关于压电材料

关于压电材料
关于压电材料

现阶段研究较多的压电复合材料是由压电陶瓷

(如PZT,PbTiO。)和聚合物(如PVDF,环氧树脂)

复合成的。岳鹏等c10]用化学溶解、旋涂成膜、多层

膜热压制得PZT体积分数60%、介电常数100左

右的PZT/PVDF复合材料。徐任信等[111运用热压

工艺制备了。一3型PZT/PVDF压电复合材料,加入

适量石墨后可以明显提高复合材料的极化性能。

受到压力作用时会在两端面间出现电压的晶体材料。

压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。

能将压力转换成电压的装置我所知道的应该就只有压电晶体了。压电晶体不同的成分有不同的转换关系。通常在购买的时候附上的说明书里会给出压电转换的经验公式或者实验数据。可以根据产品的型号、成分等信息网上搜索相关的压电转换公式

主要参数

(1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。

(2)压电材料的弹性常数、刚度决定着压电器件的固有频率和动态特性。

(3)对于一定形状、尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。

(4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。

(5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。

(6)压电材料开始丧失压电特性的温度称为居里点温度。

压电转换

压电关系表达式:Q=d*F,其中d:压电常数

更一般表达式:电荷密度q,(用单位面积受力表示)

其中:i=1,2,3表示晶体极化方向,指的是与产生电荷的面垂直的方向;j=1,2,3,4,5,6表示受力方向,1~3表示x,y.z向受力,4~6表示剪切力方向

如q1表示法向矢量为x的两个面产生的电荷

受x向(拉)力作用后在z方向产生电荷的表达式:

受z向力作用后在z方向产生电荷的表达式:

各表达式见图片:

关于精度和压力传感器成品

压力传感器精度一般所指的是压力传感器的综合误差,通常包括非线性误差,漂移误差,重复度误差,零点误差,滞后误差等几大类,按您所说的是测蒸气的压力传感器,主导误差一般为非性线误差和温度漂移误差。一般的标识为0.04%FS,指的是此传感器的综合误差最大为满量程的0.04%,若此传感器的量程为 1.0MPA,那么基误差值为1.0X0.04%=0.0004MPA=0.4KPA。压力传感器品牌国内知名的有宝鸡麦克传感器,汉中中航电测,佛山普量电子等,国外的有WIKA,贺德克,DYNISCO等。在国内若是测量蒸气(介质温度150度,压力为1-2标准大气压),按目前的技术没有办法做得到0.04%FS的精度,国外品牌目前这种高温的也能做得到0.04%FS的精度,一般能做到0.1%FS的价格都会很高了,大约在2000元一支左右。

一般工业用的都是陶瓷、应变隔膜、扩散硅等传感器。最新最贵的是蓝宝石传感器,主要用在高温领域。目前比较常见的是扩散硅压力传感器,需要提供精密的电压源(一般在5V 及以上),输出是毫伏信号。输出需要放大和调理电路,转成常用的4-20mA或0-5V、0-10V 等信号。精度方面,通常在1%、0.5%,高精度有0.25%、0.1%,乃至0.05%,这就很贵了。

具体的型号有很多种,根据接口、大小、量程、是否耐腐蚀等等,可以自己查。作为数字压力表来说,如果你的采样频率不高,比如1sps,也可以用成品数字输出的压力芯片,比较常见的是瑞士MS5535,误差通常在0.25%~5%。不过密封和接口就需要自己设计。

压电陶瓷的压电常数大约是多少?带单位和数量级。谢了

分享到:

2011-03-11 01:07提问者采纳

你应该是问d33吧,一般极化过的压电陶瓷都是去测d33,好一点的含铅的陶瓷应该是四五百,最高七八百pC/N,一般无铅的做到一二百就很了不起了。表征压电d33有两个单位pC/N 和pm/V,其实是等价的,陶瓷一般用pC/N

钛酸钡压电陶瓷压电系数是多少

2012-03-02 12:40s125521s|分类:工程技术科学|浏览300次|该问题已经合并到>>

扫描二维码下载

下载知道APP

10分钟有问必答!

建议:可使用微信的“扫一扫”功能扫描下载

分享到:

2012-03-08 09:26 提问者采纳

热心网友

180 ~190

个人小结

两个参数一个是压电常数这个和我们的关系很大,我觉得,当然是看完后,这个常数反应了力和电压(我们要直观反映出来的输出信号~)之间有关,可以通过其力与电荷之间关系。力是我们要测的量,如果已知压电常数可以反映出来相当的电荷,当然我们在这不会得到说多少的电荷什么的,但是我们可以通过一只电容器,平行板电容器。对于一个已经制作好了的平行板电容器,电荷和其两板之间的电压有一个最直观的反应,有一个公式,大物书上有。这样如果我们这个原理就是这样子的大概。对于精确度来说,我们更应该选择一个制作好的压电感应器吧,在我发的ppt1中有个图片,在里面有几个种类的压电常数。以及各个公式。我觉得有压电常数就是一个进步了,当然上面分析的也只是我自己的理解,我觉么这压电常数应该可以非常直观的把电压(或者说另一中输出信号)和力近似(线性的)反映出来。另外一个常数是介电常数不是很明白,不知道跟我们的关系大不大……

像另外的什么温度限制之类的一般都影响不到我们的使用,因为我们使用的条件接近于那个核磁共振仪的工作温度,,不会偏高或者偏低。应该说工作环境相当理想。。所以我们理想的压力感应器应该是很一般的就可以,我们用的话主要就是考虑其精度。

而且另外像我在网上搜的一些资料里也提到了如果你买一个成品的压力感应器它的相关参数会有说明书详细说明。

回想起来这学期做那个泵与风机的实验水泵那个一部分测进出口压力对不?就是个很好的例子,,我的建议是我们再找一个参数细致明了的压力传感器,,或者选一个我们理想化的(我们给定义参数,但是基本符合实际的)压力传感器。。譬如说那个压电常数为200左右的貌似用的很普遍,就是钛酸钡190 属于压力陶瓷成本低应用普遍。

对了介电常数应该是电方面的百度的应该是这个

介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与介质中电场的比值即为相对介电常数(permittivity,不规范称dielectric constant),又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷大。

就是物理里学那个还是电容器平行板电容器定义的时候就有个介电常数两板之间加入介电材料能够增加电容C值,空气接近于真空,相对介电常数是一。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

关于压电材料

现阶段研究较多的压电复合材料是由压电陶瓷 (如PZT,PbTiO。)和聚合物(如PVDF,环氧树脂) 复合成的。岳鹏等c10]用化学溶解、旋涂成膜、多层 膜热压制得PZT体积分数60%、介电常数100左 右的PZT/PVDF复合材料。徐任信等[111运用热压 工艺制备了。一3型PZT/PVDF压电复合材料,加入 适量石墨后可以明显提高复合材料的极化性能。 受到压力作用时会在两端面间出现电压的晶体材料。 压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。 能将压力转换成电压的装置我所知道的应该就只有压电晶体了。压电晶体不同的成分有不同的转换关系。通常在购买的时候附上的说明书里会给出压电转换的经验公式或者实验数据。可以根据产品的型号、成分等信息网上搜索相关的压电转换公式 主要参数 (1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。 (2)压电材料的弹性常数、刚度决定着压电器件的固有频率和动态特性。 (3)对于一定形状、尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。 (4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。 (5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。 (6)压电材料开始丧失压电特性的温度称为居里点温度。 压电转换 压电关系表达式:Q=d*F,其中d:压电常数 更一般表达式:电荷密度q ,(用单位面积受力表示) 其中:i=1,2,3表示晶体极化方向,指的是与产生电荷的面垂直的方向;j=1,2,3,4,5,6表示受力方向,1~3表示x,y.z向受力,4~6表示剪切力方向 如q1表示法向矢量为x的两个面产生的电荷 受x向(拉)力作用后在z方向产生电荷的表达式:

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电材料及其应用

压电材料及其应用 学院:材料学院 专业:材料科学与工程系班级:1019001 姓名:李耘飞 学号:1101900118

压电材料及其应用 李耘飞 材料科学与工程 1101900118 一、压电材料的定义 压电材料是指可以将压强、振动等应力应变迅速转变为电信号,或将电信号转变为形变、振动等信号的机电耦合的功能材料。 当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、压电材料的主要特性包括: (1)机电转换性能:应具有较大的压电系数; (2)机械性能:压电元件作为受力元件,希望它的机械强度高、机械刚度大,以期获得宽的线性范围和高的固有频率; (3)电性能:应具有高的电阻率和大的介电常数,以减小电荷泄漏并获得良好的低频特性(4)温度和湿度的稳定性要好。具有较高的居里点,以得到宽的工作温度范围 (5)时间稳定性:其电压特性应不随时间而蜕变。 压电材料的主要特性参数有:(1) 压电常数、(2) 弹性常数、 (3) 介电常数、(4) 机电耦合系数、(5) 电阻、 (6) 居里点。 三、压电材料的分类 压电材料可分为三类:压电晶体(单晶)、压电陶瓷(多晶)和新型压电材料。其中压电单晶中的石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷应用较普遍。 (1)压电晶体 1)石英晶体 石英晶体是典型的压电晶体,分为天然石英晶体和人工石英晶体,其化学成份是二氧化硅(SiO2),其压电常数d11=2.1×10-12C/N,压电常数虽小,但时间和温度稳定性极好,在20℃~200℃范围内,其压电系数几乎不变;达到573℃时,石英晶体就失去压电特性,该温度称为居里点,并无热释电性(了解更多)。另外,石英晶体的机械性能稳定,机械强度和机械品质因素高,且刚度大,固有频率高,动态特性好;且绝缘性、重复性均好。 下面以石英晶体为例来说明压电晶体内部发生极化产生压电效应的物理过程。在一个晶体单元体中,有3个硅离子和6个氧离子,后者是成对的,构成六边的形状。在没有外力的作

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电效应及其应用

压电效应及其应用叶传忠 接触了这么多的实验,我始终对压电效应这个实验最感兴趣。因为我认为这个世界压力资源太丰富了,由于重力的存在,水平运动的物体都会产生压力。压力是一种能源,但是目前无法对压力直接进行利用,只有通过压电的转换对压力进行利用。但是压电转换的效率太低,这是一个问题。我对压力资源感兴趣,应先对压电效应进行思考! 压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。 压电效应可分为正压电效应和逆压电效应。 正压电 是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。 逆压电 是指对晶体施加交变电场引起晶体机械变形的现象。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。依据电介质压电效应研制的一类传感器称为为压电传感器。 打火机 目前流行的一次性塑料打火机,有相当一部分是采用压电陶瓷器件来打火的。取出其中的压电打火元件,

压电晶体 有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶(α-石英)是一种有名的压电晶体。 压电高分子 压电现象是由于应力作用于材料,在材料表面诱导产生电荷的过程,一般这一过程是可逆的,即当材料受到电参数作用,材料也会产生形变能。木材纤维素、腱胶原和各种聚氨基酸都是常见的高分子压电性材料,但是其压电率太低,而没有使用价值。在有机高分子材料中聚偏氟乙烯等类化合物具有较强的压电性质。压电率的大小取决于分子中含有的偶极子的排列方向是否一致。除了含有具有较大偶极矩的C-F键的聚偏氟乙烯化合物外,许多含有其他强极性键的聚合物也表现出压电特性。如亚乙烯基二氰与乙酸乙烯酯、异丁烯、甲基丙烯酸甲酯、苯甲酸乙烯酯等的共聚物,均表现出较强的压电特性。而且高温稳定性较好。主要作为换能材料使用,如音响元件和控制位移元件的制备。前者比较常见的例子是超声波诊断仪的探头、声纳、耳机、麦克风、电话、血压计等装置中的换能部件。将两枚压电薄膜贴合在一起,分别施加相反的电压,薄膜将发生弯曲而构成位移控制元件。利用这一原理可以制成光学纤维对准器件、自动开闭的帘幕、唱机和录像机的对准件。 压电陶瓷 压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷。 在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的“舵”。依靠“舵”,航天器和人造卫星,才能保证其既定的方位和航线。传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。而小巧玲珑的压电陀螺灵敏度高,可靠性好。 在潜入深海的潜艇上,都装有人称水下侦察兵的声纳系统。它是水下导航、通讯、侦察敌舰、清扫敌布水雷的不可缺少的设备,也是开发海洋资源的有力工具,它可以探测鱼群、勘查海底地形地貌等。在这种声纳系统中,有一双明亮的“眼睛”——压电陶瓷水声换能器。

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷材料的发展及应用

压电陶瓷材料的发展及应用 美国Sandia研究所的Haertling在1964年发现,如果在Pb(Ti,Zr)O 3 中 添加少量的Bi 2O 3 进行热压成型时,烧结得很好,这种多晶材料的铁电电滞回线呈 现明显的矩形特性。此后,兰德(Land)等人发现,这种陶瓷被研磨成薄片时透光度高,随着晶体粒度的不同显示出二种电光学效应,即粒度为2微米以上的极化了的粗晶粒陶瓷片,散射光的强度随着极化轴的角度发生变化;2微米以下的微细晶粒陶瓷片,则呈现出以极化为光轴的单轴性负光学各向异性,双折射率随偏置电压的改变而变化.这种陶瓷是一种很有价值的新型电光学材料.这一发现是铁电性透明陶瓷展的开端。 1971年美国Haertling和Land用La置换一部分Pb的 Pb 1-x La x (Zr y Ti i-y ) 1-(x/4) O 3 组成(简称PLZT)进行热压烧结成型,所得陶瓷研磨的薄片 具有电控双折射、电控可变光散射等特性,可用作关阀、电光调制器和光记忆元件,PLZT是一种很有价值的新型电子材料,是20世纪70年代铁电陶瓷的重大进展。 透明铁电压电陶瓷的问世,一方面是由于客观上性技术的发展对铁电压电陶瓷材料在电光方程面的应用提出了要求,另一方面,是由于长期以来人们对铁电压电陶瓷进行了大量的研究实践(特别是热压工艺)的结果。具体的工作在1967年左右开始,1970年5月宣布了透明铁电陶瓷试制成功,随后报道了各种应用研究,1972年改进了工艺方法,提高了厚片的透明度,1973年又发展了不用热压而用通氧烧结的方法成功地制造了较大面积的透明铁电压电陶瓷。在此期间,陆续报道的各种有关的应用或实验结构有铁电显示器、光阀、光信息存贮器、偏置应变存贮显示器件、反射式偏置应变存贮显示器件、散射式存贮显示器件、染料激光波长选择器件、全息存贮输入器件等等。各方面应用的研究正在不断发展中. 透明铁电压电陶瓷的发展,给铁电压电陶瓷开辟了新的应用领域-电光应用,过去电光器件用的是单晶铁电材料,但由于单晶材料存在一些缺点,例如尺

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电材料的研究

摘要:本文阐述了各类新型压电材料的性能和应用。从压电材料的压电效应入手,介绍了压电材料的分类及发展应用。针对不同类型的压电材料在实际生活中的应用情况,概述了近年压电材料的研究状况,并系统地简介了压电材料在各个领域的应用和发展。 关键词:压电材料压电效应压电材料的分类研究方向实际应用压电材料的应用遍及大家日常生活的各个角落,人们几乎每天都在应用压电材料。香烟、电热水器、汽车发动机等的点火装置要用到压电点火器;电子手表、声控门、电话等要用到压电谐振器或者是蜂鸣器;收音机要用到压电微音器、压电扬声器;数码相机要用到压电马达等等。 压电材料不仅在工业和民用产品上使用广泛,在军事上也有大量应用。雷达、军用通讯和导航设备等都需要大量的压电陶瓷滤波器和压电SAW滤波器。 压电材料还应用于结构缺陷的识别、柔性结构振动的控制以及医学上的免疫检测、人工耳蜗等。 一、压电材料与压电效应 1880年,法国物理学家居里兄弟发现:把重物放在石英晶体上,晶体的表面会产生电荷,产生的电荷量与其承受的压力成比例,这一发现被称为压电效应。随即,居里兄弟又发现了逆压电效应:即在外电场作用下,压电体会产生形变。 压电效应表现为:当某些电介质在一定方向上受到外力的作用而发生形变时,其内部会发生极化现象,同时在它的两端出现正负相反的电荷,当作用力的方向改变时,电荷的极性也随之改变,受力所产生的电荷量与外力的大小成正比。当去除外力后,它又会恢复到不带电的状态,这种现象称为正压电效应。正压电效应是把机械能转换为电能,逆压电效应是把电能转换为机械能。 二、压电材料的分类 我们可以将压电材料分为以下六类: (1)单晶材料,如石英、磷酸二氢氨等;

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电材料概述

压电材料概述 齐鹏飞 0900501331 中国计量学院材料学院09材料3班,杭州 310018 摘要本文介绍了压电效应的作用机理以及材料产生压电效应的原因,并综合概括了压电材料的发展历程及现今的研究方向。 关键词压电效应;压电材料;发展历程;发展方向 压电材料是受到压力作用时会在两端面间出现电压的晶体材料。由于压电材料的这一性能,以及制作简单、成本低、换能效率高等优点,压电陶瓷被广泛应用于热、光、声、电子学等领域。主要应用有压电换能器、压电发电装置、压电变压器, 医学成像等。 1、压电材料与压电效应 1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即, 居里兄弟又发现了逆压电效应,即在外电场作用下压 电体会产生形变。 压电效应的机理是:具有压电性的晶体对称性较 低,当受到外力作用发生形变时,晶胞中正负离子的 相对位移使正负电荷中心不再重合,导致晶体发生宏 观极化,而晶体表面电荷面密度等于极化强度在表面 法向上的投影,所以压电材料受压力作用形变时两端 面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。 材料要产生压电效应,其原子、离子或分子晶体必须具有不对称中心,但是由于材料类型不同,产生压电效应的原因也有所差别。下面以压电陶瓷为例,解释压电效应产生的原因。

压电陶瓷是人工制造的多晶压电材料,与石英单晶产生压电效应有所不同。在无外电场作用时,压电陶瓷内的某些区域中正负电荷重心的不重合,形成电偶极矩,它们具有一致的方向,这些区域称之为电畴。但是各个电畴在压电陶瓷内杂乱分布(图a),由于极化效应被相互抵消,使总极化强度为零,呈电中性,不具有压电特性。如果在压电陶瓷上施加外电场,电畴的方向将发生转动,使之得到极化,当外电场强度达到饱和极化强度时,所有电畴方向将趋于一致(图b)。去掉外电场后,电畴的极化方向基本不变(图c),即剩余极化强度很大,这时才具有压电特性,此时,如果受到外界力的作用,电畴的界限将发生移动,方向将发生偏转,引起剩余极化强度的变化,从而在垂直极化方向的平面上引起极化电荷变化。 2、压电材料的发展与应用 自从1880年,居里兄弟发现了石英晶体存在压电效应后使得压电学成为现代科学与技术的一个新兴领域。材料学及物理学的快速发展使得压电学无论在理论和应用上都取得了长足的进展。第二次世界大战期间,磷酸二氢铵(ADP)、铌酸锂等压电晶体相继被研制出来。1921年,J.Valasek发现了水溶性酒石酸钾钠具有压电性,并在该材料的介电性反常测试中人类历史性地第一次发现材料的铁电性。1941-1949年间,科研人员发现钛酸钡陶瓷具有铁电性能。其铁电性引起了科学界的广泛关注,并为了解释其铁电性提出各种铁电模型,从而促进了诸如LiNb03、LiTa03的各种类型的压、铁电晶体的出现。 1947年s.Robert发现BaTiO3。的强压电效应,这一发现是压电材料发展史上的一次飞跃。1954年美国的Jaffe等发现锆钛酸铅(PZT)陶瓷的具有良好的压电性能,PZT系固溶体在多形相界附近具有良好的压电介电性能,机电耦合系数近于BaTiO3 陶瓷的一倍。在以后的30年间,PZT材料以其较强且稳定的压电性能成为应用最广的压电材料,是压电换能器的主要功能材料.PZT材料的出现使得压电器件从传统的换能器及滤波器扩展到引燃引爆装置、电压变压器及压电发电装置等。近十年来,以PT /PZT为基础,各种新型的功能陶瓷得到快速发展,对其进行性能改进的主要手段主要是在其化学组成上添加含Bi3+、W6+、Nb3+、La3+等高价离子氧化物或者K+、Mg2+、Fe3+等低价离子氧化物,将PZT材料变成相应的“软性材料”或“硬性材料”,其应用领域各不相同。在PZT中入PWN可制成三元系压电陶瓷(P04),国内的压电与声学研究所张福学在PZT中加入PMS制成了PMS三元系压电陶瓷材料等等,这些被改进的PZT材料其综合性能都有显著的提高,可应用于各种不同环境领域。由于以上几种基于PZT/PT研制的压电材料含有大量的铅,制造过程中容易对环境造成污染,国外科研人员开始研制无铅压电陶瓷,如SiBi4TiO等,但由于无铅材料的机电耦合系数远不如含铅压电陶瓷,并且难以制造,故而无铅压电陶瓷的研制工作还很漫长。 1956年B.T.Mattias发现了三硫甘胺晶体的铁电性,为激光和红外技术的广泛应用开打下了坚实地基础。1968年先后发现了硫化锌(ZnS)、氧化锌(ZnO)等压电材料,这些半导体材料的压电性能较弱,有高电压低电流的特性。早期主要应用于压敏电阻领域,近年随着微加工制造技术的发展,该类材料也开始在压电领域崭露头角。1969

CCTO压电材料的研究

钛酸铜钙(CCTO)的合成改性研究 卢峰 摘要:从1964年摩尔提出了著名的摩尔定律——晶体管的集成程度会在18个月翻一番。一直到今天这条定律仍然适用,而支持着半导体工业集成电路高速发展的动力离不开作为基质的介电材料。钛酸铜钙(CCTO)作为近年来发现的一种“巨介电材料”迎合了这种高速发展的需要,对于钛酸铜钙CCTO的研究也成为相关领域的热门研究课题,本文将对当前对钛酸铜钙的最新研究成果做一些介绍。 关键词:钛酸铜钙,CCTO,介电材料 引言 近年来随着电子产品智能化的提速,对相关元件的要求也越来越高,作为支撑电子产品基础的晶体管的要求自然更加“苛刻”,微型化、集成化、智能化的要求对基础材料也提出了严峻的挑战。 高介电材料一直是人们研究的热点,常见的高介电材料主要分三类:铁电材料,金属氧化物,氮化物。这其中,铁电材料的介电常熟一般高于金属氧化物和氮化物(氮化物的介电常数最小),某些钙钛矿型介电材料在常温下的介电常数可105。CCTO的介电常数达到104以上,是一种理想的介电材料,当然由于CCTO的节电损耗大,介电常数受制备因素影响,即对制备过程敏感,使得CCTO 的应用受到相当程度的制约。 CCTO早在1967年就由Deschanvres等人合成出来,直到2000年才由subramanian等人报道了其优异的介电性能。但是,直到今天,仍然没有一套完整的理论去解释CCTO的“巨介电性”,这也限制了CCTO的改性研究。当前对于CCTO的改性研究主要集中在掺杂与复合,而复合又涵盖了无机-无机复合和无机-有机复合。 1. 结构特征 CCTO为体心立方类钙钛矿型晶体结构(如图1所示),属于Im3空间群,常温下的晶格常数为0.7391 nm。单胞中各原子坐标为:Ca(0,0,O),Cu(0,l/2,1/2),Ti(1/4,1/4,1/4),O(0.3038,0.1797,0)。晶胞中Ti原子处于氧八面体中心位置,Ca2+和 Cu2+分别以3:1的比例占据八个顶角,而Cu2+近邻的4个O2+形成CuO4的正方形平面配位,所以TiO6八面体并未沿c轴排列,而是发生了倾斜,Ti-O-Ti键角为 141。,Ca与O没有形成化学键。具有该结构的物质是很好的高介电材料。CCTO样品的电极化特性与TiO6八面体的晶格畸变密切相关。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

压电材料概述

压电材料概述 班级:稀土10-1 姓名:韩飞飞 学号:1077145129 指导老师:蔡颖 时间:2012-11-30

压电材料概述 摘要本文介绍了压电效应的作用机理以及材料产生压电效应的原因,并综合概括了压电材料的发展历程及现今的研究方向。 关键词压电效应;压电材料;发展历程;发展方向 压电材料是受到压力作用时会在两端面间出现电压的晶体材料。由于压电材料的这一性能,以及制作简单、成本低、换能效率高等优点,压电陶瓷被广泛应用于热、光、声、电子学等领域。主要应用有压电换能器、压电发电装置、压电变压器, 医学成像等。 1、压电材料与压电效应 1880年,法国物理学家P. 居里和J.居里兄弟发现,把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。 压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致

材料变形。 材料要产生压电效应,其原子、离子或分子晶体必须具有不对称中心,但是由于材料类型不同,产生压电效应的原因也有所差别。下面以压电陶瓷为例,解释压电效应产生的原因。 压电陶瓷是人工制造的多晶压电材料,与石英单晶产生压电效应有所不同。在无外电场作用时,压电陶瓷内的某些区域中正负电荷重心的不重合,形成电偶极矩,它们具有一致的方向,这些区域称之为电畴。但是各个电畴在压电陶瓷内杂乱分布(图a),由于极化效应被相互抵消,使总极化强度为零,呈电中性,不具有压电特性。如果在压电陶瓷上施加外电场,电畴的方向将发生转动,使之得到极化,当外电场强度达到饱和极化强度时,所有电畴方向将趋于一致(图b)。去掉外电场后,电畴的极化方向基本不变(图c),即剩余极化强度很大,这时才具有压电特性,此时,如果受到外界力的作用,电畴的界限将发生移动,方向将发生偏转,引起剩余极化强度的变化,从而在垂直极化方向的平面上引起极化电荷变化。 2、压电材料的发展与应用 自从1880年,居里兄弟发现了石英晶体存在压电效应后使得压电学

相关文档
最新文档