2016_2017高中数学第2章圆锥曲线与方程1圆锥曲线学案苏教版选修1_

2016_2017高中数学第2章圆锥曲线与方程1圆锥曲线学案苏教版选修1_
2016_2017高中数学第2章圆锥曲线与方程1圆锥曲线学案苏教版选修1_

2.1 圆锥曲线

1.了解圆锥曲线的实际背景.

2.理解椭圆、双曲线、抛物线的定义.(重点)

3.能依据圆锥曲线的定义判断所给曲线的形状.(难点

)

[基础·初探]

教材整理圆锥曲线

阅读教材P25~P26练习以上部分,完成下列问题.

1.用平面截圆锥面得到的图形

用平面截圆锥面能得到的曲线图形是两条相交直线、圆、椭圆、双曲线、抛物线.

2.圆锥曲线定义

椭圆、双曲线、抛物线统称为圆锥曲线.

3.三种圆锥曲线

设P为相应曲线上任意一点,常数为2a.

1.判断正误:

(1)到两定点距离之和为常数的点的轨迹是椭圆.( )

(2)平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.( )

(3)椭圆上的一点与椭圆的两焦点,一定构成一个三角形.( )

(4)平面内到一定点与一定直线距离相等的点的轨迹一定是抛物线.( )

【解析】 (1)×.当常数大于两定点间的距离时,动点的轨迹才是椭圆.

(2)×.应该是差的绝对值,否则轨迹是双曲线的一支.

(3)×.当椭圆上的点在F 1F 2的延长线上时,不能构成三角形.

(4)×.定点不能在定直线上才是抛物线.

【答案】 (1)× (2)× (3)× (4)×

2.动点P (x ,y ),到定点A (0,-2),B (0,2)的距离之和为6,则点P 的轨迹为________.

【解析】 ∵AB =4,PA +PB =6>4,∴点P 的轨迹为椭圆.

【答案】 椭圆

[质疑·手记]

预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:

疑问1:________________________________________________________

解惑:________________________________________________________

疑问2:________________________________________________________

解惑:________________________________________________________

疑问3:________________________________________________________

解惑:________________________________________________________

[小组合作型]

(1)在平面直角坐标系中,A (4,0),B (-4,0),且sin A +sin B sin C =54

则△ABC 的顶点C 的轨迹为________.

【导学号:24830022】

(2)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1内切,和圆C 2外切,求动圆圆心的轨迹.

【精彩点拨】 根据椭圆的定义判断.

【自主解答】 (1)由正弦定理,得BC +AC AB =54

,又AB =8,∴BC +AC =10>AB , 由椭圆定义可知,点C 的轨迹是以点A 、B 为焦点的椭圆.

【答案】 (1)以点A 、B 为焦点的椭圆

(2)如图所示,设动圆圆心为M (x ,y ),半径为r . 由题意得动圆M 内切于圆C 1,

∴MC 1=13-r .圆M 外切于圆C 2,

∴MC 2=3+r .

∴MC 1+MC 2=16>C 1C 2=8,

∴动圆圆心M 的轨迹是以C 1,C 2为焦点的椭圆.

已知平面内动点P 及两个定点F 1,F 2:

(1)当PF 1+PF 2>F 1F 2时,点P 的轨迹是以F 1,F 2为焦点的椭圆;

(2)当PF 1+PF 2=F 1F 2时,点P 的轨迹是线段F 1F 2;

(3)当PF 1+PF 2

[再练一题]

1.Rt △ABC 中,∠CAB =90°,AB =2,AC =22

,曲线E 过C 点,动点P 在E 上运动,且保持PA +PB 的值不变,试判断动点P 的轨迹E 求曲线E 是什么曲线.

【解】 如图所示,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系.

在Rt △ABC 中,BC =AC 2+AB 2=322,∵PA +PB =CA +CB =22+322

=2 2. 又PA +PB >AB ,∴由椭圆定义知,动点P 的轨迹E 为椭圆.

(1)(2016·徐州高二检测)已知点M 到F ? ??

??12,0的距离比它到y 轴的距离大12

,则点M 的轨迹为________. (2)若A 是定直线l 外的一定点,则过点A 且与l 相切的圆的圆心的轨迹是________.

【精彩点拨】 (1)把条件转化为M 到定点与定直线的距离相等;(2)利用圆心到A 的距离与到切线的距离相等.

【自主解答】 (1)由于动点M 到F ? ??

??12,0的距离比它到y 轴的距离大12,所以动点M 到F ? ??

??12,0的距离比它到直线l :x =-12的距离相等.由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线.

(2)圆心与A 点的距离等于圆心到直线l 的距离,所以圆心的轨迹是抛物线.

【答案】 (1)抛物线 (2)抛物线

1.(1)要首先判断定点是否在定直线上;

(2)要准确判断准线的位置.

2.已知平面内定点F 及定直线l ,动点P 满足PF =d (d 为点P 到直线l 的距离):

(1)当定点F 不在定直线l 上时,动点P 的轨迹是以点F 为焦点,直线l 为准线的抛物线;

(2)当定点F 在定直线l 上时,动点P 的轨迹是以定点F 为垂足且与定直线l 垂直的一条直线.

[再练一题]

2.动点P (x ,y )满足|3x -4y +1|5

=x -2+y -2,则点P 的轨迹为________. 【解析】 |3x -4y +1|5的几何意义是点P (x ,y )到定直线3x -4y +1=0的距离,x -2+y -2的几何意义是点P (x ,y )到定点(2,1)的距离,由|3x -4y +1|5=

x -2+y-2可知动点P(x,y)满足到定直线3x-4y+1=0的距离与到定点(2,1)的距离相等,且定点不在定直线上,所以点P的轨迹为抛物线.

【答案】抛物线

[探究共研型]

探究1

【提示】平面内与两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线.

探究2 如果把双曲线定义中的动点设为P,常数设为 2a,你可以用一个数学式来表示双曲线的定义吗?

【提示】|PF1-PF2|=2a(2a<F1F2)

探究3 如果把定义中的“绝对值”去掉,变为动点P满足PF1-PF2=2a(2a<F1F2),那么点P的轨迹是什么?

【提示】动点P的轨迹是双曲线的一支(靠近焦点F2的一支).

探究4 如果把双曲线定义中的条件“2a<F1F2”去掉,动点P的轨迹是什么?

【提示】如果2a=F1F2,则动点P的轨迹是分别以F1,F2为端点的两条射线;

如果2a>F1F2,则动点P的轨迹不存在.

已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹.

【精彩点拨】根据动圆M同时与圆C1及圆C2相外切,分别转化为两圆外切的条件,利用这两个条件寻找圆心M与两定点C1、C2距离之间的关系,并结合圆锥曲线的定义进行判断.

【自主解答】如图所示,设动圆M与圆C1及圆C2分别外切于A和B.

根据两圆外切的条件,得|MC1-AC1|=MA,

|MC2-BC2|=MB,因为MA=MB,

所以|MC1-AC1|=|MC2-BC2|,即|MC2-MC1|=|BC2-AC1|=2,

所以点M到两定点C1、C2的距离的差是常数且小于C1C2,

又根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小).

1.本题以圆与圆的位置关系为载体融点的轨迹求法于其中,求解时可利用圆与圆的位置关系找出动点的等量关系(如本例中得到|MC1-AC1|=MA,|MC2-BC2|=MB)在此基础上对等量关系化简变形,得出相应动点的轨迹.

2.在解与双曲线有关的轨迹问题时,要注意双曲线定义中的条件“距离的差的绝对值”,判断所求的轨迹是双曲线的一支还是两支.

[再练一题]

3.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x-3)2+y2=1内切,则动圆圆心M的轨迹是________.

【导学号:24830023】【解析】设动圆M的半径为r.因为动圆M与圆C1外切且与圆C2内切,

所以|MC1|=r+3,|MC2|=r-1.相减得|MC1-MC2|=4.

又因为C1(-3,0),C2(3,0),并且C1C2=6>4,

所以点M的轨迹是以C1,C2为焦点的双曲线的右支.

【答案】以C1,C2为焦点的双曲线的右支

[构建·体系]

1.动点P到两定点A(-1,0),B(1,0)的距离之和为4,则点P的轨迹为________.

【解析】因为AB=2,PA+PB=4,所以点P的轨迹为椭圆.

【答案】椭圆

2.若动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹为________.

【解析】动点P到定点F和到定直线x=-2的距离相等,∴P点的轨迹为抛物线.

【答案】抛物线

3.(2016·淮安高二检测)平面内动点P到定点F1(-4,0)的距离比它到定点F2(4,0)的距

离大6,则动点P的轨迹方程是________.

【解析】由|PF1-PF2|=6<8=F1F2知,P点轨迹是以F1,F2为焦点的双曲线的右支.

【答案】以F1,F2为焦点的双曲线的右支

4.已知F1,F2是定点,F1F2=8,动点M满足MF1+MF2=8,则动点M的轨迹是________.

【解析】∵MF1+MF2=8=F1F2,∴点M的轨迹是线段F1F2.

【答案】线段F1F2

5.求与圆A:(x+5)2+y2=49和圆B:(x-5)2+y2=1都外切的圆的圆心P的轨迹.

【解析】因圆A与圆B外离,设圆P的半径为r,则PA=7+r,PB=1+r,∴PA>PB,∴|PA-PB|=6,而AB=10.∴P轨迹是以A、B为焦点的双曲线的右支.

【答案】以A、B为焦点的双曲线的右支

我还有这些不足:

(1)______________________________________________________________

(2)______________________________________________________________

我的课下提升方案:

(1)______________________________________________________________

(2)______________________________________________________________

学业分层测评(五) 圆锥曲线

(建议用时:45分钟)

[学业达标]

一、填空题

1.下列说法

①坐标平面内,到两定点F1(0,-2),F2(0,2)的距离之和等于2的点的轨迹是椭圆;

②坐标平面内,到两定点F1(0,-2),F2(0,2)的距离之和等于4的点的轨迹是椭圆;

③坐标平面内,到两定点F1(0,-2),F2(0,2)的距离之和等于6的点的轨迹是椭圆;

④坐标平面内,到两定点F1(0,-2),F2(0,2)的距离相等的点的轨迹是椭圆.正确的是________(填序号).

【解析】

【答案】 ③

2.若动点P 到定点F (-4,0)的距离与到直线x =4的距离相等,则P 点的轨迹是________.

【导学号:24830024】

【解析】 动点P 的条件满足抛物线的定义,所以P 点的轨迹是抛物线.

【答案】 抛物线

3.(2016·枣庄高二检测)过点F (0,3)且和直线y +3=0相切的动圆圆心的轨迹为________.

【解析】 由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离,故动圆圆心的轨迹是以F (0,3)为焦点,直线y =-3为准线的抛物线.

【答案】 以F (0,3)为焦点,直线y =-3为准线的抛物线

4.设定点F 1(0,-3),F 2(0,3),动点P 满足条件PF 1+PF 2=a +9a

(a >0),则点P 的轨迹是________.

【解析】 PF 1+PF 2=a +9a

≥6.∴轨迹为线段或椭圆. 【答案】 椭圆或线段

5.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹是________.

【解析】 由题意,动点P 以A (-5,0),B (5,0)为焦点的双曲线的右支.

【答案】 双曲线的右支

6.若点P 到F (3,0)的距离比它到直线x +4=0的距离小1,则动点P 的轨迹为________.

【解析】 由题意知P 到F (3,0)的距离比它到直线x =-4距离小1,则应有P 到(3,0)的距离与它到直线x =-3距离相等.故P 的轨迹是以F (3,0)为焦点的抛物线.

【答案】 以F (3,0)为焦点的抛物线

7.动点P 到点M (1,0),N (-1,0)的距离之差的绝对值为2,则点P 的轨迹是________.

【解析】 ∵|PM -PN |=2=MN ,∴点P 的轨迹是两条射线.

【答案】 两条射线

8.(2016·宜春高二检测)命题甲:动点P 到两定点A ,B 的距离之和PA +PB =2a (a >0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的________条件.

【解析】 若P 点轨迹是椭圆,则PA +PB =2a (a >0,常数),∴甲是乙的必要条件.反过来,若PA +PB =2a (a >0,常数)是不能推出P 点轨迹是椭圆的.

这是因为:仅当2a >AB 时,P 点轨迹才是椭圆;而当2a =AB 时,P 点轨迹是线段AB ;当2a <AB 时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.

【答案】 必要不充分

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

圆锥曲线教学设计

圆锥曲线 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣.

五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)线段(D)不存在 (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线 【设计意图】

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=?离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,2 2()a PF e x a ex c =-=-;1221tan 2F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+ . 过焦点弦长p x x p x p x CD ++=+++=21212 2. 8.抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px = . 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为 24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.

2019届二轮复习 圆锥曲线 学案 (全国通用)

第九讲 圆锥曲线 一、知识方法拓展: 1、直线系方程 若直线1111:0l a x b y c ++=与直线2222:0l a x b y c ++=相交于P ,则它们的线性组合()()1112220a x b y c a x b y c λμ+++++=(,R λμ∈,且不全为0)(*)表示过P 点的直线系。当参数,λμ为一组确定的值时,(*)表示一条过P 点的直线。 特别地,当0λ=时,(*)式即2220a x b y c ++=; 当0μ=时,(*)式即1110a x b y c ++=。 对于12,l l 以外的直线,我们往往只在(*)式中保留一个参数,而使另一个为1. 又若1l 与2l 平行,这时(*)式表示所有与1l 平行的直线。 2、圆锥曲线的第二定义(离心率、准线方程等) 圆锥曲线的统一定义为:平面内到一定点F 与到一条定直线l (点F 不在直线l 上) 的距离之比为常数e 的点的轨迹: 当01e <<时, 点的轨迹是椭圆, 当 1e >时, 点的轨迹是双曲线, 当 1e =时, 点的轨迹是抛物线, 其中e 是圆锥曲线的离心率c e a = ,定点F 是圆锥曲线的焦点, 定直线l 是圆锥曲线的准线,焦点在X 轴上的曲线的准线方程为2 a x c =±。 3、圆锥曲线和直线的参数方程 圆2 2 2 x y r +=的参数方程是cos sin x r y r θ θ=?? =? ,其中θ是参数。 椭圆22 221x y a b +=的参数方程是cos sin x a y b θθ =??=?,其中θ是参数,称为离心角。

双曲线22 221x y a b -=的参数方程是sec tan x a y b θθ =??=?,其中θ是参数。 抛物线2 2y px =的参数方程是2 22x pt y pt ?=?=?,其中t 是参数。 过定点()00,x y ,倾斜角为α的直线参数方程为00cos sin x x t y y t α α=+??=+? ,t 为参数。(关注几 何意义)。 4、圆锥曲线的统一极坐标方程 以圆锥曲线的焦点(椭圆的左焦点、双曲线的右焦点、抛物线的焦点)为极点,过极点引相应准线的垂线的反向延长线为极轴,则圆锥曲线的统一极坐标方程为 1cos ep e ρθ = -,其中e 为离心率,p 是焦点到相应准线的距离。 二、热身练习: 1、(07武大)如果椭圆()222210x y a b a b +=>> 那么双曲线22221x y a b -=的 离心率为( ) (A (B )2 (C (D ) 54 【答案】C 【解析】圆锥曲线的离心率c e a = , 椭圆中:2 2 2 c a b =-∴222 2 34 a b e a -==,得22 4a b = 双曲线中:2222 2254c a b e a a +=== ,得e = C 。

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: ② 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式,再代入原始式,最后得切线方程式1)()(22 02202020=+= +b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

圆锥曲线第二定义学案

圆锥曲线第二定义练习学案 1.过抛物线x 4y 2=的焦点F 作直线交抛物线于A (11y x ,)、B (22y x ,),若6x x 21=+,求|AB|的长。 2. 设椭圆22 22b y a x +=1(a>b>0)的右焦点为1F ,右准线为l 1,若过F 1且垂直于x 轴的弦的长度等于F 1到准线l 1的距离,求椭圆的离心率。 3. 双曲线13 y x 2 2 =-的右支上一点P ,到左焦点F 1与到右焦点F 2的距离之比为2:1,求点P 的坐标。 4.点P 在椭圆 上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______ 5. 抛物线上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到轴的距离为 6. 椭圆内有一点,F 为右焦点,在椭圆上有一点M ,使 之值最小,则点M 的坐标为_______ 7. 已知椭圆)0b a (1b y a x 22 22>>=+,21F F 、分别是左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率e 的取值范围。 8. 已知点A (32,-),设点F 为椭圆112 y 16x 2 2=+的右焦点,点M 为椭圆上一动点,求|MF |2|MA |+的最小值,并求此时点M 的坐标。 9.椭圆x 2/25+y 2 /9=1上有一点P ,如果它到左准线的距离为5/2,那么P 到右焦点的距离是 。 10. F 2是椭圆x 2/a 2+y 2/b 2=1(a >b>0)的右焦点,P(x 0,y 0)是椭圆上任一点,则|PF 2|的值为: A. ex 0-a B. a-ex 0 C. ex 0-a D.e-ax 0 11.过抛物线y 2=4x 的焦点的一条直线交抛物线于A 、B 两点,若线段的中点的横坐标为3,则|AB|= 。 12. 已知椭圆方程为x 2/b 2+y 2/a 2=1(a>b>0),求与这个椭圆有公共焦点的双曲线,使得以它 们的交点为顶点的四边形面积最大,并求相应的四边形的顶点坐标。 13. 已知椭圆x 2/4+y 2/3=1内有一点P(1,-1),F 为右焦点,椭圆上有一点M ,使|MP|+2|MF|值最小,求点M 的坐标

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考数学一轮 圆锥曲线的综合问题(学案)

§9.8圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系: 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0. (1)交点个数: ①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。 (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。 3.求动点轨迹方程: ①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求. 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆15 92 2=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形, ||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6 ★热点考点题型探析★ 考点1直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ) A .[- 21,2 1 ] B .[-2,2] C .[-1,1] D .[-4,4] 【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线2 8y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+, 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

圆锥曲线与方程单元教学设计

圆锥曲线与方程单元教 学设计 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

课题名称《圆锥曲线与方程》单元教学设计 设计者姓名郭晓泉 设计者单位华亭县第二中学 联系电话 电子邮箱 《圆锥曲线与方程》单元教学设计 一、教学内容分析 1、实际背景分析 该单元选自人教版数学选修2-1.圆锥曲线与科研、生产以及人类生活关系密切,早在16、17世纪之交,开普勒就发现了行星绕太阳运行的轨道是一个椭圆;探照灯反射镜是抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线,……现代航空航天领域内圆锥曲线也有重要的应用。圆锥曲线在实际生产生活中有着巨大的作用,主要来自于它们的几何特征及其特性。 2、数学视角分析 《圆锥曲线与方程》是中学数学解析几何的主要内容,研究圆锥曲线的性质,是圆的几何性质的推广与延伸,是运用坐标法从代数的角度来研究圆锥曲线性质,为了解决这个问题,让学生更好地理解和学习圆锥曲线的性质,先了解曲线与方程的关系,研究如何建立曲线的方程,把几何的形与代数的数通过这个关系有机的联系起来,充分运用数的运算来解决形的问题,达到数形统一,体现数形结合的思想。对于圆锥曲线的几何特征与方程的研究,延续了必修课程《必修2》中研究直线与圆的方程的方法,通过图形探究圆锥曲线的几何特征,建立它们的方程,并通过方程来研究他们的简单性质,进而利用坐标法解决一些圆锥曲线有关的简单几何问题和实际问题。 3、课程标准视角分析 (1)学生学习方式的转变问题。在本部分内容中,延续了《必修2》中研究直线与圆的方程的思想,所以应该引导学生通过积极主动的探索来完成圆锥曲线的学习,教师通过圆锥曲线背景的介绍,激发学生的学习兴趣,在研究了椭圆方程及性质的基础上,用类比的方法来研究双曲线和抛物线的方程及性质,经历直观感知,定义、建立方程、研究性质的基本过程,感受坐标法的作用,体会数形结合法的思想。 (2)学生思维能力培养的问题。“高中数学课程应注意提高学生的数学思维能力,这是数学教育的基本目标之一。”这是课标对学生思维培养的要求,在圆锥曲线这部分

相关文档
最新文档