发电机定子接地保护

发电机定子接地保护
发电机定子接地保护

发电机定子接地保护

摘要:本文介绍了发电机定子接地保护的要求、保护方式和三次谐波电压100%定子保护,并对零序电压定子接地保护和三次谐波电压100%定子保护的整定做了阐述, 是继电保护工作者很好的学习交流资料。

关键词:100%定子接地保护;中性点;零序电压;三次谐波电压

Abstract

This paper introduces the generator stator ground fault protection, protected-type and 3rdharms 100% stator protection, And the zero sequence voltage stator ground fault protection and 100% 3rdharms of whole custom-made stator protection is introduced ,Is the relay protection workers very good learning communication material .

Keywords:100% stator ground fault protection; neutral; Zero sequence voltage; 3rdharms voltage

1、概述

规程规定,容量为100MW及以上的发电机应装设100%定子接地保护。发电机是电厂的核心部分,而且较为贵重,再加上发电机定子结构复杂,不易检修,必须保护好定子,随着我国电力事业的迅猛发展,单机容量的增大,特别是针对少数地区小电网大机组的特点,定子接地保护显得尤为重要。本文主要对定子接地保护做介绍。

2、定子接地保护的要求

目前发电机中性点采用不接地或经高阻抗接地方式, 当定子绕组发生单相接地时, 流过故障点的发电机电压系统对地的电容电流所产生的电弧将会灼伤铁心, 甚至进一步发展,造成发电机定子绕组相间或匝间短路。大型发电机在系统中占有重要地位,而且由于结构复杂,损坏后修复工作困难,因此,要求给大型发电机装设高灵敏度、无动作死区的定子单相接地保护。对直接与主变压器联接的大型发电机定子单相接地保护, 要求能够测出发电机中性点附近的接地故障, 即保护范围应为 100%;对于水内冷发电机,还进一步要求能够监测出靠近中性点的绕组绝缘下降,即保护应具有较高的灵敏度(以故障点对地的过渡电阻值表示),因为在中性点附近有漏水缺陷时,将使绝缘水平降低,而持续

的漏水又有可能损坏同一线槽或相邻线槽中线棒的绝缘,造成匝间或相间短路。如果在靠近出线端发生接地故障,发电机中性点对地电压升高,使中性点附近绝缘水平降低,部分发生闪络, 从而引起两点接地故障,发电机将遭受严重损坏。

按规程规定, 对直接连于母线的发电机定子绕组发生单相接地故障, 当发电机电压网络的接地电容电流大于 5A时(不考虑消弧线圈的补偿作用), 应装设动作与跳闸的接地保护;如没装设专用的定子绕组接地保护;则可利用接于母线电压互感器上的绝缘监视装置发出信号;对于发电机-变压器组, 当发电机电压回路三相对地电容电流大于 5A时, 应装设消弧线圈补偿, 对地电容电流小于 5A时,接地保护动作于信号(当有匝间短路保护时), 即认为接地电容电流小于 5A时,允许带接地点短时间运行, 待适当时机转移负荷后再停机。根据这一标准, 即认为接地电容电流超过 5A时, 铁心将严重灼伤而不易修复,要求保护动作于跳闸;接地电容电流小于5A时,铁心灼伤比较轻微, 因此保护可进动作于信号, (实际运行中允许定子铁芯有一定程度的损坏,即熔化的迭片数、铁芯熔化体积及灼伤深度不超过规定值)。目前由于水内冷大型发电机的材料利用率高,所以采用复杂的冷却方式,不仅有辅向通风槽,还有轴向冷却通道等, 从而使铁芯检修难度增大,停机检修造成的经济损失大。因此, 要求定子接地电容电流的允许值必须结合实际运行经验作进一步的探讨。

3、发电机定子接地的保护方式

发电机单相接地故障电流因中性点接地方式的不同而不同, 保护方式也不同。按照继电保护配置规程的规定, 大型发电机组单相接地故障电流达到 1A时, 定子一点接地保护应动作跳闸, 同时要求实现100%定子接地保护, 而且要求在保护区内任一点接地保护应有足够高的灵敏度。

3.1 基波零序电压定子接地保护

发电机定子回路各点的基波零序电压相同, 因而利用基波零序电压作为动作参量的定子接地保护是不可能区分接地故障点位于发电机内部或外部。对于大中型发电机组, 当发电机中性点采用消弧线圈接地时, 故障电流补偿到较小数值,定子接地只发信号;当发电机中性点采用接地变压器高阻接地时, 故障电流较大, 定子接地保护应可靠动作跳闸。为保证保护动作的选择性, 动作电压取5~15V, 以躲过正常运行的不平衡电压以及高压侧接地故障的耦合过电压。但这种保护仍有5%以上的死区, 适用于中小型机组的发电机定子接地保护。

零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统产生的最大横向零序电压来整定,即

Udz0=Krel*U0max

Udz0—零序电压式定子接地保护的动作电压;

Krel—可靠系数,取1.2~1.3 ;

U0max—发电机正常运行时的最大横向零序电压。

影响U0max的因素主要有:

(1)发电机的三次谐波电势;

(2)机端三相TV各相间的变比及角误差(主要是TV一次绕组对三次绕组之间的比误差);

(3)发电机电压系统中三相对地绝缘不一致;

(4)主变压器高压侧发生接地故障时由变压器高压侧传递到发电机系统的零序电压。

测量表明:

(1)并网运行发电机的三次谐波电势与发电机的负荷有关,最大可达发电机电压的5%~7%。在发电机机端TV开口三角形绕组两端及中性点TV二次产生的电压最大各位3V。如果定子接地保护能有效滤去三次谐波电压,在进行定值整定时可不考虑这一电压。

(2)机端三相TV的一次绕组对三次绕组之间变比不一致,在机端TV开口三角形绕组两端产生基波电压通常有0.5~1.5V。

(3)主变压器高压侧发生接地故障时,有变压器高压侧传递到发电机系统的零序电压,主要决定于变压器高压侧绕组与发电机侧(低压侧)绕组之间的耦合电容。对于电压等级为220kV及以上的变压器,高压侧零序电压传递到发电机系统侧的分量很小。另外通过延时可以躲过这一电压的影响。因此,整定定子接地保护的动作电压时,可以不考虑这一因素。

(4)引起发电机三相对地绝缘不一致的因素是多种多样的,主要是发电机三相绕组对地绝缘固有的不一致,以及外界环境的影响。当发电机母线经穿墙套管-裸导线与室外的主变压器或厂用高压变压器连接时,在雨天很容易引起发电机系统三相对地绝缘不对称。运行实践表明:最严重时,在发电机系统产生的零序电压可达发电机额定电压的8~10%,即将在机端TV开口三角绕组两端或中性点TV 二次产生8~10V的电压。发电机三相绕组对地绝缘固有不一致引起的零序电压,

最大为2%,即2V(二次值)。

考虑到上述种种因素,Udz0可取5~15V。

3.2 零序电流定子接地保护

保护装置一般由装设于发电机端的零序电流互感器及相应的电流继电器组成。接于零序电流互感器上的发电机零序电流保护, 其整定值选择如下:

(1)躲过外部单相接地时, 发电机本身的电容电流以及由于零序电流互感器一次侧三相导线排列不对称, 而在二次侧引起的不平衡电流。

(1)保护装置的一次动作电流应小于 4A, 并应尽可能灵敏一些。

(2)为防止外部相间短路产生的不平衡电流引起接地保护误动作,应在相间保护动作时将接地保护闭锁。

(3)保护装置一般带有 1~2s 的时限, 以躲开外部单相接地瞬间发电机暂态电容电流的影响。当发电机定子绕组的中性点附近接地时, 由于接地电流很小, 保护将不能起动, 因此零序电流保护不可避免地存在一定死区, 发电机定子保护范围达不到 100%, 这种方式只适用于中小型机组。

3.3 100%定子接地保护

对于大中型机组, 由于机械损伤或其它原因, 发生靠近发电机中性点及附近的绕组发生接地故障几率较高。若这种故障不能及时发现处理, 可能进一步发展成匝间或相间短路或定子两点接地故障。其结果都会造成发电机的严重损坏。所以现代大中型机组必须装设能反映 100%的定子绕组的接地保护。

100%定子接地保护装置一般由两部分组成,第一部分是零序电压保护,能保护发电机绕组靠机端侧 85~95%(短路点越靠近机端侧零序电压越高),第二部分保护用来消除零序电压保护不能保护的死区。

4、利用三次谐波电压构成的发电机定子接地保护

无论从理论分析还是实测数据中都可以得出: 汽轮发电机和水轮发电机, 不管正常运行还是故障情况下, 它们的相电压中总含有一定的三次谐波分量。利用三次谐波电压可构成定子接地保护, 它和基波零序电压定子接地保护共同构成了对发电机定子绕组 100%保护。这种发电机 100%定子绕组保护方式在我国使用较多。

基波零序电压型接地保护有靠近发电机中性点 5%~10%的死区,发电机正常运行时总有发电机中性点的三次谐波电压比发电机出线端的三次谐波电压大且

不随负荷状态变化(实际有微小变动);当发电机中性点附近发生接地故障, 总有出线端的三次谐波电压比中性点的三次谐波电压大利用此原理构成三次谐波电压保护, 可以消除基波零序电压保护的死区。

由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。

为便于分析,假定:

(1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。

(2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS也等效的集中放在机端。

根据理论分析,在上述加设条件下,可得出下列结论:

(1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为

US3/UN3=CG/(CG+2CS)<1

(2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为

US3/UN3=(7CG-2CS)/9(CG+2CS)<1

(3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为

UN3=αE3

US3=(1-α)E3

如图所示:

从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3;当机端接地时,

α=1,UN3=E3,US3=0;当α<O.5时,恒有US3>UN3;当α>O.5时,恒有UN3>US3。

综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>UN3时保护动作,则在发电机正常运行时保护不会误动,而在发电机中性点附近发生接地时,保护具有很高的灵敏度。用这种原理构成的发电机定子绕组单相接地保护,可以保护定子绕组中性点及其附近范围内的接地故障,对其余范围则可用反应基波零序电压的保护,从而构成了100%发电机定子绕组接地保护。

5、实际应用

但在实际应用中,采用100%定子绕组接地保护常常发生误动,这在许多发电厂发生过, 为什么会这样呢?原来这与发电机中性点的接地方式有关。当发电机中性点直接接地或经消弧线圈接地时,在正常情况下,中性点的三次谐波电压总是大于机端三次谐波电压,因保护装置的制动量大于动作量,保护不会误动作;当发电机中性点经配电变压器接地时,在正常情况下,中性点的三次谐波电压将总是小于机端三次谐波电压,因保护装置的制动量小于动作量,保护将会误动作。所以我们在采用100%定子绕组接地保护时,要特别注意发电机中性点的接地方

式,要因地制宜,不能一概而论。

6、结束语

发电机定子接地保护方式、技术发展迅速,新型保护方式不断出现;发电机定子接地保护方式对发电机中性点接地方式的选择有较大影响,发电机定子接地保护方式必须与发电机中性点接地方式、发变组接线方式、发电机接地故障电流、过电压要求相适应。

发电机转子一点接地故障处理

GUANGXIDIANYE2007.9(总第90期)交流与探讨 广西电业 发电机转子一点接地故障处理 黄大健 (广西宜州水电厂,广西宜州市546300) [摘要]发电机转子一点接地是发电机一种常见的故障。本文针对一起误发发电机转子一点接故障信号的事件,分析处理故障的过程。 [关键词]转子;一点接地;叠加电源;故障处理 发电机组励磁保护越来越多地使用了微机型保护。本厂 的1GS-1TM发变组保护使用南京自动化设备总厂的WF-BZ-01微机型发电机变压器组保护装置,其功能包含有转子一点接地保护。原理是用叠加直流方法,叠加电源电压为50V,内阻大于50kΩ,利用微机智能化测量克服了传统保护中绕组正负极灵敏度不均匀的缺点,能准确计算出转子对地的绝缘电阻值,范围可达200kΩ,保护动作延时1至10秒。转子分布电容对测量无影响。发电机起动过程中转子无电压时保护并不失去作用。保护引入转子负极和大轴接地线。 1转子一点接地的危害 发电机的励磁绕组高速旋转极易发生一点接地故障。发生一点接地后,无电流流过故障点,不形成电流通路,无电流流过故障点,励磁电流仍保持正常,对发电机并无直接危害,但转子绕组对地已产生电压,当系统发生各种扰动时,电压可能出现较大值,极易造成另外一点接地,从而形成两点接地短路,一部分励磁绕组被短接,其后果是:(1)转子磁场发生畸变,力矩不平衡,引起机体震动,无功出力降低;(2)故障点流过很大的短路电流,接地电弧将烧坏励磁绕组和转子本体。接地电流可能使轴系和汽缸磁化;(3)转子本体局部通过转子电流,引起局部发热,使转子发生缓慢变形,而形成偏心加剧机体震动。 当一点接地信号发出,同时判断为永久性接地故障后,人为投入转子两点接地保护作用于跳闸,或者人为安排停机处理。 2实例分析及处理 发电机转子一点接地故障原因很多,不同的故障原因有不同的解决方法。如拉浪电站1号机组从2002年1月以来,两年间多次出现转子一点接地故障信号,出现此故障信号时,维护人员用毛巾蘸酒精来抹转子滑环,但故障并不能复归。测量转子回路正对地为+40V,负对地为-36V,正负间为+76V,正常时测量转子回路正对地为+296V,负对地为+220V,正负间为+76V,正、负极对地电位改变,但正负极之间电压差保持不变。之后有停机机会时,用500V的摇表来测量转子回路对地绝缘,但电阻均大于5MΩ,说明转子并未真正接地。分别甩开转子、励磁功率柜,分段测量励磁动力电缆对地绝缘,并没有发现任何异常。每次发电机出现转子一点接地报警信号时,检查发电机运行正常,机组有功、无功功率和振动水平正常,励磁系统调节信号平稳,没有异常的波动信号,也没有其他的异常情况。 转子一点接地故障信号时有时无,虽然没有直接影响机组正常运行,不致于停机,但总是一个谜,需要解开。 经研究总结发现,每次转子一点接地信号出现时,都是厂用电400VⅠ段切换到Ⅱ段后发生的,估计是切换厂用电引起的故障,决定用试验来证明。试验结果是:厂用电400VⅠ段切换到Ⅱ段时,有时出现转子一点接地信号,有时没有出现转子一点接地信号,故障并不是稳定出现,虽然找不出规律,但总算找到了一点关系,往前迈了一步,将查找范围缩小了。经查看、分析1GS主励磁回路图、1GS励磁交、直流回路图,转子一点接地测量原理图等,绘制出图1。根据图1可知,1GS励磁调节柜的交流电源引自厂用电400VⅠ段电源和1号机组励磁变压器103TM低压侧。其交流负荷有柜内的照明灯、励磁功率A、B柜内的风扇,风扇使用的是三相电源,照明灯1EL使用的是单相电源。 130

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

发电机转子接地保护

发电机转子接地保护 正常运行时,发电机转子电压(直流电压)仅有几百伏,且转子绕组及励磁系统对地是绝缘的。因此,当转子绕组或励磁回路发生一点接地时,不会构成对发电机的危害。但是,当发电机转子绕组出现不同位置的两点接地或匝间短路时,很大的短路电流可能烧伤转子本体;另外,由于部分转子绕组被短路,使气隙磁场不均匀或发生畸变,从而使电磁转矩不均匀并造成发电机振动,损坏发电机。 为确保发电机组的安全运行,当发电机转子绕组或励磁回路发生一点接地后,应立即发出信号,告知运行人员进行处理;若发生两点接地时,应立即切除发电机。因此,对发电机组装设转子一点接地保护和转子两点接地保护是非常必要的。 规程规定,对于汽轮发电机,在励磁回路出现一点接地后,可以继续运行一定时间(但必须投入转子两点接地保护);而对于水轮发电机,在发现转子一点接地后,应立即安排停机。因此,水轮发电机一般不设置转子两点接地保护。 一发电机转子一接地保护 1 转子一点接地保护的类别 转子一点接地保护的种类较多,主要有叠加直流式、乒乓式及测量转子绕组对地导纳式(实质是叠加交流式)。目前,在国内叠加直流式转子一点接地保护及乒乓式转子一点接地保护得到了广泛应用。 2 叠加直流式转子一点接地保护 (1)构成原理 叠加直流式转子一点接地保护的构成原理是:在发电机转子绕组的一极(正极或负极)对大轴之间,加一个直流电压,通过计算直流电压的输出电流,来测量转子绕组或励磁回路的对地绝缘。其构成原理框图如图43所示。 U = 图43 叠加直流式转子一点保护原理图 在图42中: U-外加直流电压; = I-计算及测量元件; p R-转子接地电阻。 正常工况下,发电机转子绕组或励磁回路不接地,外加直流电压不会产生电流;当转子绕组或励磁回路中发生一点接地时(设接地电阻为R),则外加直流电压通过部分转子绕组、接地电阻、发电机大轴构成回路,产生电流 i。接地电阻越小,p i越大;反之亦反。 p 测量计算装置根据电流 i的大小,便可计算出接地电阻值。 p

发电机定子单相接地保护

发电机定子单相接地保护 发电运行部 钟应贵 一、 发电机定子单相接地的危害 设发电机定子绕组为每相单分支且中性点不接地,发电机定子绕组接线示意图及机端电压向量图(图1) A B C (a )定子绕组接地示意图 B C (b )定子绕组接地电压向量图 设A 相定子绕组发生接地故障,接地点距中性点的电气距离为α(所谓电气距离,就是发电机单相定子绕组的长度,α为中性点到故障点的绕组占全部绕组的百分数),此时,在接地点会出现一个零序电压。 由图1(b )向量图可以看出,A 相接地时,使B 相及C 相对地电压,由相电压升高到另一值。当机端A 相接地时,B 、C 两相的对地电压由相电压升高到线电压。 另外,发电机定子绕组及机端连接元件(包括主变低压侧及厂用变高压侧)对地有分布电容,零序电压通过分布电容向故障点供给电流。此时,如果发电机中性点经某一电阻接地,

则发电机零序电压通过电阻也为接地点供给电流。 综合上述分析,发电机定子绕组单相接地的危害是: 1、非接地相对地电压升高,将危及对地绝缘,当原来绝缘较 弱时可能会造成非接地相相间发生接地故障,从而造成相 间接地短路,损害发电机。 2、流过接地点的电流具有电弧性质,会产生电弧,可能烧 伤定子铁芯。 分析表明:接地点距发电机中性点越远,对发电机的危害越 大;反之越小。 二、发电机定子绕组单相接地保护的构成 1、利用零序电压构成的发电机定子绕组单相接地保护 由上述分析:画出零序电压3U0随故障点位置α变化的曲线,见图2。 3U0(v) 50 Uop 图2 定子绕组单相接地时3U0与α的关系曲线 越靠近机端,故障点的零序电压越高。利用基波零序电压构成定子单相接地保护,图中Uop为零序电压定子接地保 护的动作电压。定子绕组单相接地保护用的零序电压的获取 见图3。

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

发电机定子接地故障排查

龙源期刊网 https://www.360docs.net/doc/9018073625.html, 发电机定子接地故障排查 作者:贾鹏 来源:《科技与创新》2015年第09期 摘要:阐述了发电机出口离相式封闭母线受潮,使得发电机组定子接地跳闸的情况,并 分析了具体的处理过程和防范措施。 关键词:定子接地故障;绝缘子;封闭母线;驱潮工作 中图分类号:TM31 文献标识码:A DOI:10.15913/https://www.360docs.net/doc/9018073625.html,ki.kjycx.2015.09.144 1 事故概述 某电厂2×300 MW发电机组采用哈尔滨电机厂生产制造的QFSN-300-2型水氢氢发电机,机端额定电压为20 kV,中性点经消弧线圈接地。发电机保护采用的是南京国电南自凌伊电力自动化有限公司生产的DGT-801A保护装置,定子接地保护采用的是基于稳态基波零序电压和三次谐波原理构成的100%保护。 该厂#1机组在负荷为226 MW的情况下运行时,发电机突然跳闸解列,汽机跳闸,锅炉 灭火,监控画面首出“发电机保护动作”,就地检查保护屏,发出了“发电机定子3U0定子接地”报警,而双套保护均动作,发出信号为发电机“定子接地”保护动作。下面,结合此次发电机定子接地故障的实际情况,简单分析了大型发电机定子接地故障的排查。 2 事故处理过程 2.1 二次系统检查 跳机后,应先全面检查保护装置,2套发电机保护装置A柜、B柜的“定子接地”保护均动作,基波3UO发跳闸信号,3次谐波3 W发报警信号,查看保护定值零序电压为8 V,延时4 s动作。查看故障录波图,发电机机端电流A,B,C三相峰值分别为3.28 A、3.30 A、3.26 A,发电机机端电压A,B,C三相峰值分别为86.979 V、80.182 V和74.518 V,C相电压下降得较快。发电机“定子接地”保护动作时,发电机机端零序电压2套保护动作值分别为8.643 9 V、8.647 4 V和8.668 8 V、8.665 2 V,零序电压达到8.6 V保护动作。对发电机出口PT一次侧做加压试验,保护屏电压显示正确,PT二次回路绝缘测试合格,基本排除了保护误动的可能。但是,这些故障数据并不能确定是发电机内部故障还是外部故障。 2.2 一次系统检查 初步检查发电机非电气系统,未发现发电机有积水、漏氢、漏油等情况,且系统工作正常。定子冷却水电导率化验合格,在发电机本体、励磁变、出线离相封母、出口PT、中性点

发电机转子接地

发电机转子接地 发电机转子是直流系统,通过滑环与外部直流电源连接,转子绕组有绝缘保护,与转子间没有电的联系。如果有一点接地,说明转子绕组绝缘有破坏,绕组与转子有接触,这种情况可能引起发电机损坏,应当停机进行检修。所以要设置转子一点接地保护,此保护仅用于报警,有运行人员到现场观察后,根据实际情况确认是否停机.发电机一点接地保护在运行时就投入,不是停机后才投入的 发电机励磁回路一点接地故障是常见的故障形式之一,励磁回路一点接地故障,对发电机并未造成危害,但相继发生第二点接地,即转子两点接地时,由于故障点流过相当大的故障电流而烧伤转子本体,并使磁励绕组电流增加可能因过热而烧伤;由于部分绕组被短接,使气隙磁通失去平衡从而引起振动甚至还可使轴系和汽机磁化,两点接地故障的后果是严重的,故必须装设转子接地保护。 发电机转子一点接地保护 ??采用乒乓式开关切换原理,通过求解两个不同的接地回路方程,实时计算转子接地电阻阻值Rf和接地位置α。实质:在发电机运行时轮流测量转子绕组正极、负极的对地电流,并根据测得的结果计算出转子绕组或励磁回路的对地电阻,从而判断出接地故障的位置及接地电阻的量值。 图为乒乓式原理图,其中:S1、S2 为由微机控制的电子开关,Rg 为接地电阻,α为接地点位置,E 为转子电压,两个测量电阻R。 发电机转子两点接地保护? ?发电机励磁回路一点接地故障,对发电机并未造成危害,但若再相继发生第二点接地故障,则将严重威胁发电机的安全。保护原理:在一点接地故障后,保护装置继续测量接地电阻和接地位置,此后若再发生转子另一点接地故障,则已测得的α值变化,当其变化值Δα超过整定值时,保护装置就确认为已发生转子两点接地故障,发电机经转子两点接地延时时间跳闸。

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

关于发电机定子接地保护问题的探讨

第2期(总第97期) 2001年4月 山西电力技术 SHANXI ELECTRIC POWER No 12(Ser 197)Apr 12001 关于发电机定子接地保护问题的探讨 郑一凡 (山西大同热电有限责任公司,山西大同 037039) 摘要 :根据QFS —60—2型双水内冷发电机特点,对其定子接地保护典型设计回路中存在的问题以及应采取的改进措施进行了分析和讨论。关键词:发电机;定子保护;探讨 中图分类号:TM 311 文献标识码:B 文章编号:100526742(2001)022******* 1 发电机定子绕组单相接地的特点 由于发电机中性点不直接接地,因此它具有一般不接地系统单相短路的共性。不同之处在于故障点的零序电压将随定子绕组接地点的位置而改变。 例如,当距发电机中性点a 处发生单相(如A 相)接地故障时(图1),则各相机端对地电压为: 图1 发电机内部单相接地时的电流分布 U A d =(1-a )E A , U Bd =E B -aE A ,U Cd =E C -aE A 。 所以,故障点的零序电压为: U d0(a )=1 3(U A d +U Bd +U Cd )=-aE A =aU Υ, 故障点处总接地电容电流为(分析略): I jd ∑(a )=j 3Ξ(C 0f +C 0∑)aU Υ。 可见,当发电机内部单相接地时,流过零序电流互感器LH 0一次侧的零序电流为(分析略): 3I 0=j 3ΞC 0∑aU Υ, 式中:a ——发电机中性点到故障点的绕组占全 部绕组的百分数; 收稿日期:2001201221 作者简介:郑一凡(19562),男,山西山阴人,1983年毕业于太原理 工大学热能动力专业,高级工程师,总经理。 C 0∑——除本发电机以外的发电机电压网络 每相对地总电容; C 0F ——发电机每相对地电容。 2 定子接地保护 由于发电机的外壳是接地的,因此定子绕组因绝缘破坏而引起单相接地就比较普遍。当定子绕组发生单相接地时,从以上分析可以看出,有电流流过故障点,其值决定于定子绕组的接地电容电流和与发电机有电联系的电网接地电容电流。当接地电流较大且产生电弧时,将使绕组绝缘和定子铁芯烧坏。因此规程规定:当接地电流等于或大于5A 时,定子绕组接地保护应动作跳闸。211 零序电压保护 发电机定子绕组任意点单相接地时,在定子回路各点均有零序电压aU Υ,因此可以根据aU Υ的出现与否来构成零序电压保护(图2)。 图2 零序电压保护原理 正常运行时,由于发电机相电压中含有三次谐波电压,当变压器高压侧发生单相接地故障时,由于变压器高、低压绕组之间存在耦合电容,都会出现零序电压。为了保证动作的选择性,保护装置的整定值必须躲过上述电压的影响,继电器的动作电压一般整定在15V ~30V 。按上述条件,保护装置

发电机转子接地原因、危害、处理

发电机转子接地原因、危害、处理发电机转子接地有转子一点接地和两点接地,另外还会发生转子层间和匝间短路故障。与定子接地一样,转子接地有瞬时接地、断续接地、永久接地之分,也有内部接地和外部接地,金属性接地和电阻性接地之分。 发电机在长期运行过程中,由于转子内部受潮、冷却介质泄漏、绝缘老化以及机械振动等诸多方面的原因,容易造成转子对地绝缘水平的降低进而引发转子接地故障。当转子发生一点接地故障时,虽然不会对发电机本身造成直接的危害,但若再相继发生两点接地,则将严重威胁发电机的安全。 一转子接地的原因 工作人员在励磁回路上工作时,因不慎误碰或其他原因造成转子接地;转子滑环,槽及槽口、端部、引线等部位绝缘损坏;长期运行绝缘老化,因杂物或振动使转子部分匝间绝缘垫片位移,将转子通风孔局部堵塞,使转子绕组绝缘局部过热老化引起转子接地;鼠类等小动物窜入励磁回路,定子进出水支路绝缘引水管破裂漏水,励磁回路脏污等引起转子接地。 二转子一点接地的危害 发电机转子一点接地故障是常见的故障形式之一,发生一点接地故障时励磁绕组与地之间尚未形成电气回路,转子的励磁电压和流过转子的转子电流受到的影响很小,所以并不对发电机造成危害,此时可通过转移负荷,平稳停机后再检查故障。

三转子两点接地的危害 1、破坏发电机气隙磁场的对称性,使气隙磁场发生畸变,气隙磁通失去平衡,引起发电机剧烈振动,使电机损坏、无功出力降低。汽轮发电机励磁回路两点接地还可引起轴系和汽机磁化,后果严重。若装有横差保护,还会引起其误动,因此,转子一点接地保护动作后要将横差保护加上一个短的延时,防止误动。 2、两点接地造成非短路的绕组电流增大,如果流过转子本体的短路电流大( 通常以1500 A 为界限),热效应烧损转子的同时还会使转子发生缓慢变形,造成偏心增大,加剧振动。另外,还可能损坏其他励磁装置,导致失磁故障,危及发电机和系统的安全。为确保发电机的安全运行,当发电机转子绕组发生一点接地时,应发出信号,运行人员立刻进行处理;若发生两点接地应立即停止发电机的运行。因此,发电机装设转子一点和两点接地保护是非常必要的。 四转子一点接地的现象及处理 发电机发生转子一点接地时,中央信号警铃响,“发电机转子一点接地”光字牌亮,表计指示无异常。转子回路一点接地时,因一点接地不形成电流回路,故障点无电流通过,励磁系统仍保持正常状态,故不影响机组的正常运行。此时,应检查“转子一点接地”保护信号是否能够复归。若能复归,则为瞬时接地;若不能复归,应检查转子一点接地保护是否正常,若正常,则可利用转子电压表通过切换开关测量正、负极对地电压,鉴定是否发生了接地。若发现某极对地电压降到零,另一极对地电压升至全电压( 正、负极之间的电压值),

发电机100%定子接地保护的实现

发电机100%定子接地保护的实现 发电机能实现100%定子接地保护,采用了基波零序电压式定子接地保护和三次谐波电压构成的定子接地保护。,前者可反应发电机的机端向机内不少于85%定子绕组单相接地故障(85%~95%),后者反应发电机中性点向机端20%左右定子绕组单相接地故障(0~50%)。通过这两种保护的相互配合,达到了大容量机组100%定子接地保护的要求。 发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组 而构成通路。当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定 子铁芯烧坏,也容易发展成危害更大的定了绕组相间或匝间短路。 第一部分是基波零序电压式定子接地保护: 保护接人的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点电压互感器的二次侧。零序电压式定子接地保护的交流输入回路如图1所示。

第二部分是利用发电机三次谐波电动势构成的定子接地保护 由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。 正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。 根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。三次谐波定子接地保护交流接入回路如图6所示。

该保护的动作逻辑图如图7所示。

发电机定子单相接地保护

发电机定子绕组单相接地保护方案综述 发布: 2009-8-07 09:59 | 作者: slrd8888 | 查看: 882次 1 前言 定子绕组单相接地故障是发电机最常见的一种故障,而目往往是更为严重的绕组内部故障发生的先兆,因此定子接地保护意义重大。目前实际应用中比较成熟的定子接地保护有基波零序电压保护、三次谐波电压保护及二者组合构成的保护,国外的发电机中性点大都是经高阻接地,较多的采用的是外加电源式的保护。近十几年微机保护的飞速发展,为新保护原理的开发提供了强大的硬件平台和广阔的软件空间。其中基于自适应技术、故障分量原理和小波变换的保护比较突出,它们有力地推动了单相接地保护技术的发展。 扩大单元接线的发电机定子接地保护迫切需要具有选择性的保护方案,由于零序方向保护自身的缺陷、基于行波原理的保护在理论和技术上尚不够成熟,因此将小波变换应用到选择性定子接地保护有着重要的意义。 2 定子绕组单相接地保护方案 发电机定子绕组单相接地时有如下特点:内部接地时,流经接地点的电流为发电机所在电压网络对地电容电流的总和,此时故障点零序电压随故障点位置的改变而改变;外部接地故障时,零序电流仅包含发电机本身的对地电容电流。这些故障信息对接地保护非常重要,下面就介绍几种定子接地保护方法。 2.1 零序电流定子接地保护 由单相接地故障特点可知,对直接连在母线上的发电机发生内部单相接地时,外接元件对地电容较大,接地电流增大超过允许值,这就是零序电流接地保护的动作条件。这种保护原理简单,接线容易。但是当发电机中性点附近接地时,接地电流很小,保护将不能动作,因此零序电流保护存在一定的死区。 2.2 基波零序电压定子接地保护

关于发电机定子绕组接地保护3U0整定的讨论

关于发电机定子绕组接地保护3U0整定的讨论 发表时间:2017-07-17T15:17:51.820Z 来源:《电力设备》2017年第8期作者:吴文宝 [导读] 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念 (江西省火电建设公司江西南昌 330001) 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念,并介绍了新疆某600MW电厂使用的定子接地保护整定方法。在各种运行条件下,对主变高压侧发生单相接地故障时耦合至发电机侧的零序电压进行分析计算,提出了发电机定子接地保护的整定建议。 关键词:发电机组;定子接地保护;3U0电容;接地电流 一、定子接地保护在大型汽轮发电机组中的地位 发电机是电力系统中最重要的设备之一,其外壳完全接地。当发电机定子绕组与铁心之间的绝缘被破坏时,就形成了定子单相接地故障。发电机定子绕组发生单相接地故障时,中性点流过的接地故障电流与中性点接地方式有关,发电机中性点接地方式的不同,对发电机定子接地保护的出口方式要求也不同,而且动作时限也是长短不一。由于现代大型发电机组在电力系统的重要性,所以大型发电机一般都装设作为发电机主要保护的100%定子接地保护,并保证该保护能够可靠正确动作,确保小异常不酿成大事故。 二、大型发电机定子接地保护的构成 我国大型发电机组大都采用单元接线方式,中性点接地方式主要采用中性点经配电变压器(二次侧接电阻)接地,电阻值较大,取为高阻接地,其电阻吸收功率大于或等于三相对地电容的无功伏安。为限制动态过电压不超过2.6倍额定相电压,接地电阻(一次值)RN′≤1/3ωCg,Cg为发电机每相对地耦合电容。 三、发电机定子绕组接地保护 (1)接地电阻定值的确定发电机中性点经配电变高阻接地,当定子绕组发生单相接地故障时,其等效的基波零序回路电路如下图所 示: 粗略估计电容容抗与中性点接地电阻(一次值)相等,根据DLT 684-2012 大型发电机变压器继电保护整定计算导则,发电机允许的接地故障电流值为1A中性点变压器变比为20000/240V,二次电阻为0.46Ω,令α=1(机端接地),IE=Iper=1A,E=UN/1.732,得

发电机保护配置

发电机保护基本原理 发电机可能发生的故障 定子绕组相间短路 定子绕组匝间短路 定子绕组一相绝缘破坏引起的单相接地 励磁回路(转子绕组)接地 励磁回路低励(励磁电流低于静稳极限对应的励磁电流)、失磁 发电机主要的不正常工作状态 过负荷 定子绕组过电流 定子绕组过电压 三相电流不对称 过励磁 逆功率 失步、非全相、断路器出口闪络、误上电等 发电机的主要保护和作用 纵差保护 作用:发电机及其引出线的相间短路保护 规程:1MW以上发电机,应装设纵差保护。对于发电机变压器组:当发电机与变压器间有断路器时,发电机装设单独的纵差保护;当发电机与变压器间没有断路器时,100MW及以下发电机可只装设发电机变压器组公用纵差保护;100MW及以上发电机,除发电机变压器组公用纵差保护还应装设独立纵差保护,对于200MW及以上发电机变压器组亦可装设独立变压器纵差保护。 与发变组差动区别:发变组差动需要考虑厂用分支,要考虑涌流制动、各侧平衡调节。 纵向零序电压 作用:发电机匝间短路(也能反映相间短路)。 规程:50MW以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。 定子接地 作用:定子绕组单相接地是发电机最常见的故障,由于发电机中心点不接地或经高阻接地,定子绕组单相接地并不产生大的故障电流。 常用保护方式:基波零序电压(90%)、零序电流、三次谐波零序电压(100%) 定子接地 规程:与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。保护装置由装于机端的零序电流互感器和电流继电器构成,其动作电流躲过不平衡电流和外部单相接地时发电机稳态电容电流整定,接地保护带时限动作于信号,但当消弧线圈退出运行或由于其它原因,使残余电流大于接地电流允许值时应切换为动作于停机。 发电机变压器组:对100MW以下发电机应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机应装设保护区为100%的定子接地保护。保护装置带时限动作于信号必要时也可动作于停机。 励磁回路接地保护 作用:励磁回路一点接地故障对发电机并未造成危害。但若继而发生两点接地将严重危害发电机安全。 实现方法:采用乒乓式原理。 规程:1MW及以下水轮发电机,对一点接地故障宜装设定期检测装置,1MW以上水轮发电机应装设一点接地保护装置。 100MW以及汽轮发电机,对一点接地故障可采用定期检测,装置对两点接地故障应装设两点接地保护装置。 转子水内冷汽轮发电机和100MW及以上的汽轮发电机,应装设励磁回路一点接地保护装置,并可装设两点接地保护装置,对旋转整流励磁的发电机宜装设一点接地故障定期检测装置。 一点接地保护带时限动作于信号两点接地保护应带时限动作于停机。 失磁保护 作用:为防大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统

发电机注入式转子一点接地(两延时)

发电机注入式转子一点接地保护 一、保护原理 保护采用注入直流电源原理,直流电源由装置自产。因此,在发电机运行及不运行时,均可监视发电机励磁回路的对地绝缘。该保护动作灵敏、无死区。 考虑到双套化配置方案中,转子接地保护由于保护原理的要求不能双套化,否则会相互影响导致测量失误。如采用一套运行一套备用方式,需要时应可靠安全地带电切换。 要说明的是:对于励磁系统是可控硅整流系统时,由于励磁电压中有较高的谐波分量(例如ABB 公司生产的励磁装置,运行时产生的6次谐波、12次谐波电压远大于直流分量电压),可能影响转子一点接地保护的测量精度。 保护的输入端与转子负极及大轴连接。保护有两段出口供选用。 其保护逻辑如图一; 大负号 号 单元件横差加延时及投入转子两点接地保护机 图一 转子一点接地保护逻辑框图 二、一般信息 2.3出口跳闸定义(方式) 注:对应的保护压板插入,保护动作时发信并出口跳闸;对应的保护压板拔掉,保护动作时 只发信,不出口跳闸。

2.5 2.6投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.7参数监视 点击进入发电机转子接地保护监视界面,可监视保护整定值,开/合电流,接地电阻计算值等信息。 三、保护动作整定值测试 3.1 动作值校正曲线的测定 在保护装置端子排接转子电压负极端子与接大轴的端子之间接一电阻箱,使电阻箱的电阻分别为5KΩ、10 KΩ,观察并记录界面上显示的测量电阻值。要求:显示电阻值清晰稳定,显示电阻与外加电阻之差应小于10%。 模范现场运行工况,接入专用转子一点接地测试装置,在此模拟测试装置的正极和负极之间加入一直流电压,设置接地电阻0KΩ、5KΩ、10 KΩ,设置接地方式负极接地、正极接地,观察界面显示的测量电阻值,要求:显示电阻值清晰稳定,显示电阻与外加电阻之差应小于10%。 如果测量精度不满足,需检查调整硬件,重新测试。 电阻小于整定值时,保护动作,记录动作电阻。 注:该保护在现场接入后需重新测试。在整定值那点,利用漏电流补偿,可以调整测量电阻的精度。 3.2动作时间定值测试 注:一点接地保护时间整定误差为±1秒 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

发电机定子接地3W

发电机3W定子接地保护 一、保护原理 保护反应发电机机端和中性点侧三次谐波电压大小和相位,反应发电机中性点向机内20%或100%左右的定子绕组单相接地故障,与发电机3U0定子接地保护联合构成100%的定子接地保护。见图一: 图一发电机定子接地3W保护逻辑 二、一般信息

K1,K2,K3整定方法及试验:开机带负荷整定 2.5投入保护 开启液晶屏的背光电源,在人机界面的主画面中观察此保护是否已投入。(注:该保护投入时其运行指示灯是亮的。)如果该保护的运行指示灯是暗的,在“投退保护”的子画面点击投入该保护。 2.6参数监视 点击进入发电机3W定子接地保护监视界面,可监视保护的整定值、动作量和制动量;待整定动作量和待整定制动量,以及3W保护的自动整定界面。 二、保护动作特性测试 发电机3W定子接地K值整定 附图 ①待发电机并网后,最好带20%~30%的负荷,拔掉3W保护的投退压板;

②中性点先不挂电阻,带20%~30%的负荷,单击“自动计算K1/K2一次”按钮,此时待整 定三次谐波动作量接近于0,点击“设定允许修改定值状态”按钮,改变“禁止修改定值状态”为“允许”,单击“将自动计算K1K2值写入保护装置”按钮,将K1、K2定值写入保护装置; ③带20%~30%的负荷时,在中性点挂上电阻(建议:水电机组1~3K,火电机组3~5K), 单击K3调整按钮(K3下方的四个按钮分别表示增大、减小、粗调、细调),将“待整定三次谐波动作量”调整略大于“待整定三次谐波制动量”,单击“将自动计算K1K2值写入保护装置”按钮,将K3定值写入保护装置; ④注意:此时千万不要按“自动计算K1/K2一次”按钮及调整K1 、K2的值; ⑤撤除电阻,调试完毕。 ⑥如果采用绝对值比较式原理,写入定值K1=1,K2=0;依照步骤三、四和五整定K3 三、动作时间定值测试 在发电机机端TV开口三角电压侧突然加1.5倍三次谐波定值电压,记录动作时间。 四、TV断线闭锁逻辑测试 在发电机机端TV开口三角电压端子侧加入三次谐波电压,并超过整定值,定子接地3W信号亮(一般只发信不跳闸);在发电机机端TV加三相不平衡电压,使发TV断线信号,定子接地3W信号可复归,TV断线信号灯亮。 保护逻辑是否正确(打“√”表示):正确□错误□ 保护出口方式是否正确(打“√”表示):正确□错误□ 保护信号方式是否正确(打“√”表示):正确□错误□

发电机转子一点接地处理

发电机转子一点接地处 理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

转子一点接地现象、原因及处理?现象: 转子一点接地报警,光字牌亮,表计无异常 转子绝缘监视电压表正、负对地指示值明显升高,转子正、负极对地电压之和接近或等于转子电压 原因: 1检修人员在励磁回路上工作时,因不慎误碰或其他原因造成转子接地; 2转子滑环,槽及槽口、端部、引线等部位绝缘损坏; 3长期运行绝缘老化,因杂物或振动使转子部分匝间绝缘垫片位移,将转子通风孔局部堵塞,使转子绕组绝缘局部过热老化引起转子接地; 4鼠类等小动物或杂物窜入励磁回路; 5定子进出水支路绝缘引水管破裂漏水; 6励磁回路脏污等引起转子接地。 处理: (1)查何报警,复归音响 (2)切换转子绝缘装置,测量转子正负对地电压,判断转子接地靠近哪一侧,判断接地性质,是否。 (3)检查励磁回路是否有人工作,如系工作人员引起,应予以纠正。 (4)检查励磁回路各部位有无明显损伤或因脏污接地,若因脏污接地应进行吹扫。 (5)对有关回路进行详细外观检查,必要时轮流停用整流柜,以判明是否由于整流柜直流回路接地引起。(励磁回路检查) (6)检查励磁回路各表计,保护装置有否接地。(测量保护回路检查)

(7)检查转子线圈是否漏水。 (8)若备励磁具备运行条件,可倒备励运行。 (9)将自动励磁改为手动励磁运行,退出强励压板。 (10)寻找转子一点接地过程中,如发现机组有欠励或失磁情况下,一般可认为转子已由一点接地发展成两点接地或伴随着发电机漏水,则发电机应立即停机。 (11)若转子接地为一点稳定金属性接地,且无法查明故障点,除加强监视机组运行外,在取得调度同意后,将转子两点接地作用于跳闸,并申请尽快停机处理。 (12)当转子绝缘处理恢复后,一点接地信号复归,立即退出转子两点接地保护,改投转子一点接地保护。 转子回路一点接地时,因一点接地不形成电流回路,故障点无电流通过,励磁系统仍保持正常状态,故不影响机组的正常运行。此时,应检查“转子一点接地”光字牌信号是否能够复归。若能复归,则为瞬时接地;若不能复归,应检查转子一点接地保护是否正常,若正常,则可利用转子电压表通过切换开关测量正、负极对地电压,鉴定是否发生了接地。若发现某极对地电压降到零,另一极对地电压升至全电压(正、负极之间的电压值),说明确实发生了一点接地。 发电机励磁回路两点接地时的现象:励磁电流不正常,励磁电压降低或接近于零,无功指示降低,功率因数提高甚至进相,“转子一点接地”光字牌亮,警铃响,机组发生强烈振动,严重时,可能发生发电机失步或失磁保护动作跳闸,两点接地保护投入时,发变组跳闸。 1、发电机励磁回路两点接地时的处理,根据现象判断是发电机两点接地故障,保护未动作跳闸,应立即解列发电机。 2、当转子绝缘处理恢复后,一点接地信号复归,立即退出转子两点接地保护,改投转子一点接地保护。

发电机转子一点接地故障原因分析和处理 周杨云

发电机转子一点接地故障原因分析和处理周杨云 发表时间:2017-12-25T20:39:11.850Z 来源:《电力设备》2017年第25期作者:周杨云 [导读] 摘要:发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,也是国家电网实现电力系统及其自动化的基础,同时发电机本身也是一个十分贵重的电器元件,包含很多自动化元器件。 (广东水电二局股份有限公司广东增城 511300) 摘要:发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,也是国家电网实现电力系统及其自动化的基础,同时发电机本身也是一个十分贵重的电器元件,包含很多自动化元器件。因此,应该对于各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。发电机的内部故障主要是定子和转子绕组绝缘损坏引起的,所以配置可靠的转子接地保护就显得非常重要,本文详细地分析了在现场工作中遇到的转子一点接地保护装置动作后对问题的分析查找以及处理的过程。 关键词:转子接地保护;磁极连接线;绝缘 一转子接地保护概况 湘投铜湾水利水电有限责任公司(以下简称铜电公司)装有4×45MW灯泡贯流式发电机组,水轮发电机设备由天津阿尔斯通水电设备生产有限责任公司生产,其中励磁系统,采用的广州电器科学研究院附属广州擎天电气控制实业有限公司生产的EXC9000励磁系统,励磁电源取自发电机端部,用励磁变压器供给整流装置,整流装置输出的直流电供给发电机转子绕组。发电机正常运行时,输出容量47.37MVA,Pf=0.95,端电压10.5KV,励磁电压365V,励磁电流1142A;发电机空载时,励磁电压170V,励磁电流747A。 发电机保护装置类型:WFB-811。转子接地保护装置保护原理:在一点接地故障后,保护装置继续测量接地电阻和接地位置,并发出转子一点接地故障报警信号,不作用于机组停机,此后若再发生新的接地点,采用乒乓式开关切换原理,通过求解两个不同的接地回路方程,实时计算转子接地电阻值和接地位置,在单元管理机可实时显示转子接地电阻值和位置,并同时发信号至计算机控制系统,由计算机控制系统发出紧急停机信号作用停机。 二故障情况 2012年7月3日凌晨,铜电公司2#机组突然发生紧急停机甩负荷事件,事后调出计算机监控记录,确定原因为轴电流过大引起(0.5A报警,超过1.5A,延时30s停机),然后对2#机进行检查,情况是:转子绝缘为零;接地碳刷接触不是太好;励磁系统检查无故障。经过对集电环卫生清扫后转子绝缘升到几十MΩ。然后解开保护压板,开机,在改变负荷时轴电流有时达到1.5A以上,且有持续达到15s的情况。 7月11日,2#机组运行过程中发出转子一点接地故障报警,励磁部分及转子绝缘均合格,因调度要求开机而没有继续进入发电机检查,开机后运行正常,至7.13日上午2#机再次报转子一点接地故障,停机对励磁转子部分进行检查无异常,检查转子磁极及气隙无异常,螺栓无松动现象,下午开机投入励磁后故障仍然出现。 三故障查找与处理 励磁回路一点接地故障是发电机较常见的故障形式,一般不会对发电机造成危害。但是一旦出现转子两点接地的情况,不仅会严重烧损转子绕组,而且将使转子磁场畸变,机组振动加剧,特别是轴向电流可能烧坏轴承和大轴,使得汽轮机叶片磁化而造成难以挽回的后果。因此转子一点接地保护动作后,应立即查找原因并处理,避免转子两点接地故障的发生。 1检修准备 工器具准备:接地电阻测试仪一台、万用表一块、兆欧表一块、HIOKI 8840瞬态信号波形记录仪其它电器常用工器具一套。 人员及技术准备:检修人员3人、临时配合工2人;相关技术图纸一套。 安全技术措施:办理检修工作票,做好班前三交工作,挂好各种警示标志及警示牌;做好进入发电机的特殊安全防护措施。 2在第一次发生机组因轴电流过大引起的事故停机后,检测转子绝缘为零,但在对励磁滑环、受油器进行卫生清扫后,转子绝缘恢复,开机后能够正常运行。根据后面检查出的转子一点接地故障原因看,此时可能磁极已经有间断性接地情况,并且导致转子励磁电压加在转子小轴与受油器上(受油器与外部均用环氧树脂板绝缘),因受油器与外部绝缘处由于距集电环处较近,又有临时加装的散热风机运行使得碳粉飞散,所以容易被碳粉附着,使绝缘水平下降,逐渐形成足够引起事故停机的轴电流,成为导致这次事故停机的元凶。于几天后的7月11日,2#机组运行过程中发出转子一点接地故障报警,接地点为37#至72#磁极间。但检测励磁部分及转子绝缘均合格,因调度要求开机而没有继续进入发电机检查,开机后运行正常,鉴于接地点不明确,在开机后,我们采用HIOKI 8840瞬态信号波形记录仪,记录在转子一点接地保护动作时发电机励磁电压的变化情况,得出以下结论: (1)正常时不接入转子一点接地保护,使用指针表检查发电机转子正、负极对地电压,表针呈缓慢下降趋势,逐渐接近0,说明发电机转子对地绝缘良好。使用波形记录仪录波时相当于转子回路经仪器高阻接地,可以测量到稳定的电压值。正负极对地、正对负电压值分别为+186.8 V、-177.2 V、365.3 V。 (2)正常时接入转子一点接地保护,由于转子回路经保护装置高阻接地,使用指针表检查发电机转子正、负极的对地电压,可以测量到稳定的电压值。正负极对地、正对负电压值分别为+186 V、-179 V、365.2 V。使用波形记录仪录波,测量结果与此相同。因为在迭加转子一点接地保护的直流电压后,转子负极对地电压被钳制在一个正电位上而导致了上述测量结果。 3机组运行在7.13日上午2#机又报转子一点接地故障,接地点为37#至72#磁极间,停机对励磁转子部分进行检查无异常,因磁极编号混乱,不能确定是否与故障显示一致,于是对整个转子磁极及气隙进行检查无异常,螺栓无松动现象,下午再次开机投入励磁后故障仍然出现。逐停机继续检查,发现转子绝缘为零,检查确认接地点在转子一侧,再次进入发电机内检查发现转子35#磁极的垫片靠上游侧已甩出,鉴于此故障有可能产生接地,必须处理,且此时已深夜(还不能确定具体接地点),商量后确定电气检修人员休息,一边安排人员盘车转子至人孔门处(盘车结束后检测发现接地点又消失),便于第二天处理磁极松出的垫片,7.14日经过一天磁极处理完毕,检测转子绝缘良好,开机至空载,依然报上述转子一点接地故障,再次停机检查,此次停机后转子绝缘没有恢复,因为无法根据磁极编号确定磁极位置,于是采用分解磁极连接线的方法判断接地部位,最后找到40#磁极的连接线固定部位绝缘开裂且有放电现象,此部位在连接线的固定线夹内,不容易发生绝缘破损情况,隐蔽性极强。因为无绝缘套管备件,我们采用缠绕一层云母带再刷一层环氧树脂的方法,交替缠绕4层后,把环氧树脂加热干燥,代替原来的绝缘套。重新装复后,转子绝缘恢复,机组成功投入运行。

相关文档
最新文档