《结构力学习题集》9-结构动力计算

《结构力学习题集》9-结构动力计算
《结构力学习题集》9-结构动力计算

第九章 结构的动力计算

一、是非题

1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、忽略直杆的轴向变形,图示结构的动力自由度为4个。

3、仅在恢复力作用下的振动称为自由振动。

4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。

l /2

l /2

l /2

l /2

(a)(b)

6、单 自 由 度 体 系 如 图 ,W =98

.kN ,欲 使 顶 端 产 生 水 平

位 移 ?=001

.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自

振 频 率 ω=-40s 1

?

7、结构在动力荷载作用下,其动内力

与动位移仅与动力荷载的变化规律有关。

8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,

EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。

A

C

10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 :

m m X

X h EI EI EI EI X X P t 00148242424012312??

??????????+--????????????=??????

()

二、选择题

1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m y

EI =-7963θ t / 。

l

l

0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以

A .增 大 P ;

B .增 大 m ;

C .

增 大 E I ; D .增 大 l 。

l

t )

3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 :

A .初 位 移 ;

B .初 速 度 ;

C .初 位 移 、初 速 度 与 质 量 ;

D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 :

A .大 ;

B .小 ;

C .相 同 ;

D .不 定 ,取 决 于 阻 尼 性 质 。

5、已 知 一 单 自 由 度 体 系 的 阻 尼 比

ξ=12.,则 该 体 系

自 由 振 动 时 的

移 时 程 曲 线 的 形 状 可

为 :

D.

C.

B.

A.

6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频

率 ()

ω=76873

EI ml /;今 在 集 中 质

量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 :

A .()

76873

EI ml k m //+;

B .()76873EI ml k m //-;

C .()76873EI ml k m //-;

D .()

76873

EI ml k m //+ 。

l l /2

/2

l l /2

/2(a)(b)

7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A .23k m ; B .k

m 3; C .

25k m ; D .k

m

5 。 t

sin θl /2

l /2

l /2

8、图 示 两 自 由 度 体 系 中 ,弹 簧 刚 度

为 C ,梁 的 EI = 常 数 ,其 刚 度 系 数 为 :

A .k EI l k C k k 113

221221480====/,, ; B .k EI l C k C k k C 113

22122148=+===-/,, ; C .k EI l C k C k k C 113

22122148=+===/,, ;

D .k EI l k C k k C 113

22122148==

==/,, 。

l /2

l /2

9、图 为 两 个 自 由 度 振 动 体 系 ,其 自

振 频 率 是 指 质 点 按 下 列 方 式 振 动 时 的 频

率 :

A .任 意 振 动 ;

B .沿 x 轴 方 向 振 动 ;

C .沿 y 轴 方 向 振 动 ;

D .按 主 振 型 形 式 振 动 。

10、图 示 三 个 主 振 型 形 状 及 其 相 应 的 圆 频 率 ω,三 个 频 率 的 关 系 应 为 :

A

ωωωa b c <<; B .ωωωb c a <<; C .ωωωc a b <<; D .ωωωa b c >> 。

(a)

(b)

(c)

ωa

ωb ωc

三、填充题

1、不 计 杆 件 分 布 质

量 和 轴 向 变 形 ,刚 架 的 动

力 自 由 度 为 :

(a) ,(b) ,(c)

,(d) ,(e) ,(f) 。

(d)

2、图示组合结构,不计杆件的质量,其动力自由度为 个。

3、图 示 简 支 梁 的 EI = 常 数 ,其 无 阻 尼 受 迫 振 动 的 位 移 方 程 为 。

/3

l /3l /3

l

4、图 示 体 系 的 自 振 频 率

ω= 。

l

l

5、图 示 体 系 中 ,已 知 横 梁 B 端

侧 移 刚 度 为 k 1 ,弹 簧 刚 度 为 k 2 ,则 竖 向 振 动 频 率 为 。

2

6、在 图 示 体 系 中 ,横 梁 的 质 量 为 m ,其 EI 1=∞;柱 高 为l ,两 柱 EI = 常 数 ,柱 重 不 计 。不 考 虑 阻 尼 时 ,动 力 荷 载 的 频 率 θ= 时

将 发 生 共 振 。

P sin t

θ 7、单 自 由 度 无 阻 尼 体 系 受 简 谐 荷 载 作 用 ,若 稳 态 受 迫 振 动 可 表 为 y y t =??μθst sin ,则 式 中 μ 计 算 公 式 为 , y st 是 。

8、图 示 体 系 不 计 阻 尼 ,θω

ω=2(为 自 振 频 率 ),其 动 力 系 数 =μ 。

9、图 示 体 系 竖 向 自 振 的 方 程 为 :

y I I y I I 11111222211222=+=+δδδδ,, 其 中 δ22等 于 。

m 1

2

m

10、多 自 由 度 体 系 自 由 振 动 时 的 任 何 位 移 曲 线 ,均 可 看 成 的 线 性 组 合 。

四、计算题

1、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。

l /2

l /2

k

2、求图示体系的自振频率ω。

l l

0.5l 0.5

3、求图示体系的自振频率ω。EI = 常数。

l

l 0.5

4、求图示结构的自振频率ω。

l l

5

、求图示体系的自振频率ω。EI =常数,杆长均为l 。

6、求图示体系的自振频率ω。杆长均为

l 。

7、图示梁自重不计,

W EI ==

??2002104kN kN m 2,,求自振

圆频率ω。

B

2m

2m

8、求图示单自由度体系的自振频率。已知其阻尼比ξ=0.05。

m

9、图示刚架横梁∞=EI 且重量W 集

中于横梁上。求自振周期T 。

EI

EI

W

EI 2

10、求图示体系的自振频率ω。各杆EI = 常数。

a

a

a

11、图示两种支承情况的梁,不计梁的自重。求图a 与图b 的自振频率之比。

l /2

l

/2(a)l /2

l /2

(b)

12、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。求水平自振周期T 。

3m

3m

13、忽略质点m 的水平位移,求图示桁架竖向振动时的自振频率ω。各杆EA = 常数。

m 4m

4m

l

l

m

0.50.5

15、图示体系

kN,5 s 20 kN/cm 102-124==?=P ,,EI θ 2cm kN, 480020==I W 。求质点处最大动位移和最大动弯矩。

W

4m

m

2sin θP t

16、图示体系,已知质量m = 300kg ,EI l =??=910462N m m , ;支座B 的弹簧刚度系数k EI l 03

48=/,干扰力幅

值P =20kN ,频率θ=80s -1

。试计算该体系无阻尼时的动力放大系数μD1和当系统阻尼比ξ=005.时的有阻尼动力放大系数μD 2 。

l /2

l /2

17

、求图示体系在初位移等于l/1000,初速度等于零时的解答。θωω

=020.( 为自振频率)

,不计阻尼。

18、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。

/3

P t

sin( )

19、已知:m P ==38t, kN ,干扰力转速为150r/min ,不计杆件的质量,EI =??6103kN m 2。求质点的最大动力位移。

2m

2m

20、图示体系中,电机重kN 10=W 置于刚性横梁上,电机转速n r =500/min ,水平方向干扰力为

) sin(kN 2)(t t P θ?=,

已知柱顶侧移刚度kN/m 1002.14?=k ,自

振频率

ω=-100s 1

。求稳态振动的振幅及最大

动力弯矩图。

( )

t m

21、图示体系中,kN 10=W ,质点

所在点竖向柔度

41.91710m/kN δ-=?,马达动荷载

P t t ()

sin()

=4kN θ,马达转速

n r =600/min 。求质点振幅与最大位移。

22、图示单自由度体系,欲使支座A 负弯矩与跨中点D 的正弯矩绝对值相等,求干扰力频率θ。EI =常数。

l

l /2

l

23、求图示体系支座弯矩M A 的最大

值。荷载P t P t (),.==004

sin θθω 。

/2

/2

24、求图示体系稳态阶段动力弯矩幅

值图。θωω=05.( 为自振频率),EI = 常数,不计阻尼。

l

l

l

振 幅 方 程 。

2

26、图示对称刚架质量集中于刚性横粱上,已知:m 1=m ,m 2=2m 。各横梁的层间侧移刚度均为k 。求自振频率及主振型。

m 1

m 2

2

1

27、求图示体系的自振频率并画出主振型图。

m

28、求图示体系的自振频率和主振型。EI = 常数。

l l

29、求 图 示 体 系 的 自 振 频 率

及 绘 主 振 型 图 。已 知 EI 24960010=??kN cm

2, m l ==24kg m , 。

.

l

l

30、图示体系,设质量分别集中于各层横梁上,数值均为m 。求第一与第二自振频率之比ωω12:。

l

l

2

31、求图示体系的自振频率和主振型

。m m m m 122==,。

32、求图示体系的频率方程。

l

33、图示体系分布质量不计,EI = 常数。求自振频率及 绘 主 振 型 图。

a

a

34、图示简支梁EI = 常数,梁重不计,

m m m m 122==,,已求出柔度系数()δ123718=a EI /。求自振频率及主振型。

a

a

a

35、求图示梁的自振频率及主振型,并画主振型图。杆件分布质量不计。

a

a

a

m

36、图示刚架杆自重不计,各杆EI = 常数。求自振频率和主振型。

2m

2m

2m

37、求图示体系的自振频率及主振型图。EI = 常数。

l /2l /2

l /2l /2

38、求图示结构的自振频率和主振型图。不计自重。

l /2

l /2

39、求图示体系的自振频率和主振型图。不计自重,EI = 常数。

m a

a

a

40、求图示体系的自振频率和主振型图。已知:m m m 12== 。EI = 常数。

m

1.51m

1.5m

1m

1m

41、求图示体系的自振频率和主振型,并作出主振型图。已知:m m m 12==,EI = 常数。

2m

2

4m 4m

42、求图示结构的自振频率和主振型图。

l /2

l /2

l /

43、求图示体系的自振频率和主振型图。设 EI = 常数。

l

44、求图示体系的自振频率和主振型图。EI = 常数。

l l

l /3/3/3

45、求图示体系的第一自振频率。

l /2

l /2l /2

l /2

46、求图示对称体系的自振频率和主

振型图。EI = 常数。

l l l l /2

/2

/2

/2

47、求图示体系的自振频率及相应主振型图。EI = 常数。

/2

l l

/2l /2l /2

l

48、图示三铰刚架各杆EI =常数,杆自重不计。求自振频率与主振型图。

l l

49、用最简单方法求图示结构的自振频率和主振型图。

l

l

l

50、求图示体系的自振频率和主振型图。EI 常数。

2

a a

a

51、求图示体系的自振频率和主振型。不计自重,EI = 常数。

a /2

a /2

a /2

a /2

52、求图示桁架的自振频率和主振型,标出质点的主振型方向并验算主振型正交性。各杆 EA = 常数。

m

53、求图示桁架的自振频率和主振型。杆件自重不计。

m

3m

3m

54、求图示桁架的自振频率和主振型,标出质点的主振型方向。不计杆件自重,EA = 常数。

m

m

m

33

55、作图示体系的动力弯矩图。柱高

均为h ,柱刚度EI =常数。

l

l

θ=13257

.EI

mh

30.50.5P

56、图示刚架梁为刚性杆,柱为等截面弹性杆,EI =常数。求在图示荷载作用下,梁的最大动位移值。设 sin sin ,2)(,)(21θt P t P θt P t P -==

m m m m mh EI ===

213,5.0,)/(12θ 。

57、作出图示体系的动力弯矩图,已

知:θ=082567

3

.EI

ml 。 0.5l

0.5l

2

m

58、求图示体系各质点的振幅。已知

θ=83EI ml /(),杆长均为

l ,EI =常

数,m m m m 122==, 。

P t sin()

59、图示体系 ,欲使m 1处的振幅为 零,确定干扰力的振动频率θ。 EI =常数。

l

l

l

l

60、绘出图示体系的最大动力弯矩图。

已知:动荷载幅值P =10kN ,θ=-209441.s ,质量m =500kg ,

a =2m ,EI =??4

81062.N m

()P t sin θ

61、已知图示体系的第一振型如下,求体系的第一频率。EI = 常数。

振型101618054011 ..??????

?

?

?

? /2

62、图 示 双 自 由 度 振 动 系 统 ,

已 知 刚 度 矩 阵 :

[]K EI =--??

??

?

?

03590172

.. 0.172 0.159

主 振 型 向 量

{}[]{}Y Y 12110924

==- 1.624 T

T

,[.], 质 量

m m m m m EI 12823101510====??,,. t, N m 2 。

试 求 系 统 的 自 振 频

率 。

2

1

常 数

63、用能量法求图示体系的第一频率。m m l =2 。设在自由端作用水平力P 产生的位移曲线为振型曲线。

64、图 示 等 截 面 均 质 悬 臂 梁 ,m 为 单 位 质 量 ,在 跨 中 承 受 重 量 为 W 的 重 物 ,试 用 Rayleigh 法 求 第 一 频 率 。(设 悬 臂 梁 自 由 端 作 用 一 荷 载 P ,并 选 择 这 个 荷 载 所 产 生 的 挠 曲 线 为 振 型 函 数 ,即 :

()()()()()()

V x

Pl EI x l x l V x l x l V =-=-3233023303323

2

///; 为 P 作 用 点 的 挠 度 ) 。

l l /2

/2

P

结构动力计算习题

160 结构动力计算习题 一.选择题 8-1 体系的动力自由度是指( )。 A .体系中独立的质点位移个数 B .体系中结点的个数 C .体系中质点的个数 D .体系中独立的结点位移的个数 8-2 下列说法中错误的是( )。 A .质点是一个具有质量的几何点; B .大小、方向作用点随时间变化的荷载均为动荷载; C .阻尼是耗散能量的作用; D .加在质点上的惯性力,对质点来说并不存在 8-3 图示体系EI =常数,不计杆件分布质量,动力自由度相同的为( )。 题8-3图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-4图示体系不计杆件分布质量,动力自由度相同的为( )。 (b ) (c ) 题8-4图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-5 若要提高单自由度体系的自振频率,需要( )。 A .增大体系的刚度 B .增大体系的质量 C .增大体系的初速度 D .增大体系的初位移 8-6 不计阻尼影响时,下面说法中错误的是( )。 A .自振周期与初位移、初速度无关; B .自由振动中,当质点位移最大时,质点速度为零; C .自由振动中,质点位移与惯性力同时达到最大值; D .自由振动的振幅与质量、刚度无关 8-7 若结构的自振周期为T ,当受动荷载)(P t F =t F θsin 0作用时,其自振周期T ( )。 A .将延长 B .将缩短 C .不变 D .与荷载频率 θ的大小有关 8-8 若图(a )、(b )和(c )所示体系的自振周期分别为a T 、b T 和c T ,则它们的关系为( )。 (a) (b) (c) 题8-8图 A .a T >b T >c T B .a T >c T >b T C .a T

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 (a)(b) 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 EI l W l/4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。 EI W o o l/2l/2 k 12、求图示体系的自振频率ω。 m l EI EI l 0.5l 0.5 2 13、求图示体系的自振频率ω。EI = 常数。 m l l0.5 14、求图示结构的自振频率ω。 m l l l l EI=常数

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 m 16、求图示体系的自振频率ω。杆长均为l 。 EA=o o EI m EI EI 17、求图示结构的自振频率和振型。 m m EI EI EI l /2 l /2 l /2 18、图示梁自重不计,W EI ==??2002104kN kN m 2 ,,求自振圆频率ω。 EI W A B C 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 h EI EI W

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

结构动力学思考题解答

结构动力学思考题 made by 李云屹 思考题一 1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同? 主要区别为: (1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响; (2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化; (3)动力学的求解方法通常与荷载类型有关,静力学一般无关。 运动方程的不同: 动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。 2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数; 静力自由度:确定结构体系在空间中的几何位置的独立参数。 意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。 3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同? 4、在结构振动的过程中引起阻尼的原因有哪些? (1)材料的内摩擦或材料变形引起的热耗散; (2)构件连接处或结构构件与非结构构件之间的摩擦; (3)结构外部介质的阻尼。 5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变? 如果满足条件: (1)线性问题; (2)重力的影响预先被平衡; 则动位移的运动方程不会改变,否则会改变。 思考题二 1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]? k ij:由第j自由度的单位位移所引起的第i自由度的力; m ij:由第j自由度的单位加速度所引起的第i自由度的力。 依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。

结构力学(2)习题库

15 结构的动力计算判断题 体系的振动自由度等于集中质量数。() 图示体系具有1个振动自由度。() 图示体系具有2个振动自由度。() 图示体系具有3个振动自由度。()

图示体系具有2个振动自由度。() 图示体系具有2个振动自由度。() 结构的自振频率除与体系的质量分布状况、杆件刚度有关外,还与干扰力有关。()自由振动是指不受外界干扰力作用的振动。() 自由振动是由初位移和初速度引起的,缺一不可。()

有阻尼单自由度体系的阻尼比越大,自振频率越小。() 临界阻尼现象是指起振后振动次数很少且振幅很快衰减为零的振动。()惯性力并不是实际加在运动质量上的力。() 计算一个结构的自振周期时,考虑阻尼比不考虑所得的结果要大。()临界阻尼振动时质点缓慢地回到平衡位置且不过平衡点。() 阻尼力总是与质点加速的方向相反。()

在某些情形下建立振动微分方程式时,不考虑重力的影响是因为重力为恒力。() 图示结构的自振频率为w,在干扰力P(t)=P sin qt作用下,不管频率q怎样改变,动位移y(t)的方向总是和P(t)的方向相同。() 计算图示振动体系的最大动内力和动位移时可以采用同一个动力系数。() 不论干扰力是否直接作用在单自由度体系的质量m上,都可用同一个动力系数计算任一点的最大动位移。() 单自由度体系受迫振动的最大动位移的计算公式y max=my j中,y j是质量m的重量所引起的静位

移。() 多自由度体系作自由振动,一般包括所有的振型,不可能出现仅含某一主振型的振动。()解得图(a)所示两个自由度体系的两个主振型为图(b)和图(c),此解答是正确的。() 图(a)与图(b)所示梁的自由振动频率w A、w B相比,w A>w B。() 填空题 动力荷载是指_____________________荷载。

《结构力学》期末考试试卷(A、B卷-含答案)

***学院期末考试试卷 考试科目《结构力学》考 试卷类型 A 答案试 考试形式闭卷成 考试对象土木本科绩 一、填空题( 20 分)(每题 2 分) 1.一个刚片在其平面内具有 3 个自由度;一个点在及平面内具有 2 自由 度;平面内一根链杆自由运动时具有3个自由度。 2.静定结构的内力分析的基本方法截面法,隔离体上建立的基本方程是平衡方程。 3.杆系结构在荷载,温度变化,支座位移等因素作用下会产生变形和位移。 4.超静定结构的几何构造特征是有多余约束的几何不变体系。 5.对称结构在对称荷载作用下,若取对称基本结构和对称及反对称未知力,则其 中反对称未知力等于零。 6.力矩分配法适用于没有侧移未知量的超静定梁与刚架。 7.绘制影响线的基本方法有静力法法和机动法法。 8.单元刚度矩阵的性质有奇异性和对称性。 9.结构的动力特性包括结构的自阵频率;结构的振兴型;结构的阻尼。 10. 在自由振动方程... 2 y(t) 0 式中, y(t ) 2 y(t )称为体系的自振频 率,称为阻尼比。

二、试分析图示体系的几何组成(10 分) (1)(2)答案: (1)答:该体系是几何不变体系且无余联系。 (2)答:该体系是几何不变体系且无多余联系。 三、试绘制图示梁的弯矩图(10分) ( 1)(2) 答案: (1)(2) M图 四、简答题( 20 分) 1.如何求单元等效结点荷载?等效荷载的含义是什么?答案: 2.求影响线的系数方程与求内力方程有何区别? 答案: 3.动力计算与静力计算的主要区别是什么? 答案:

4.自由振动的振幅与那些量有关? 答案 五、计算题( 40 分) 1、用图乘法计算如图所示简支梁 A 截面的转角 A 。已知EI=常量。(10分) 答案: 解:作单位力状态,如图所示。分别作出M p和 M 图后,由图乘法得: 2.试作图示伸臂量的F By M K的影响线。 答案: F By的影响线 M K的影响线

结构力学计算题及答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71. 用力法作下图所示刚架的弯矩图。 l B D P A C l l EI =常数 72. 用力法求作下图所示刚架的M 图。 73. 利用力法计算图示结构,作弯矩图。 74. 用力法求作下图所示结构的M 图,EI=常数。 75. 用力法计算下图所示刚架,作M 图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 取整体为研究对象,由 0A M =,得 2220yB xB aF aF qa +-= (1)(2分) 取BC 部分为研究对象,由 0C M =∑,得 yB xB aF aF =,即yB xB F F =(2)(2分) 由(1)、(2)联立解得2 3 xB yB F F qa ==(2分) 由 0x F =∑有 20xA xB F qa F +-= 解得 4 3xA F qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 2 3 yA yB F F qa =-=-(1分) 则222 4222333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62. 解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分) 63. 解:

(完整版)结构力学问答题总结

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)

所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

福大结构力学课后习题详细答案(祁皑)

结构力学(祁皑)课后习题详细答案 答案仅供参考 第1章 1-1分析图示体系的几何组成。 1-1(a) 解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几何不变体系,且有一个多余约束。 1-1 (b) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (c) (c-1) (a ) (a-1) (b ) (b-1) (b-2)

(c-2) (c-3) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (d) (d-1) (d-2) (d-3) 解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形的,分析要注意确认。 1-1 (e) 解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体系,缺少一个必要约束。 1-1 (f) 解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相 连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其 余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因此,原体系为几何不变体系,且无多余约束。 1-1 (g) (d ) (e ) (e-1) A (e-2) (f ) (f-1) (g ) (g-1) (g-2)

《结构力学习题集》9-结构动力计算

第九章 结构的动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312?? ??????????+--????????????=?????? ()

二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C . 增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B .()76873EI ml k m //-; C .()76873EI ml k m //-; D .() 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b)

结构的动力计算

第十章 结构动力计算基础 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 l l /4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。 l /2 l /2 12、求图示体系的自振频率ω。 l l 0.5l 0.5 13、求图示体系的自振频率ω。EI = 常数。 l l 0.5 14、求图示结构的自振频率ω。 l l

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 16、求图示体系的自振频率ω。杆长均为l 。 17、求图示结构的自振频率和振型。 l /2 l /2 l / 18、图示梁自重不计,W EI ==?? 2002104kN kN m 2 ,,求自振圆频率ω。 B 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 EI EI W

(整理)计算结构动力学2

第2章 分析动力学基础 2.1 基本概念 2.1.1 约束 对质点系各质点的位移和速度提供的限制,约束在数学上通过约束方程来表达。对于n 个质点组成的系统,约束方程的一般形式为: m k t r r r r r r f n n k ,1,0),,...,,,,...,,(2 121== 或简写为: m k t r r f i i k ,1,0),,(== 式中,i r 、i r 分别为质点i 的位置矢量和速度矢量,t 为时间,m 为约束方程的个数。 注:弹性支座不对位置和速度提供直接限制,不作为约束。 约束方程的分类: (1) 几何约束和运动约束 几何约束:约束方程中不显含速度项,如:0),(=t r f i k 运动约束:约束方程中显含速度项,如:0),,(=t r r f i i k 下图中,如果圆轮与地面之间无滑动,则其约束方程为:0=-? a x c (2) 定常约束和非定常约束 定常约束:约束方程中不显含时间t ,如:0),(=i i k r r f 非定常约束:约束方程中显含时间t ,如:0),,(=t r r f i i k

222l y x =+ 222)(ut l y x -=+ (3) 完整约束与非完整约束 完整约束:几何约束以及可积分的运动约束 非完整约束:不可积分的运动约束 方程0=-? a x c 可积分为0=-?a x c ,因此是完整约束。 (4) 单面约束与双面约束 单面约束:约束方程为不等式,如:0),,(≤t r r f i i k 双面约束:约束方程为等式,如:0),,(=t r r f i i k 下图中,如果考虑到绳子可以缩短,则其约束方程为:222l y x ≤+,表现为不等式形式,就是一个单面约束。 一般分析力学的研究对象为:完整的双面约束,方程为:0),(=t r f i k 。 2.1.2 广义坐标与自由度 广义坐标:描述系统位置状态的独立参数,称为系统 的广义坐标。 广义坐标的个数: (1) 空间质点系:m n N -=3 (2) 平面质点系:m n N -=2

结构动力学分析

结构动力学分析 1静力分析与动力学分析的区别 静力分析是分析结构在承受稳定载荷作用下的受力特性。结构动力分析是分析结构在承受随时间变化的载荷作用下的动力学特性。 2动力学特性 动力学特性通常有下面几种类型: 2.1振动特性 即结构的振动形式和振动频率。 2.2随时间变化载荷的效应 例如,对结构位移和应力的效应。 2.3周期(振动)或随机载荷的效应 3四种动力学分析及举例 3.1模态分析 用于确定结构的振动特性,即固有频率和振型。在承受动态载荷的结构设计中,固有频率和振型是重要的参数。模态分析也是其他动力学分析前期必须完成的环节。 举例:如何避免汽车尾气排气管装配体的固有频率与发动机的固有频率相同? 3.2瞬态分析 用于确定结构在受到冲击载荷时的受力特性。 举例:怎样确保桥墩在受到撞击时的安全? 3.3谐响应分析 用于确定结构对稳态简谐载荷的响应。 举例:如何确定压缩机、电动机、泵、涡轮机械等旋转引起的轴承、支座、固定装置、部件应力? 3.4谱分析 用于确定结构在受到动载荷或随机载荷时的受力特性。 举例:如何确定房屋和桥梁承受地震载荷时的受力? 4四种动力学分析基本原理 4.1模态分析理论的基本假设 线性假设:结构的动态特性是线性的,即任何输入组合所引起的输出等于各自输出的组 合,其动力学特性可用一组线性二阶微分方程来描述。任何非线性特性,如塑性、接触单元

等,即使定义了也将被忽略。 时不变性假设:结构的动态特性不随时间而变化,微分方程的系数是与时间无关的常数。 可观测性假设:系统动态特性所需要的全部数据都是可测量的。 遵循Maxwell互易性定理:在结构的i点输入所引起的j响应,等于在j点的相同 输入所引起的i点响应。此假设使结构的质量矩阵、刚度矩阵、阻尼矩阵和频响矩阵都成了对称矩阵。 4.2谐响应分析基本原理 谐响应分析是一种线性分析,非线性特性被忽略。 输入:已知大小和频率的谐波载荷(力、压力和强迫位移);同一频率的多种载荷,可以是相同或不相同的。 输出:位移、应力、应变等。 已知动力学运动方程: [M]{u}+[C]{u}+[K]{u}={F(t)} 其中,[M] 为质量矩阵,[C]为阻尼矩阵,[K]为刚度矩阵,{u}为节点位移向量,{F(t)}载荷为时间的任意函数。对简谐运动而言,{u}和{F(t)}均为简谐形式。 4.3瞬态分析基本原理 瞬态分析也叫时间历程分析。载荷和时间的相关性使得惯性力和阻尼作用比较重要,如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。 输入:结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下随时间变化的载荷。 输出:随时间变化的位移、应力、应变等。 瞬态动力学的基本运动方程: [M]{u}+[C]{u}+[K]{u}={F(t)} 其中,[M] 为质量矩阵,[C]为阻尼矩阵,[K]为刚度矩阵,{u}为节点位移向量,{F(t)}载荷为时间的任意函数。 4.4谱分析基本原理 谱分析模态分析的扩展,是将模态分析的结果与一个已知的谱联系起来计算结构的位移和应力。 主要用于分析承受地震或其他随机载荷的建筑物及桥梁结构等。

(整理)3-1、武汉理工大学结构力学典型例题.

第2章平面体系的几何构造分析典型例题 1. 对图 2.1a体系作几何组成分析。 图2.1 分析:图2.1a等效图2.1b(去掉二元体)。 对象:刚片Ⅰ、Ⅱ和Ⅲ; 联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6); 结论:三铰共线,几何瞬变体系。 2. 对图2.2a体系作几何组成分析。 图2.1 分析:去掉二元体(杆12、杆34和杆56图2.1b),等效图2.1c。 对象:刚片Ⅰ和Ⅱ;

联系:三杆:7、8和9; 结论:三铰不共线,无多余约束的几何不变体系。 3. 对图2.3a体系作几何组成分析。 图2.3 分析:图2.3a 对象:刚片Ⅰ(三角形原则)和大地Ⅱ; 联系:铰A和杆1; 结论:无多余约束的几何不变体系。 对象:刚片Ⅲ(三角形原则)和大地Ⅱ; 联系:杆2、3和4; 结论:无多余约束的几何不变体系。

第3章静定结构的受力分析典型题1. 求图3.1结构的内力图。 图3.1 解(1)支座反力(单位:kN) 由整体平衡,得=100.= 66.67,=-66.67. (2)内力(单位:kN.m制) 取AD为脱离体: ,,; ,,。 取结点D为脱离体:

,, 取BE为脱离体: ,,。 取结点E为脱离体: ,, (3)内力图见图3.1b~d。 2. 判断图 3.2a和b桁架中的零杆。 图3.2 分析: 判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。如果这两种结点上无荷载作用.那么L型纪点的两杆及T型结点的非共线杆均为零杆。 解:图3.2a: 考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF 均为零杆。

结构力学-第10章 动力计算课堂练习

一、 是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误) 1、图a 体系的自振频率比图b 的小。( ) l /2 l /2 l /2 l /2 (a) (b) 2、单自由度体系如图,W =98.kN ,欲使顶端产生水平位移?=001.m ,需加水平力P =16kN ,则体系的自振频 率ω=-40s 1。( ) ? 二、选择题(将选中答案的字母填入括弧内) 1、图示体系的运动方程为: A .m y E I l y P si n() +=3516 3 θ t ; B .y P m y E I = -si n() θ t 3; C .m y E I l y P si n()+=33θ t ; D .m y E I l y P si n()+=38 5163 θ t 。( ) l l m 0.50.5 2、在图示结构中,若要使其自振频率ω增大,可以 A .增大P ; B .增大 m ; C .增大EI ; D .增大l 。( ) l t ) 3、已知一单自由度体系的阻尼比ξ=12.,则该体系自由振动时的位移时程曲线的形状可能为: D. C. B. A.

4、图示体系竖向自振的方程 为: y I I y I I 11111222211222=+=+δδδδ,, 其中δ22等于: A .()112/k k +; B .1121//k k +; C .()k k k 212/+; D .12/k 。 ( ) m 1 2 m 5、图示组合结构,不计杆质量,其动力自由度为: A .6; B .5; C .4; D .3。( ) 6、图示梁自重不计,在集中重量W 作用下,C 点的竖向位移?C =1cm ,则该体系的自振周期 为: A .0.032s ; B .0.201s ; C .0.319s ; D .2.007s 。( ) 7、图示三个主振型形状及其相应的圆频率ω,三个频率的关系应为: A .ωωωa b c <<;B .ωωωb c a <<; C .ωωωc a b <<; D .ωωωa b c >>。( ) (a) (b) (c) ω a ω b ω c 三、填充题(将答案写在空格内) 2、单自由度无阻尼体系受简谐荷载作用,若稳态受迫振动可表为y y t =??μθst sin ,则式中μ计算公式 为 , y s t 是 。 3、多自由度体系自由振动时的任何位移曲线,均可看成 的线性组合。 1、图示体系不计阻尼,θωω=2(为自振频率),其动力系数μ 。

重庆大学结构力学(二)

结构力学(二) 重庆大学土木工程学院建筑力学系结构力学教研室研制 2004年10月

本章主要内容 §11-1概述 §11-2单自由度体系的运动方程 §11-3单自由度体系的自由振动 §11-4单自由度体系在简谐荷载作用下的强迫振动§11-5单自由度体系在任意荷载作用下的强迫振动§11-6两个自由度体系的自由振动 §11-7一般多自由度体系的自由振动 §11-8多自由度体系在简谐荷载作用下的强迫振动§11-9振型分解法 §11-11能量法计算自振频率

第11章结构的动力计算 §11-1 概述 一. 静力荷载和动力荷载 1。静力荷载 荷载的大小?方向和作用位置都不随时间而变化或变化非常缓慢,使结构质量产生的加速度很小,由它引起的惯性力与作用荷载相比可以忽略不计。 2.动力荷载 荷载的大小、方向或作用位置随时间迅速变化的荷载,它使结构质量产生的加速度比较大,因而不能忽略惯性力对结构的影响。动力荷载使结构产生明显的振动,即在某一位置附近来回运动。 BACK

3.动力荷载的分类 (1)简谐荷载 随时间t按正弦函数或余弦函数规律变化的周期函数,称为简谐荷载(图a)。安装在结构上的具有偏心质量的电动机作匀速转动时就产生这样的动力荷载。例如某电动机的偏心质量m以角速度作匀速转动(图b),偏心质量与转动轴之间的距离为r,则由偏心质量m产生的离心力P为 P=ma=mθ2r 上式中a=θ2r,为向心加速度。若以通过转轴的水平线作为x轴,则经过时间t后,偏心质量m转动的角度为θt,此时离心力P的水平分力和竖向分力分别为 P x (t)=Pcos θt=m2rcos θt P y (t)=Psin θt=m2rsin θt

相关文档
最新文档