2.2.1凝结水系统(CEX)

2.2.1凝结水系统(CEX)
2.2.1凝结水系统(CEX)

2.2 给水系统

§2.2.1 凝结水系统(CEX)

一.概述

凝结水抽取系统(CEX)是介于汽轮机与低压给水加热器之间的系统,它是汽机热力主循环中的一个重要组成部分。

二.功能

1.接受汽轮机的排汽,将其冷凝为水,然后继续参加循环;

2.通过凝汽器将排汽冷凝,使汽轮机排汽端获得高度真空,从而使它们能发出较高功率,提高其经济性;

3.在汽轮发电机大量甩负荷或机组紧急掉闸时,本系统能接受GCT-C系统的排放蒸汽(GCT-C总容量为额定主蒸汽流量的85%),使蒸汽发生器仍能传出相当大的热量,从而使反应堆不致因

电力输出锐减而紧急停堆;

4.在凝汽之后,可将凝结水除气,其功能符合热交换协会(HEI)标准要求。此外,还可将凝结水过滤、净化;

5.为电站提供适当和必要的凝结水储存量;

6.可将凝结水从凝汽器热井经ABP(给水低压加热器系统)系统输送至除氧器。从SER(常规到处盐水分配系统)系统接受汽机热力系统运行所需的补给水;

次要功能:

1.接受大部分热力系统的疏水;

2.为ASG系统水箱提供凝结水;

3.为凝汽器水幕保护装置供水;

4.为APG再生热交换器提供冷却水;

5.为三个疏水扩容器提供减温水;

6.为CAR系统(汽机排气口喷淋系统)提供降温用凝结水;

7.为凝结从GCT-C系统进入凝汽器的排汽提供降温水;

8.凝结水泵提供自密封水。

三.系统描述

每只低压缸下方有凝汽器的一个壳体,三个壳体的接颈处设有均压连通管,每个壳体下面的凝结水热井间设有两根连通管。每个壳体的循环水侧分隔为两个独立回路组成。循环水均为单流,自一侧进入,由另一侧排出,流过凝汽器后都排入暗渠中,然后经具有虹吸水封作用的跌落井排入大海。

低压缸排汽在凝汽器101CS、102CS、103CS中冷凝成水,然后,经由凝结水泵的入口过滤器CEX001/002/003FI进入凝结水泵,凝结水从凝结水泵出来后,分别经过各自的逆止阀006VL、005VL、004VL和电动隔离阀009VL、008VL、007VL,合并后的主凝结水经孔板后分为两路,主路经调节阀042VL、026VL和旁路阀025VL送往低压给水加热器,另一路经阀029VL和调节阀030VL返回凝汽器103CS.汽机轴封冷却器与孔板串联,该孔板通过设计计算选定,以保证有适当的凝结水流量流过轴封冷却器,保证这一重要设备的正常工作。把轴封冷却器的水路布置在送往低压给水加热器和凝结水再循环管线的上游,也是为了确保向轴封冷却器供应冷却水,使之不受进入除氧器的主系统凝结水量的影响。当主路凝结水量减少时,凝结水再循环阀030VL将开启,从而保证供应轴封冷却器的冷却水量。返回CEX系统的

232

疏水分别由高压疏水扩容器和凝汽器的两个本体疏水扩容器接受,减温减压后最终进入凝汽器。

四.设备性能

1.凝汽器结构简介

(1)凝汽器型式:单背压、三壳体、对分、单流程表面式,每只壳体之间由汽平衡管和水平衡管连通,在外端两只壳体的外侧边各附有一只本体疏水扩容箱,凝汽器与汽轮机低压缸之间采用弹性连接,与基础之间为刚性连接。

(2)接颈:为钢板焊接结构,内部用支撑管支撑,且留有LP1,LP2组合式低加安装空间;在每个接颈的内部设有LP1-LP3低加抽汽管及水幕保护装置,外侧安装有四只减温减压装置(整套凝汽器共十二只),以接受来自GCT-C的排汽。

(3)壳体:为钢板焊接结构,内部由支撑管及隔板支撑连接,在壳体的两个端面设挠性板;管板为钛钢复合板,其钢板侧与挠性板直接焊接,钛板侧与水室螺栓连接;冷却管采用钛管,由隔板支撑,两端与管板的连接方式采用胀接加密封焊;在壳体的底部设有低压加热器危急疏水口;在外端两个壳体外侧设有本体疏水扩容箱,疏水经扩容箱喷水减温后凝水排入热井,蒸汽排入接颈。对壳体内的管束布置留有足够的蒸汽通流空间,便于蒸汽均匀地进入管束使热负荷分布均匀并及时地被冷却凝结,同时足够的通道可使部分蒸汽直接流至热井,以回热热井中的凝结水,防止凝结水产生过冷,保证凝结水的低含氧量。管束布置采用上窄下宽,设计成一端高一端低,使凝结水能顺管束向低端流动,防止由于上部凝结水流向下部管束太多使下部管束形成液膜而使热交换效率降低。

(4)凝结水集水槽:由于管束的布置较合理,在管束中间没有设凝结水收集盘,而在管束的下端设有凝结水收集槽。

(5)热井:为钢板焊接结构,内部亦由支撑管及T型钢支撑,在其底部设有刚性支座。三个热井之间有管子联通,每一个热井底部有一个取水口与母管连接,然后去凝结水泵入口。

(6)水室:亦为钢结构,设计成桔皮状(即由二个弧形组合式),这种形状既可改善冷却水在水室中的流型,使冷却水能均匀地进入冷却管,又可减少死角,防止清洗胶球的沉积及泥沙淤积(秦山二期由于海水含沙量大,足以清洗凝汽器管束,所以不再设胶球清洗装置)。底部开有循环冷却水进(出)口,且在水管口设有不锈钢安全栅格,在水室内部与海水接触面均有耐腐蚀衬里。

(7)排汽接管:采用橡胶膨胀节,可补偿任何方向的位移。且外侧设水密封

(8)平衡管:每二只壳体之间在接颈处分别采用两根汽平衡管,在三个热井间设二只凝结水平衡管。

2.凝汽器主要技术参数和凝汽器热力参数见下表:

秦山第二核电厂600MW凝汽器主要技术参数

233

秦山第二核电厂600M We级凝汽器热力参数

3.凝结水泵:

凝结水泵为筒袋型立式双层壳体结构,它由泵筒体、工作部分和出水部分组成。泵筒体是由钢板卷焊制成的,其一侧设有吸入口法兰。泵筒体用以构成双层壳体泵的外层压力腔,正常工作时腔内处于负压状态。

工作部分用多级叶轮同向排列构成的泵转子和在其外围形成导流空间的导流壳共同组成。泵转子由叶轮、泵轴、键、轴套等件组成。由于凝结水泵吸入侧为高真空,故必须将第一级泵轮标高置于热井水位下足够的深度,使水泵实际净正吸头高于所需净正吸头,使水泵吸入侧不致汽化。

出水部分由变径管、圆管、吐出座等件组成。泵的中间轴、传动轴从该部分的中心穿过。从泵工作部流出的液体经该部分后水平进入泵外压力管道。吐出座上设有填料函、卸压孔、脱汽孔。卸压孔用以将轴封腔内压力减至最低;脱汽孔用以将泵筒体内的汽体及时排至凝汽器。泵内设有多处水润滑轴承,用以承受泵转子径向力。泵转子的轴向力由电动机上的推力轴承承受。轴封采用软填料密封,由凝结水泵出口水进行自密封。泵座上填料处设有冷却室,当泵送温度大于80℃时,需要SRI提供冷却水。该泵基本参数如下:

型号:YLST500-4 频率:50Hz 功率:1120kW

234

功率因数:0.88 转速:1486rpm 绝缘等级:F

4.高压疏水扩容器CEX001BA

为了避免高能流体直接进入凝汽器造成不必要的损害,除了两个本体疏水扩容器外,特布置了一个外置卧式高压疏水扩容器,将高能流体先引入扩容器,进行减温减压后,再排入凝汽器。本疏水扩容器的外径为Φ2640mm,长度为10000mm,容积为~46m3,疏水量大、疏水复杂,为了满足汽机厂房的布置要求,采用了卧式设计。

本疏水扩容器筒体采用了局部不锈钢衬里,耐冲蚀部件采用不锈钢制作。排气口管道和排水管道上采用特制喷雾效果好的喷嘴进行喷淋,利于更好的减温。在筒体的适当位置设有人孔,方便检修人员进入凝汽器。

为了确保设备的运行性能,高压疏水扩容器在正式投入运行前,其筒体部分必须按GB150规定进行水压试验,水压试验压力为0.75MPa,水温不应低于 15℃。各焊缝、接口、人孔等应无泄漏、渗水现象以及整个筒体无变形现象。

在各路疏水进入高压疏水扩容器前,应打开冷却水源,让其冷却喷水,一直到疏水停止后,方可切断冷却水源。设备在机组停运或设备维修时,须放净存水,并彻底放干。

高压疏水扩容器接收的主要疏水有:

(1)5#、6#、7#高加紧急疏水

(2)GSS二级再热器紧急疏水

(3)MSR壳体紧急疏水

(4)高压调节阀后疏水

(5)二级再热器扫汽管道疏水

五.运行和控制

1.系统充水

主凝汽器的充水由SER系统提供,充水时开启补给水气动调节阀039VD的电动旁路隔离阀038VD,对热井、凝结水泵及其入口管道充水。利用一根连接管,从凝结水补给水调节阀上游至凝结水泵出口管道,进行凝结水泵出口侧直至除氧器进水隔离阀和再循环隔离阀的充水。

2.系统的冲洗

凝结水系统的冲洗是以再循环方式进行的,启动一台凝结水泵通过二级过滤,除去杂物和溶解物,第一级过滤是指热井上的机械过滤,第二级过滤是指凝结水泵入口管道上的过滤器,过滤不能除去的较

235

小杂质。

3.起动

正常运行时,一般选定三台凝结水泵中的两台作为工作泵,另一台为备用。工作泵的起动可由控制室操作。起动前开启泵的进口隔离阀,而除氧器隔离阀、凝结水排放阀应关闭,再循环隔离阀应开启。

凝结水泵起动后,开启再循环隔离阀,由再循环调节阀030VL自动控制凝结水流量,并允许开启除氧器隔离阀和凝结水排放阀。

当一台运行泵故障停运或当凝结水母管压力低时,备用泵自动起动。

4.正常停运

正常停运在主控室操作,凝结水母管压力低信号将使除氧器隔离阀、凝结水排放阀和再循环调节阀均关闭。

凝结水泵联锁停运的信号有热井水位低低、凝结水泵和电机轴承温度高、凝结水泵冷却水不满足、凝结水泵马达线圈温度高、出口阀全关。

5.凝汽器的水位控制

凝汽器的水位由水位控制器自动控制补给水阀CEX035VD和CEX039VD来满足水位的要求。

每台冷凝器装有一个水位计,由于三台冷凝器的热井由连通管相连。从整体看,冷凝器构成了一式三套水位测量装置。每个水位计设有4个水位开关报警点,分别为高高水位、高水位、低水位、低低水位。冷凝器水位的实测值由三个水位计(004MN,008MN,012MN)的测量值经平均后产生。一个水位计故障不影响冷凝器水位自动调节。

冷凝器的水位整定值由于手操器手动设定,在升降负荷式注意监视冷凝器的水位变化,这是因为正常运行时,二回路的水容积是一定的,零负荷时蒸汽发生器内尽管水位低,但水密度大,容纳的水质量相对较多,所以冷凝器中储存的水较少,而高负荷时,蒸汽发生器内水位虽高,但水中汽泡多,密度小,容纳的水质量相对较少,所以冷凝器中储存的水较多,导致负荷变化过程中冷凝器水位会有明显的变化。

当实测水位与整定值水位有偏差时送PI调节器,调节器的输出控制小补给水调节阀039VD和大补给水调节阀035VD,向冷凝器补充除盐水,使实测值等于整定值。冷凝器的初始充水也是经补水阀来完成的。在自动调节不可用的情况下,由操纵员通过RCM039RC或RCM035RC手动直接控制补给水阀。在主控室有水位计录仪001EN和指示仪023ID、030ID,手操器上也可以显示实测值和正定值。在正常运行时,维持冷凝器水位等于整定值。当达到高水位时,只触发高水位报警,操纵员应分析原因并采取相应措施。如果水位继续上升,将触发高高水位报警,操纵员应尽快使汽轮发电机减负荷并监视冷凝器水

位,如果水位没有下降,快速停运汽轮发电机组。

造成冷凝器高水位的原因主要有:

(1)凝结水泵故障;

(2)除氧器水位控制系统或相应控制阀失灵;

(3)冷凝器水位控制系统失灵;

冷凝器低水位触发低水位报警,低低水位时,运行的凝结水泵自动脱扣,备用泵闭锁启动。

6.凝结水再循环流量控制

为保证凝结水泵有足够的最小流量,设有单根的再循环管。再循环流量由控制阀030VL控制,为基地式控制方式,原理见图8.37。实测值为002LMD测得的凝结水流量信号,整定值为事先设定,二者偏差经PI调节器控制030VL。

汽机低负荷时,除氧器水位控制器和再循环流量控制器共同使用,使凝结水流量约为 t/h,当汽机负荷大于

凝汽器再循环阀控制原理图

CEX030VL

236

一定值时,再循环流量控制阀全关,凝结水流量随负荷成比例增加,100%Pn时达到2492.7t/h。

再循环管线不但保护凝结水泵并且在启动和低负荷时确保流过轴封冷却器的流量。在电站启动时,使进入冷凝器的水经金属滤网再循环,以便系统清洗。

D

凝结水系统控制简图

237

238

239

火电厂凝结水精处理系统调试

运前的酸洗.大量铁腐蚀产物及残留在管系中的结 垢物质都将在运行中随凝结水带入整个水汽系统.造成不同的污染…。为充分发挥凝结水精处理系统作用,灞桥和渭河热电厂4台机组,锅炉点火后约1d。都较早地投运凝结水精处理系统。考虑到投运初期高速混床系统主要发挥着除硅、吸附和过滤悬浮细小固体杂质颗粒的作用,在整套肩动初期.结合水质实际状况.在保证蒸汽品质合格前提下混床出水指标适当放宽,避免频繁再生。主要控制值为:SiO:小于等于30斗g,L、Fe小于等于15斗g,L、压差小于等于0.3MPa。当水汽逐步正常后混床各指标按正常运行状态进行控制。由于高速混床较早地投运.灞桥和渭河热电厂4台机组整套启动期间水汽品质合格率均在95%以上。 3.1高速混床投运后净水作用 以渭河热电厂2号机组为例.机组于2009年5月2日点火.高速混床于2009—05-03T18:00投运.投运后24h混床出水、凝结水、给水系统硅质量浓度变化趋势见图2。由图2可看出当高速混床投运后。凝结水、给水系统的硅质量浓度分别由158.8¨玑和123.4斗g/L下降至23.6IJ,g/L和45.2斗∥L,给水系统硅虽然有波动.但下降趋势依然明显。 图2精处理投运后对凝结水和给水的影响Fig.2Effectofcondensatepolishingtocondensate andfeed-water 3.2高速混床投运后防腐作用 混床投运初期.树脂失效后倒置分离塔.从窥视孔观察树脂由于吸附大量杂质已经变黑.反洗过程中可观察到大量铁渣和悬浮物.树脂擦洗后出水发黑。如果这蝗杂质进入锅炉.铁腐蚀产物和结垢杂质会在锅炉蒸发面E沉积使锅炉热效率下降并发生垢下腐蚀,引起安全事故部分杂质随减温水和蒸汽带入汽轮机.在叶片和气流通道上积盐.同样引起汽轮机效率下降和设备腐蚀等。高速混床系统能有效地将大量的铁腐蚀产物和结垢物质拦截.并清除到热力系统外,减轻了热力系统的腐蚀.4调试过程中遇到的问题及建议 (1)灞桥和渭河热电厂高速混床承压及严密性试验中压力最高只升到3.0MPa.试运过程中混床系统渗漏点较多,虽多次消缺.混床入口流景孔板法兰处仍有渗漏.建议应更换混床入口流量孔板垫。另外.为了精处理系统更加安全稳定地运行.建议将精处理系统重新打压.压力需大于等于3.5MPa。 (2)渭河热电厂精处理系统调试初期.由于碱罐安装于室外。且碱管道埋于地沟.系统都末做保温.冬天温度较低.碱罐和管道都冻住.严重影响阴树脂再生.多次疏通未果,最后用火焊进行烘烤。并逐段割管检查。疏通后立即进行保温和增加碱系统伴热.问题得以解决。由于冬天温度较低.碱液容易结晶,建议将碱罐系统安装于室内.若温度较低应提前投系统伴热。 (3)树脂输送分气送、水送、和气/水合送3种方式。渭河和灞桥热电厂树脂输送以气送为主.气/水合送为辅。在树脂传送过程中压缩空气压力控制在O.2~0.3MPa较适宜。压力过高.树脂传送时管道振动较大;压力太低,由于树脂传送管路较长.弯头多,压头损失较大。树脂传送速度较慢。冲洗水泵扬程应大于等于40m。渭河热电厂气/水合送时,由于冲洗水泵扬程为20m.导致罐体进水不畅.建议应将冲洗水泵扬程更换为50m。 (4)渭河热电厂1号机组B混床在试运过程中.树脂倒出后.从窥视孔观察F部穹形孑L板发现底部有螺丝脱落.打开人孔后.发现实为顶郜布水装置边缘的3根拉筋和3颗螺丝脱落.经检查分析为拉筋焊接不牢而掉落,通知厂家消缺后.问题得以解决。 (5)渭河热电厂2号机组C混床在投运前升压检漏时.从C混床进出水差压变送器排污发现有树脂流出.初步判断为混床内部水帽松动导致树脂流出.将树脂倒出后.打开C混床人孑L.发现实际为C混床底部穹形孔板变形导致树脂流出(见图3)。消缺后.问题得以解决。 图3混床底部孔板变形 Fig.3Brokenplateof mix—bed

(整理)凝结水精处理需要考虑的问题.

凝结水精处理需要考虑的问题 保持现代发电设备中锅炉给水有高纯度的重要意义己为中华人民共和国的同行在设计电站时所认识,因此在300MW及更大容量的汽轮发电机组中均考虑了此因素。 用凝结水过滤和凝结水精处理进行除杂质脱盐,己是高温高压汽轮发电机组运行时的常用的方法。 凝结水精处理除去微量溶解矿物质和悬浮物,这些物质可能在不同情况下与系统中金属起作用而引起过早地化学破坏,或沉积于系统中。结果造成效益降低,机械损坏。从理论上来讲,凝结水精处理装置能保证处理对象不超出指标、产生肯定的效益。 电力工业中常用的凝结水精处理类型有粒状树脂混合床精处理装置(深层混床精处理或深层混床装置)及复盖型过滤器/除盐精处理器(f/d精处理器、粉末树脂系统、过滤器/除盐器或f/d系统)在世界各地安装了各种类型的精处理器不下成千上百台。 深层混床装置使粒状阳离子交换树脂及阴离子交换树脂以混合的形式来达到除盐和过滤的双重作用,再生过的混合树脂被装到许多运行罐中,热力系统中的凝结水通过这些运行罐得到处理。 用以处理一台600MW火力发电机组100%的凝结水量,通常设计用3×50%(较好)或4×33%的运行罐以应付流量要求(约1700m3/时)。 如有一个100%全流量备用罐的精处理系统,即使在循环系统发生不利情况下仍能提供最好的保护,但不是必须遵循的。设计100%

全流量而无备用罐的精处理系统,必须在树脂失效后,树脂输送期间有旁路的设施。 通常运行罐的设计按通过915-1220mm/mm深度的树脂层、其流速按100-122米/时设计。凝结水精处理装置用于大型核电机组,其热井凝结水流量高达7500m3/时,需要8到10只运行罐并联运行处理,例如Permutit在美国Seabrook核电站的装置,其设计处理水量高达5455m3/时,与中国大亚湾核电站的凝结水流量相仿。 精处理系统现常用压力为3-4MPa(30.6-40.8公斤/公分2),系统设计压力高达5.5MPa(56公斤/公分2)。应用在中国的较好的中压系统,不需要在精处理装置后面(下游)安装凝结水升压泵、水箱等,从而简化了系统及操作,节约了占地面积。 深层混床系统中的混合树脂的再生是在体外装置中进行的,现行设计中通常有三个罐组成,例如:分离罐(SPT),阴再生罐(ART),以及阳再生、混合和贮存罐(CRST)。除三罐系统外,二罐、一罐的系统也在使用。 开始再生的第一步是将运行罐中装着的失效树脂输送出去,这种输送是用水将树脂冲到再生系统的接收罐中,一般的设计系统是用水和压缩空气作为动力,将树脂冲到分离罐(SPT)中。然后将CRT (阳树脂再生、混合、贮存罐)中己再生好作备用的树脂输回到运行罐中,从而使此罐随时可以回复到下列两种运行模式:如系统中无备用罐,就立即投入运行;如系统中有备用罐,待另一个运行罐在系统中运行到树脂失效时投入运行。

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

凝结水系统

第四章凝结水系统 第一节凝结水系统投入前的检查与操作 4.1.1 检查凝结水系统检修工作已结束,所有工作票终结,系统完好,现场干净整洁。 4.1.2 凝结水泵与电机对轮连接完好,地脚螺栓紧固,电机接线良好,接地线连接完好。 4.1.3 排汽装置热井、轴加、各低加水位计投入,指示正确。 4.1.4 除盐水系统已投入运行。 4.1.5 凝结水系统各电动门送电,气动门控制气源投入,各阀门开关正常。 4.1.6 凝结水泵联锁保护传动合格,凝结水泵电机测绝缘合格送电。预启和备用凝结泵变频、工频方式选择正确,对应开关及刀闸方式状态正确,凝结泵变频器DCS画面状态正常无报警。 4.1.7 关闭凝结水管道及低加各放水门。 4.1.8 开启低加,轴封加热器水侧放空气门。 4.1.9 关闭热井放水门,开启补水调门前后截止门,关闭其旁路门。排汽装置补水调整门投自动。 4.1.10 启动除盐水泵向热井补水至1100mm,检查排汽装置补水调整门自动良好。 4.1.11 检查凝结水精处理装置旁路运行。 4.1.12 开启轴封加热器进出水门,关闭其旁路门。 4.1.12 开启#7、#6、 #5低加进出水门,关闭其旁路门。 4.1.13 凝结泵入口滤网放水门关闭。 4.1.14 检查凝结泵进口门开启,出口门关闭。 4.1.15 开启凝结水再循环调门及其前后截止门,关闭其旁路门。 4.1.16 投入凝结水泵密封水,打开泵体抽空气门。 4.1.17 投入凝结泵电机冷却水、凝结水泵及电机推力轴承冷却水。 第二节凝结水系统联锁与保护 4.2.1 凝结水泵允许启条件: 1.凝结水泵进口电动门已开; 2.凝结水泵出口电动门已关或备用投入; 3. 凝结水再循环流量调节阀开; 4. 排气装置水位大于 700mm; 5. 凝结水泵电机轴承温度<85℃; 6. 线圈 A/B/C三相均<110℃; 7. 凝结水泵轴承温度<75℃。 8. 无跳闸首出。 4.2.2 凝结水泵保护停条件: 1. 凝结水泵运行且凝结水泵出口流量小于 150T/H,再循环调节阀关,延时 20 秒;

凝结水精处理的目的与其工艺流程

解析凝结水精处理的目的与其工艺流程 凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 凝结水精处理 凝结水精处理的目的 凝结水由于某些原因会受到一定程度的污染,大概有以下几点: 1、凝汽器渗漏或泄漏 凝结水污染的主要原因是冷却水从凝汽器不严密的部位漏至凝结水中。凝汽器不严密的部位通常是在凝汽器内部管束与管板连接处,由于机组工况的变动会使凝汽器内产生机械应力,即使凝汽器的制造和安装质量较好,在使用中仍然可能会发生循环冷却水渗漏或泄漏现象。而冷却水中含有较多悬浮物、胶体和盐类物质,必然影响凝结水水质。

凝结水精处理 2、金属腐蚀产物的污染 凝结水系统的管路和设备会由于某些原因而被腐蚀,因此凝结水中常常有金属腐蚀产物。其中主要是铁和铜的氧化物(我公司热力系统设备基本上没有铜质材料)。铁的形态主要是以Fe2O3、Fe3O4为主,它们呈悬浮态和胶态,此外也有铁的各种离子。凝结水中的腐蚀产物的含量与机组的运行状况有关,在机组启动初期凝结水中腐蚀产物较多,另外在机组负荷不稳定情况下杂质含量也可能增多。 3、锅炉补给水带入少量杂质 化学水处理混床出水即为锅炉补给水,一般从凝气器补入热力系统。由于混床出水在运行中的严格控制,补给水杂质含量很少,其水质要求:DD≤0.2μs/cm ,SiO2≤20μg/L。如果混床出水不合格,就可能对凝结水造成污染。

凝结水精处理设计导则(yx)

凝结水精处理系统设计导则 一首先要确定电厂的的发电系统,以确定是否要对凝结水进行处理以及采取什么处理系统。 1.直流锅炉汽轮机组全部凝结水均要求进行精处理(精处理除盐设施要设备 用),而且必须设置除铁设施(可不设备用); 2.汽包锅炉汽轮机组: ●空冷机组:一般采用粉末树脂过滤器;超临界空冷机组除了选择单独的粉末 树脂过滤器系统外,还可以在其后增加三室床或混床; ●水冷机组:一般采用深层树脂混床或分床系统;超临界水冷机组采用“前置 过滤器 + 混床系统”前置过滤器选用10u或5u的折叠式滤元。建议前置过滤器设铺膜系统。 ●超高压汽包锅炉机组供汽的汽轮机组一包不设凝结水精处理系统。 ●精处理用树脂建议选用大孔均粒树脂。 二系统的分项叙述 (一)粉末树脂过滤器 粉末树脂过滤技术就是将粉末树脂作为覆盖介质预涂在精密过滤器滤芯上。用来置换溶解性的离子态物质、除去悬浮固体颗粒、有机物及胶体硅及其它胶体物质。 粉末树脂过滤其实质就是覆盖过滤器,覆盖过滤器是在滤元外表面铺覆不同材质的助滤剂,借助滤料架桥原理使之形成致密覆盖层,当过滤阻力达到一定值或水质变坏时,用水和空气进行爆破膜及冲洗,然后重新铺覆助滤剂,恢复其功能。助滤剂有粉末树脂、纤维粉、活性碳粉等。带有粉末树脂的覆盖过滤器是将过滤器和离子交换器结合在一起的精处理装置。覆盖过滤器在正常运行时,可不铺树脂粉,只铺纤维粉当除铁过滤器用,铺活性碳粉用于除油。在发生事故、启动期间或水质不好时,铺树脂粉或树脂粉与纤维粉的混合粉,以除掉水汽系统中的杂质、污染物、盐类。 1.粉末树脂过滤器技术(以西塞山发电有限公司的粉末树脂过滤器为例) 1.1顶管板系统

凝结水精处理

凝结水精处理 一、凝结水精处理的必要性 凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 1、凝汽器泄漏: 凝汽器的泄漏可使冷却水中的悬浮物和盐类进入凝结水中。泄漏可分两种情况:严重泄漏和轻微泄漏。 前者多见于凝汽器中管子发生应力破裂、管子与管板连接处发生泄漏、腐蚀或大面积的腐蚀穿孔等。此时,大量冷却水进入凝结水中,凝结水水质严重恶化。后者多因凝汽器管子腐蚀穿孔或管子与管板连接处不严密,使冷却水渗入凝结水中。 即使凝汽器的制造和安装较好,在机组长期运行过程中,由于负荷和工况的变动,引起凝汽器的震动,也会使管子与管板连接处的严密性降低,造成轻微的泄漏。 当用淡水作冷却水时,凝汽器的允许泄漏率一般应小于0.02%。严密性较好的凝汽器,泄漏量小于此值,甚至可以达到0.005%。当用海水作为冷却水时,要求泄漏率小于0.0004%。 凝汽器泄漏往往是电厂热力设备结垢、腐蚀的重要原因。 2、金属腐蚀产物带入: 火电厂的汽水系统中的设备和管道,往往由于某些腐蚀性物质的作用而遭到腐蚀,致使凝结水中含有金属腐蚀产物,其中主要为铁和铜的氧化物。进入凝结水中金属腐蚀产物的量与很多因素有关,如机组的运行工况,设备停用时保护的好坏,凝结水的pH值,溶解气体(氧和二氧化碳)的含量等。 凝结水进入锅炉后,其所含的金属腐蚀产物将在水冷壁管中沉积,引起锅炉结垢和腐蚀。一般情况下,在机组启动和负荷波动时,凝结水中的铁、铜含量急剧上升。 3、补充水带入的悬浮物和盐分: 锅炉补充水虽经深度除盐处理,但由于种种原因(如原水中有机物含量高等),除盐水在25℃的电导率不能低于0.2μS/cm,即使电导率小于0.1μS/cm,补充水中仍含有一定量的残留盐分。此外,除盐水流过除盐水箱、除盐水泵和管道,也会携带少量的悬浮物及溶解气体而进入给水。 4、热电厂返回水夹带的杂质污染 从热用户返回的凝结水中通常含有很多杂质。、生产用汽的凝结水一般含有较多的油类物质和铁的腐蚀产物,返回后需要进一步处理来满足机组对水质的要求。 二、凝结水精处理技术概况 凝结水处理设备与热力系统的连接方式 1、低压系统连接方式 水处理设备串联在凝结水泵和凝升泵之间,见图(a)。由于凝结水泵在

凝结水系统

凝结水系统: 从总体上先讲一下系统的组成、作用 一、凝泵启动前检查: 1.凝泵、凝汽器、轴加、各低加、除氧器及系统相关设备检修工作 结束,工作票注销,现场无影响系统投入的因素; 2.闭冷水系统运行正常,凝泵轴承冷却水、机械密封水供应正常; 3.凝汽器水位正常;(低于650mm时,禁启凝泵) 4.检查系统各阀门处于启动前状态;(精处理、轴加、各低加进出口 门及旁路门); 5.泵及电机轴承润滑油油位、油质正常; 6.凝泵空气门开启; 7.循环水泵联锁、保护试验正常。 二、凝泵启动: 适当开启凝结水再循环,在CRT上点“启动”按钮,CRT上检查泵启动电流返回正常,泵出口压力正常,各温度测点值缓慢上升;就地检查泵与电机声音、振动正常,泵出口电动门联开正常,整个系统无漏水。根据化学要求,确定凝结水是否回收(是否开启#5低加排水电动门)。投入备用泵联锁按钮。 三、凝泵启动危险点分析: 1.第一台凝泵启动危险点: 1)未开启系统放空气门,引起管道振动;(泵出口母管、轴加进出口)

2)再循环未开或开启过小,管道憋压,引起振动、管道法兰泄漏;3)电机及泵轴承冷却水系统不正常,轴承油位油质不正常,造成设备损坏; 2.运行中切换危险点: 1)除氧器水位低,切换时先启后停,确认备用泵工作正常后再停泵; 2)凝结水、给水溶解氧不合格,切换完毕后注意调整已停泵的机械密封水。如果溶解氧严重超标,重新进行切换并检查原因;3)泵运行不正常,保证启泵前泵空气门处于开启位。 四、凝泵停运: 退出备用泵联锁按钮,在CRT上点“停止”按钮,检查泵停运,泵出口电动门联关到位。 五、凝泵停运危险点: 1.凝结水用户用水中断,如:前臵泵机械密封水、化学加药箱、本 体疏扩减温水等; 2.仍有热水、热汽进入凝汽器,造成排汽缸温度高。 六、机组启动时凝结水回收: 机组启动初期,凝结水各项指标不合格,不能进入除氧器,需要开启#5低加出口排污门放水。化学化验水质合格后,要及时进行回收。关闭#5低加出口排污门,开启#5低加出口电动门,根据除氧器水位逐渐调整凝结水再循环门至全关。 七、除氧器上水自动失灵时,需要手动调整除氧器水位:

凝结水精处理系统

凝结水精处理系统 一、概述 1.1.1 凝结水的含义:凝结水一般是指锅炉产生的蒸汽在汽轮机做功后,经循环冷却水冷却凝结的水。实际上凝汽器热井的凝结水还包括高压加热器(正常疏水不到热井)、低压加热器等疏水(疏水是指进入加热器将给水加热后冷凝下来的水)。由于热力系统不可避免的存在水汽损失,需向热力系统补充一定量的补给水(除盐水箱来水)。因此凝结水主要包括:汽轮机内蒸汽做功后的凝结水、各种疏水和锅炉补给水。 1.1.2 凝结水精处理的目的 凝结水由于某些原因会受到一定程度的污染,大概有以下几点: 1)凝汽器渗漏或泄漏 凝结水污染的主要原因是冷却水从凝汽器不严密的部位漏至凝结水中。凝汽器不严密的部位通常是在凝汽器内部管束与管板连接处,由于机组工况的变动会使凝汽器内产生机械应力,即使凝汽器的制造和安装质量较好,在使用中仍然可能会发生循环冷却水渗漏或泄漏现象。而冷却水中含有较多悬浮物、胶体和盐类物质,必然影响凝结水水质。 2)金属腐蚀产物的污染 凝结水系统的管路和设备会由于某些原因而被腐蚀,因此凝结水中常常有金属腐蚀产物。其中主要是铁和铜的氧化物(我公司热力系统设备基本上没有铜质材料)。铁的形态主要是以Fe2O3、Fe3O4为主,它们呈悬浮态和胶态,此外也有铁的各种离子。凝结水中的腐蚀产物的含量与机组的运行状况有关,在机组启动初期凝结水中腐蚀产物较多,另外在机组负荷不稳定情况下杂质含量也可能增多。 3)锅炉补给水带入少量杂质 化学水处理混床出水即为锅炉补给水,一般从凝气器补入热力系统。由于混床出水在运行中的严格控制,补给水杂质含量很少,其水质要求:DD≤0.2μs/cm ,SiO2≤20μg/L。如果混床出水不合格,就可能对凝结水造成污染。 由于以上几种原因,凝结水或多或少有一定的污染,而对于超临界参数的机组而言,由于其对给水水质的要求很高,所以需要进行凝结水的更深程度的净化,即凝结水精处理。 1.1.3 凝结水精处理设备介绍 凝结水精处理系统采用中压凝结水混床系统,具体为前置过滤器与高速混床的串连,每台机组设置2×50%管式前置过滤器和3×50%球形高速混床,混床树脂失效后采用三塔法体外再生系统,其中1、2号机组精处理共用一套再生装置。再生系统主要包括分离塔、阴塔和阳塔(即“三塔”),另外还包括酸碱设备、热水罐、冲洗水泵、罗茨风机、储气罐等设备。1.1.4 凝结水精处理系统流程 1.1.5 凝结水精处理体外再生系统树脂流程 二、设备结构及原理 1.1.6 前置过滤器 1)作用 除去凝结水中悬浮物、胶体、腐蚀产物和油类等物质。它主要用在机组启动时对凝结水除铁、洗硅,缩短机组投运时间。另外除去了粒径较大的物质,延长了树脂运行周期和使用寿命。2)结构及工作原理 前置过滤器整体为直筒状,采用碳钢结构。内部滤元为管式,滤元骨架采用316不锈钢材质,共有268根管(管束)竖着固定在前置过滤器上下端之间。每根管上有若干水孔,并且在管外缠绕着聚丙烯纤维滤料,滤料过滤精度为10μm。水从前置过滤器底部进入管束之间,流

凝结水系统

凝结水系统讲座 主凝结水系统指由凝汽器至除氧器之间相关的管道与设备。主凝结水系统主要作用是加热凝结水,并加凝结从凝结器热井送至除氧器。作为超临界机组,对锅炉给水的品质很高,因此主凝结水系统还要对凝结水系统进行除盐净化,此外,主凝结水系统还对凝结器热井水位和除氧器水位进行必要的调节,以保证整个系统的安全运行。 一系统的组成 主凝结系统包括两台100%容量立式凝结水泵(型号:C720III-4,)、凝结水精处理装置、一台轴封加热器,四台低压加热器,一台凝结水补充水箱和两台凝结水补充水泵。为保证系统在启动、停机、低负荷和设备故障时运行时安全可靠,系统设置了众多的阀门和阀门组。 主凝结水的流程为:凝结器热井→凝结水泵→凝结水精处理装置→轴封加热器→8号低压加热器→7低压加热器→6低压加热器→5低压加热器→除氧器。 1 凝结水泵及系统 凝结水泵用途:凝结水泵在高度真空的条件下将凝汽器的热井中的凝结水抽出,输送接近于凝汽器压力的饱和温度的水。1台变频运行1台工频备用。 离心泵的工作原理:在泵内充满水的情况下,叶轮旋转使叶轮内的内也跟着旋转,叶轮内的水在离心力的作用下获得能量,叶轮林槽道内的水在离心力的作用下甩向外围流进泵壳,于是在叶轮中心压力降低,这个压力低于进水管压力,水就在这个压力差的作用下由吸水池流入叶轮,这样水泵就可以不断的吸水,不断的供水了。具有结构简单、不易磨损,运行平稳、噪声小、出水均匀,可以制造各种参数的水泵,效率高等优点,因此离心泵可以广大的应用。 凝结水泵轴封有良好的密封性能,不允许发生漏泄现象。凝结水泵轴封采用机械密封。泵能在出口阀关闭的情况下启动,而后开启出口阀门。泵能承受短时间的反转。 2 凝结水精处理装置 为确保锅炉给水品质,防止由于铜管泄漏或其它原因造成凝结水中的含盐量增大。(大机组特有)。 3 轴封加热器及凝结水最小流量再循环 在汽轮机级内,主要是在隔板和主轴的间隙处,以及动叶顶部与汽缸(或隔板套)的间隙处存在漏汽。此外,在汽轮机的高压端或高中压缸的两端,在主轴

凝结水系统

凝结水系统及其设备 主凝结水系统指由凝汽器至除氧器之间与主凝结水相关的管路与设备。主凝结水系统的主要作用是加热凝结水,并将凝结水从凝汽器热井送至除氧器。作为超临界机组。对锅炉给水的品质要求很高,因此主凝结水系统还要对凝结水进行除盐净化。此外,主凝结水系统还对凝汽器热井水位和除氧器水箱水位进行必要的控制调节,以保证整个系统安全可靠运行。同时,主凝结水管路还引出了多路分支,在运行过程中提供有关设备的减温水、密封水、冷却水和控制水。 由于热力循环中有一定流量的汽水损失,在凝结水系统中必须给予补充。补充水源来自化学除盐水。 系统的组成 本系统的主凝结水系统包括两台100%容量立式筒形凝结水泵、凝结水精处理装置、一台轴封冷却器、三台低压加热器、一台凝结水补水箱和三台凝结水补水泵。为保证系统在启动、停机、低负荷和设备故障时运行的安全可靠性,系统设置了为数众多的阀门和阀门组。主凝结水的流程为:低背压凝汽器热井一凝结水泵一轴封冷却器一#7低压加热器一#6低压加热器一#5低压加热器一除氧器。 1、凝结水泵及其管道 系统设有两台全容量的电动凝结水泵,一台正常运行,一台备用。凝结水从低背压凝汽器热井经一总管引出,然后分两路接至两台凝结水泵的进口,经升压后再合并成一路去凝结水精处理装置。每台泵的进口管道上装有闸阀和滤网。闸阀用于水泵检修时的隔离,在正常运行时应保持全开。滤网能防止热井中可能积存的残渣进入泵内。凝泵进口管道上设置电动隔离阀、滤网及波形膨胀节,出口管道上设置止回阀和电动隔离阀。逆止阀能够

防止凝结水倒流入水泵。进出口的电动阀门将与凝泵联锁,以防止凝泵在进出口阀门关闭状态下运行。两台凝结水泵及其出口管道上均设置抽空气管,在泵启动时将空气抽至低背压凝汽器。 2、凝结水的精处理 为进一步确保锅炉给水品质,主凝结水系统中加入凝结水精处理装置。防止由于凝汽器白钢管泄漏或其它原因造成凝结水中含盐量大。 本系统的凝结水精处理装置采用中压系统的连接方式,即无凝结水升压泵而直接将凝结水精处理装置串联在凝结水泵出口。这时,凝结水精处理装置承受凝结水泵出口的较高压力。这种系统的优点是设备少(节省了两台凝结水升压泵及其再循环管路、阀门等)、阀门少、凝结水管道短,简化了系统,便于运行人员操作。低压系统(凝结水精处理装置位于凝结水泵和凝结水升压泵之间,凝结水须经二次升压,此时凝结水精处理装置承受较低压力)常常因凝结水泵和凝结水升压泵不同步及压缩空气阀门不严,导致空气漏入凝结水精处理系统,使凝结水中溶解氧含量大增。中压系统则避免了这个问题,运行时几乎无空气漏入凝结水系统,保证了凝结水的较低含氧量。 凝结水精处理装置的进、出口管道上各装有一只电动隔离阀,同时与之并联一条旁路管道,装有电动旁路阀。在启动充水或运行时装置故障需要切除时,旁路阀开启,进、出口阀关闭,主凝结水走旁路;装置投入运行时,进、出口阀开启,旁路阀关闭。 3、轴封冷却器及凝结水最小流量再循环 经凝结水精处理装置后的凝结水的大部分进入轴封冷却器。轴封冷却器进口的主凝结水管路上设置流量测量孔板,以便测量主凝结水流量。 轴封冷却器为表面式热交换器,用于凝结轴封漏汽和门杆漏汽。轴封冷却器以及与之

主凝结水系统

课题七主凝结水系统 掌握主凝结水系统的连接方式和运行知识。 教学内容 一、主凝结水系统的作用和组成 主凝结水系统的主要作用是把凝结水从凝汽器热井送到除氧器。为保证整个系统可靠工作,提高效率,在输送过程中,还要对凝结水进行除盐净化、加热和必要的控制调节,同时在运行过程中提供有关设备的减温水、密封水、冷却水和控制水等,另外还补充热力循环过程中的汽水损失。 主凝结水系统一般由凝结水泵、轴封加热器、低压加热器等主要设备及其连接管道组成。亚临界及超临界参数机组由于锅炉对给水品质要求很高(特别是直流炉),所以在凝结水泵后设有除盐装置。国产机组由于除盐装置耐压条件的限制,凝结水采用二级升压,因此在除盐装置后还装设有凝结水升压泵。对于大型机组,主凝结水系统还包括由补充水箱和补充水泵等组成的补充水系统。图4-27、图4-28和图4-29分别为国产200MW、300MW和引进型300MW(600MW机组与之相似)机组的主凝结水系统。 一般机组的主凝结水系统具有以下共同点: (1)设两台容量为100%的凝结水泵或凝结水升压泵,一台正常运行,一台备用,运行 泵故障时连锁启动备用泵。 (2)低压加热器设置主凝结水旁路。旁路的作用是:当某台加热器故障解列或停运时,凝结水通过旁路进入除氧器,不因加热器事故而影响整个机组正常运行。每台加热器均设一个旁路,称为小旁路;两台以上加热器共设一个旁路,称为大旁路。大旁路具有系统简单、阀门少、节省投资等优点,但是当一台加热器故障时,该旁路中的其余加热器也随之解列停运,凝结水温度大幅度降低,这不仅降低机组运行的热经济性,而且使除氧器进水温度降低,工作不稳定,除氧效果变差。小旁路与大旁路恰恰相反。因此,低压加热器的主凝结水系统多采用大小旁路联合应用的方式。 (3)设置凝结水最小流量再循环。为使凝结水泵在启动或低负荷时不发生汽蚀,同时保证轴封加热器有足够的凝结水量流过,使轴封漏汽能完全凝结下来,以维持轴封加热器中的微负压状态,在轴封加热器后的主凝结水管道上设有返回凝汽器的凝结水最小流量再循 环管。 (4)各种减温水及杂项用水管道,接在凝结水泵出口或除盐装置后。因为这些水要求是纯净的压力水。 (5)在凝汽器热井底部、最后一台(沿凝结水流向)低压加热器的出口凝结水管道上、除氧器水箱底部都接有排地沟的支管,以便在机组投运前,冲洗凝结水管道时,将不合格的凝结水排入地沟。 (6)化学补充水通过补充水调节阀进入凝汽器,以补充热力循环过程中的汽水损失。 二、主凝结水系统举例 如图4 - 28所示为国产300MW机组的主凝结水系统。 1.凝结水泵及其管道 凝结水从凝汽器热井水箱引出一根管道引出,用T形三通分别接至两台凝结水泵(一台正常运行,一台备用)的进口,在各泵的进口管上各装有电动闸阀和一个带法兰的锥形滤网。闸阀用于水泵检修隔离,滤网可防止热井中可能积存的残渣进入泵内,滤网上装有压差开关,当滤网受堵压降达到限定值时,向集控室发出报警信号。如确认热井内部已经洁净,也可拆除滤网以减少阻力损失。在两台凝结水泵的出水管道上均装有止回阀和电动闸阀,闸阀上装有行程开关,便于控制和检查阀门的开闭状态,止回阀防止凝结水倒流。两台凝结水泵出口管道汇成一根总管道接至化学除盐装置,在该管道上接有凝结水泵的再循环

凝结水精处理讲课内容

凝结水精处理系统杨清亮 树脂的工作原理 除去水中溶解性盐类的方法主要有三种:离子交换法、膜分离法和蒸馏法,其中离子交换树脂是目前在水处理过程中运用最广泛的方法。 工作原理:树脂是一类带有活性基团的网状结构高分子化合物,在树脂中有一活动部分,遇水可以电离,并能在一定范围内移动,可与周围水中的其他带同类电荷的离子进行交换反应。所以当含有盐类的水溶液通过树脂时,树脂可以将水中的盐份交换下来。 树脂的特性 1、树脂具有选择性 离子交换树脂的选择性主要取决于被交换离子的结构。有两个规律: 1)离子带的电荷越多越容易被吸收。 2)带有相同电荷的离子,原子序数大的较容易被吸收。 对于强酸性阳树脂:Fe3+>Al3+>Ca2+>Mg2+>K+=NH4+>Na+>H+ 对于强碱性阴树脂: SO42->HSO4->N03->Cl->OH->HCO3->HSiO3- 2、树脂具有可逆性 阴、阳树脂交换的离子反应: 1)阳树脂的交换反应:RH+Na+=RNa+H+ 2)阴树脂的交换反应:ROH+Cl-=RCl+OH- 再生时的离子反应: 1)阳树脂: RNa+H+=RH+Na 2) 阴树脂: RCl+OH-= ROH+Cl 1.二期凝结水精处理系统介绍 1)二期凝结水精处理采用中压处理系统,#3、4机组各配备两台高速混床,两台机组共用一套再生系统,机组正常运行时两台混床并列运行,当有一台混床失效时,凝水50%旁路。 2)系统分为两个部分,一部分为凝结水精处理部分,另一部分为再生部分。 3)该系统的作用:可以除去凝结水中的溶解盐类、热力系统的腐蚀产物以及因凝汽器泄漏而进入凝结水中的盐份。 4)混床的监督项目:钠离子,二氧化硅,DD,温度(大于50℃时旁路门自动开启),压差。 1.1混床系统介绍 1.1.1每台机组的凝结水精处理由2×50%高速混床、二台树脂捕捉器、一台再循环泵和一套旁路系统组成。二台混床同时运行,不设备用。机组启动初期,凝结水含铁量超过1000 μg/L时,不进入凝结水处理装置,直接通过旁路100%排放。正常运行后,混床启动初期出水不符合要求时,需经再循环泵循环至混床出水合格方可向系统供水。 1.1.2每个精处理混床系统设有一套自动旁路系统,当混床进出口母管压差大于0.3MPa或水温度超过50℃时,旁路阀自动打开,并关闭每个混床的进出水阀,凝结水100%通过旁路系统,保护树脂和混床不受损坏;当有一台混床树脂失效时,机组旁路阀门开启适当开度使50%凝结水流量通过旁路系统;另外50%凝结水流量通过没有失效的混床。失效混床内的树脂送入树脂分离塔以进行树脂的再生处理,失效树脂从混床转移完毕后,将阳再生塔兼树脂贮存塔内再生好的备用树脂送入该混床,准备投运。 1.2精处理再生系统介绍 每两台机组的混床共用一套再生装置,再生装置的主要功能能满足混床NH+4/OH-型运行时的树脂彻底分离、彻底清洗、完全再生的全部要求,且不会对树脂造成不必要的损害。再生装置主要有分离塔、阴再生塔、阳再生塔兼树脂贮存塔及废水树脂捕捉器组成。分离塔通过高速水流将树脂彻底分层,用上下进水的方法将阳阴树脂分别输送至阳阴再生塔,树脂经彻底清洗后分别进行同时再生,清洗合格后,将阴树脂输送至阳再生塔,混合清洗,导电度合格后备用。废水树脂捕捉器是捕捉通过再生塔的树脂,防止再生塔中树脂

凝结水系统

1.凝结水系统的作用? 凝结水系统的作用是收集汽轮机排汽凝结成的水和低压加热器疏水,经凝结水泵升压后经各低压加热器加热送往除氧器除氧,与高加疏水和四段抽汽汇集到除氧水箱后供给给水泵。此外,凝结水系统还供给其它水泵的密封水、辅助系统的补充水和低压系统的减温水。。 2.凝结水系统主要有哪些设备组成? 凝结水系统空冷凝汽器、两个凝汽器热井、两台凝结水泵、凝结水精处理装置、轴封加热器、和三级回热加热器、除氧器、最小流量再循环装置、凝结水补水系统和系统的管道、阀门组成。 3.凝结水系统的流程? 凝结水系统流程为:凝汽器热水井→凝结水泵→凝结水精处理装置→轴封加热器→低压加热器→除氧器。 4.凝结水系统运行中的检查? 1.检查凝结水压力、流量、各监视点的温度正常; 2.检查除氧器水位调整阀、最小流量再循环阀开度、最小流量再循环的流量正常; 3.检查热井水位1100~1400mm,正常控制在1250mm; 4.检查凝结泵轴承油位、温度正常; 5.检查凝结泵电机电流、线圈温度,轴承温度正常; 6.检查凝结水泵电机与泵的振动、声音正常; 7.检查热井排汽温度正常; 8.检查轴加、各低加入、出口水温正常; 9.检查凝泵入口滤网差压正常; 10.凝结水补水泵出口水压力、流量; 11.精处理装置出、入口压差。 5.轴封加热器的作用 轴封加热器是回收轴封漏汽并利用其热量来加热凝结水的装置,减少能源损失,提高机组热效率。 6.凝结水再循环管装设在什么位置?为什么? 凝结水泵再循环管装设在轴封加热器之后。 主要是为了保护轴加,机组在启停或低负荷的情况下,此时由于机组用水量较少,要开启凝结水再循环,使凝泵正常工作,同时保证有一定的量的凝结水通过轴加,来回收轴封回气,另外避免轴加超温。 7.低压加热器的投、停步骤? 低压加热器投运(以5号低加为例): 1.检查工作票办理结束,各表计齐全完整; 2.慢慢打开#5低压加热器进水门; 3. #5低压加热器水侧放气门溢出水后就地关闭放气一、二次门; 4.打开#5低压加热器出水门; 5.关闭#5低压加热器旁路门; 6.打开#5低压加热器启动放气门注意凝汽器真空变化; 7.打开#5低压加热器至#6低压加热器正常疏水调节门前后隔离门、#5低加事故疏水前后隔离门; 8.打开#5抽汽逆止门,就地缓慢打开#5抽汽电动门,注意低压加热器出水温升小于2℃/min,直至抽汽电动门全开。

凝结水系统

凝结水系统④ 写出凝结水系统流程?凝结水系统作用?凝结水系统上有哪些设备?凝结水用户有哪些?凝结水母管至凝补水箱排水管路作用?凝结水再循环作用?凝结水上水调节方法?凝结水再循环就地布置位置?凝结水再循环布置在轴封加热器后的原因?凝汽器热井就地水位计量程高度?有几个?凝汽器正常运行水位多高?凝泵从布置设计上如何防止汽蚀的?两个凝汽器热井水之间如何联通?这样联通的好处?凝泵入口管路压力释放阀作用?什么情况下会超压?如何预防?凝泵泵组冷却水有哪些?冷却水源?凝泵出口逆止门作用?凝泵倒转原因、危害?凝泵泵体放空气门作用?排至哪里?凝结水系统放空气门有哪些?凝结水系统放水门有哪些?凝结水精处理装置作用?凝结水主路有几个流量计?装在何处?分别有什么作用?轴封冷却器作用?轴封冷却器疏水至哪里?水位高低有什么影响?凝泵设备规范?凝泵运行方式?除氧器上水控制方法?凝结水正常运行监视哪些参数?凝结水系统冲洗方法?凝结水上水主路调节门就地位置?凝结水上水至除氧器入口逆止门作用?除盐水泵来水用户?凝补水箱作用?凝补水泵作用?停机冷却水泵作用?凝泵启动前检查内容?启动后检查内容?凝泵如何切换?凝泵并泵注意事项?凝结水母管压力高低有何危害?凝泵停运条件?凝泵停泵后注意事项?凝泵跳闸后如何处理?凝泵有哪些联锁保护?凝泵再循环有哪些联锁动作逻辑?凝泵泵组有哪些冷却方式?凝结水系统常见异常?凝泵停运检修如何做安措?操作危险点?凝泵电机检修后第一次启动后重点注意事项?凝结水上水调节门误关或卡涩如何处理?除氧器水位急剧下降或上升如何处理?凝汽器水位过高、过低有何危害?学习凝结水系统过程中遇到的问题?对凝结水系统运行方式有哪些建议?画出凝结水主回路系统图。

某电厂凝结水精处理系统的若干问题

某电厂凝结水精处理系统的若干问题 更新时间:09-12-14 16:52 一、前言 凝结水作为锅炉给水主要组成部分,其水质将直接影响给水质量,尤其是随着机组参数的增大,为了机组的安全经济运行,对凝结水质量提出了更高的要求。机组在运输、保管、安装及启停过程中,不可避免地形成金属腐蚀产物,同时,尽管补给水带入热力的杂质一般较少,但凝汽器总是存在一定的泄漏,影响了给水质量,因此必须对凝结水进行精处理,除去金属腐蚀产物及泄漏所带入的杂质。 二、凝结水精处理系统工艺流程概述 1.某电厂一期工程2×300MW机组2台机组共设计凝结水精处理系统为六台高速混床,采用两台机组共用一套再生系统的运行方式。该系统采用单元制中压系统,混床采用H/OH 运行。凝结水精处理系统出力按850吨/时设计,配置六台Φ2200空气擦洗体外再生高速混床。单台机组正常运行时,两台混床运行,一台作备用。并分别设有一台再循环泵,既保证投运时的水质,又节省了凝结水,缩短了混床出水合格时间。经该系统处理后的水质为:电导率≤0.2μS/cm(25℃,加氨前) SiO2≤15μg/L 硬度~0μmol/L 三、水质指标及实际测定指标 1.混床初次投运水质情况 凝结水精处理系统高速混床是在机组空负荷试运结束后,进入带负荷整套调试阶段时初次投运的,投入运行均采用点动控制。控制混床入口含铁量≤1000μg/L,结合机组负荷情况,为避免树脂污染严重,尽量等凝结水水质达到最佳而除盐设备补水已满足不了机组负荷要求时才投入精处理高速混床,对凝结水进行回收。 四、凝结水精处理系统在整套试运中所起的作用 高速混床的及时投运对启动过程中除铁、硅起了关键作用。机组在启动初的一段时间里,凝结水系统中的悬浮铁及二氧化硅含量较高,此时锅炉给水主要是由除盐水直接经除氧器补充,凝结水不能回收,大量的悬浮铁及粒装铁通过凝结水泵再循环不断排出系统外,凝结水不断净化,待机组负荷达10MW时,凝结水含Fe1000μg/L,SiO2100μg/L,此时投入高速混床,不但可有效保护树脂少受污染,同时起到了截流过滤悬浮铁及二氧化硅的作用,使凝

凝结水系统

江阴利港发电有限责任公司600MW超临界机组凝结水系统调试措施 编号:江阴利港/汽机-009-2006 编写:孙忠强 审核:田云峰 批准:赵之东 华北电力科学研究院有限责任公司 2006年01月

华北电力科学研究院有限责任公司科技档案审批单 报告名称:江阴利港发电有限责任公司600MW超临界机组凝结水系统调试措施 报告编号:江阴利港/汽机-009-2006 出报告日期: 2006年01月 保管年限:长期密级:一般 试验负责人:司派友、吕炜试验地点:江阴利港发电有限责任公司 参加试验人员:韩功昭、孙忠强、黄兴 参加试验单位:华北电力科学研究院有限责任公司、江苏电建三公司、江阴利港 发电有限责任公司 试验日期:2006年01月~2006年12月打印份数:20 拟稿:孙忠强校阅:司派友 审核:田云峰生产技术部:周小明 批准:赵之东 目录 1、设备系统概述 2、联锁保护清单 3、编制依据 4、调试范围及相关项目 5、组织与分工 6、调试前应具备的条件 7、调试项目和程序 8、调试质量的检验标准 9、安全注意事项 10、调试项目的记录内容

1、设备系统概述 1.1系统概述 江阴利港发电有限责任公司5、6号机组各配有2台100%容量电动凝结水泵,凝结水泵将凝汽器热井中的凝结水抽出经过轴封加热器,然后依次进入表面式低压加热器加热,最后送入除氧器。 此凝结水泵为多级、立式筒袋泵,泵筒体按全真空设计。泵的零部件具有良好的通用性和互换性,并且能够方便地拆卸和更换。在额定工况下运行时,流量、扬程、效率等参数无负偏差;汽蚀余量无正偏差。泵的设计考虑了磨损引起的性能下降。 1.2、凝结水系统辅助服务对象: 1)低压旁路减温器 2)高、低压轴封供汽减温器 3)低压缸喷水减温 4)辅助蒸汽减温器 5)电厂采暖减温器 6)水幕喷水减温 7)三级减温器 8)疏水扩容器喷水减温 9)凝结器真空破坏阀密封水 10)水封阀密封水 11)给水泵密封水 12)给水泵汽机排汽管真空破坏密封水 13)高加事故疏水扩容器减温水 14)轴封加热器水封注水

相关文档
最新文档