0=tey[kx]; if(kx==6) {cx=0; kx=0; TR0=0;}}}}

单片机定时器中断时间误差的解决方案

单片机定时器中断时间误差的解决方案 时间:2012-06-12 14:04:04 来源:作者: 1 前言 单片机内部一般有若干个定时器。如8051单片机内部有定时器0和定时器1。在定时器计数溢出时,便向CPU发出中断请求。当CPU正在执行某指令或某中断服务程序时,它响应定时器溢出中断往往延迟一段时间。这种延时虽对单片机低频控制系统影响甚微,但对单片机高频控制系统的实时控制精度却有较大的影响,有时还可能造成控制事故。为扩大单片机的应用范围,本文介绍它的定时器溢出中断与CPU响应中断的时间误差、补偿误差的方法和实例。 2 误差原因、大小及特点 产生单片机定时器溢出中断与CPU响应中断的时间误差有两个原因。一是定时器溢出中断信号时,CPU正在执行某指令;二是定时器溢出中断信号时,CPU正在执行某中断服务程序。 2.1. CPU正在执行某指令时的误差及大小 由于CPU正在执行某指令,因此它不能及时响应定时器的溢出中断。当CPU执行此指令后再响应中断所延迟的最长时间为该指令的指令周期,即误差的最大值为执行该指令所需的时间。由于各指令都有对应的指令周期,因此这种误差将因CPU正在执行指令的不同而不同。如定时器溢出中断时,CPU正在执行指令MOV A, Rn,其最大误差为1个机器周期。而执行指令MOV Rn, direct时,其最大误差为2个机器周期。当CPU正在执行乘法或除法指令时,最大时间误差可达4个机器周期。在8051单片机指令系统中,多数指令的指令周期为1~2个机器周期,因此最大时间误差一般为1~2个机器周期。若振荡器振荡频率为fosc,CPU正在执行指令的机器周期数为Ci,则最大时间误差为Δtmax1=12/fosc× Ci(us)。例如fosc=12MHZ,CPU正在执行乘法指令(Ci=4),此时的最大时间误差为: Δtmax1=12/fosc×Ci=12/(12×106)×4=4×10-6(s)=4(μs)

STC89C52单片机介绍

STC89C52 单片机介绍: 单片机是指一个集成在一块芯片上的完整计算机系统。尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。同时集成诸如通讯接口、定时器,实时时钟等外围设备。而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。 单片机也被称为微控制器(Microcontroler),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对提及要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大的提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上

用单片机定时器做可调时钟

P0为数码管的位 P2为数码管的段选 #include #include #define uchar unsigned char #define uint unsigned int sbit mm=P1^7; sbit min=P1^6; sbit hh=P1^5; uint num,num1,aa,ww ; uchar shi,fen,miao,fh ; uchar code taba[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f }; //0,1,2,3,4,5,6,7,8,9 //uchar code tabawei[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //数码管选位数数组uchar code tabawei[]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80}; //数码管选位数数组void delay1ms(uint e); //误差0us void DSQ(); //定时器初始化 void smg(); //数码管显示程序 void chuli(); //时间处理 void anjian(); //按键 void main() //主程序 { shi=12; //初始化时间0~23 DSQ(); //定时器初始化 while(1) //死循环 { smg(); //数码管显示模块 chuli(); //时间处理模块 anjian(); //按键 } } void smg() //数码管显示程序 { P2=taba[shi/10%10]; P0=tabawei[0]; delay1ms(1); //时分段显示占两位数码管 P2=0x00; //消隐 P2=taba[shi%10]; P0=tabawei[1];delay1ms(1); P2=0x00; // P2=0x40; P0=tabawei[2];delay1ms(1); if(aa<10){P2=0x40; P0=tabawei[2]; delay1ms(1);P2=0x00; } //“-”闪烁 else{P2=0x00;delay1ms(1);}

基于单片机的智能定时器毕业设计

毕业设计(论文) 基于51单片机的智能定时控制器系统设计 毕业设计(论文)任务书 课题名称基于51单片机的智能定时控制器系统设计 课题性质工程应用 专业应用电子技术班级10电子(2)班 学生姓名学号 指导教师教研室主任系部主任 发放日期 一、课题条件:

随着电子工业的发展,数字电子技术已经深入到了人们生活的各个层面,各种各样的电子产品也正在日新月异地向着高精尖技术发展。数字电子时钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。 二、毕业论文(设计)主要内容: 1、时间显示:用4位数码管显示当前小时和分钟,秒功能用两LED灯代替(每秒闪烁一次)。 2、可手动设定时间。 3、开机流程:系统有红色和蓝色指示灯,上电10S内,每秒红色指示灯闪烁一次,并伴有蜂鸣声,作为开机/重启提醒,此时绿色指示灯灭。10S后红色指示灯灭,若光线较强则绿色指示灯亮,若光线较弱则绿色指示灯亮度减半进入节能模式。 3、具有整点报时功能(四短一长),可自行设定报时时间段; 三、计划进度: 1. 资料的收集撰写开题报告6月20日至9月8日 2. 方案设计9月9日至9月15日 3. 电路的设计指标分析与确定;后期的电路优化元器件的选择与参数确定9月16日 至11月2日 4. 毕业设计论文的修改、完善11月3日至11月10日 5. 毕业设计答辩11月15 日至11月20日 四、主要参考文献: a) 康光华主编.电子技术基础.北京:高等教育出版社,1999.6 b) b)何宏主编.单片机原理与接口技术.北京:国防工业出版社.2006.07 c) c)杨西明,朱骐主编.单片机编程与应用入门.北京:机械工业出版社.2004.06 d) d)先锋工作室编著.单片机程序设计实例.北京:清华大学出版社.2003.01 指导教师(系)教研室主任 年月日年月日

相关文档
最新文档