海上疏松砂岩稠油油藏压裂充填优化设计

海上疏松砂岩稠油油藏压裂充填优化设计
海上疏松砂岩稠油油藏压裂充填优化设计

[基金项目] 本文受国家科技重大专项/海上稠油油田压裂充填开发技术研究(编号:2008ZX05024-03-003-004)0资助。

[作者简介] 卞晓冰,男,1985年出生,中国石油大学(北京)油气田开发工程专业在读博士研究生,主要从事低渗透油藏增产机理及油

藏数值模拟研究。

海上疏松砂岩稠油油藏压裂充填优化设计

卞晓冰 张士诚 王 雷

(石油工程教育部重点实验室#中国石油大学 北京102249)

摘要 建立了考虑疏松砂岩稠油油藏启动压力梯度、压力敏感性,以及裂缝导流能力失效性的压裂井数学模型,实现了该模型的数值求解。在防止地层出砂的前提下,对渤海湾某油田进行了压裂充填参数设计。研究表明,与不压裂相比,在该区块实施压裂充填改造在经济上是可行的,参数优化结果为该区开发方案设计提供了技术支撑。

关键词 疏松砂岩 稠油油藏 压裂充填 优化设计 数值模拟

0 引 言

疏松砂岩稠油油藏在生产过程中经常伴有出砂

现象,压裂充填是常用的增产防砂措施

[1-3]。近年来,压裂充填技术在渤中、墨西哥湾等国内外海上油田也取得了成功应用[4-5]。但海上油田由于受环境和平台的制约,开发风险大,因此对开发方案进行准确的生产动态预测是保证其经济有效开发的关键。为了更真实地反映实际油田的生产情况,本文建立了考虑疏松砂岩稠油油藏启动压力梯度、压力敏感性以及裂缝导流能力失效性的压裂井数值模拟模型,对渤海湾某疏松砂岩稠油油藏的压裂充填开发

潜力进行了评价研究。1 油田概况渤海湾某疏松砂岩稠油油藏主力油层数据如下:储层中深1450m ;平均地层温度57e ;小层厚度21m ;平均地层渗透率0.8L m 2;平均孔隙度30%;原始含水饱和度0.35;地层油密度0.92g P cm 3、粘度260mPa #s 、体积系数1.09m 3P m 3;原始地层压力14M Pa;油井表皮系数为5;启动压力梯度0.0102M Pa P m,储层砂体以泥质胶结为主。根据现场经验数据和室内岩芯实验结果,本区块出砂的临界生产压差为4M Pa 。为了防止地层出砂,生产压差不宜大于4MPa 。2 疏松砂岩稠油油藏压裂井渗流模型根据油藏的生产特点和人工裂缝的渗流特征,

建立三维两相油藏模型与二维两相裂缝模型[6-7],模型中考虑了压力敏感、裂缝导流能力失效和启动压力项,其中由于水相启动压力梯度相对很小,模型中仅考虑油相启动压力梯度。油藏模型:

¨K K rl Q l L l

¨p l +q l +q lfin =9G l 0 ¨p l [G l (2)

K =K 0e A p -p 0(3) <=<0e B p -p 0(4)式中:l )))油相或水相;

K )))地层渗透率,mD;

K r l )))相渗透率;

Q l )))流体的密度,kg P

m 3;L l )))流体的粘度,mPa #s;

<)))孔隙度,f;

S l )))流体饱和度;

q l )))地层与井筒流体交换项(只有包含井

点的网格才有此项),m 3P d;

q lfin )))油藏与裂缝网格流体交换项(只有与

裂缝相邻的地层网格才有此项),m 3P d;

p l )))网格点地层压力,MPa;

G l )))启动压力梯度,MPa P m;

K 0)))油藏初始渗透率,mD;

p 0)))初始压力,M Pa;2012年2月油 气 井 测 试第21卷 第1期

A,B)))渗透率和孔隙度随压降的变化系数,

1P M Pa。

(3)式和(4)式是压力敏感方程的指数形式表达式。

裂缝模型:

¨KK rlf Q l

L l¨p f+q lf+q lf in=9

9t(5)

F RCD=F RCD

@e-ct(6)式中:p f)))裂缝网格点的压力,M Pa;

q lf)))裂缝与井筒的流体交换项(只有与井

筒相邻的裂缝网格才有此项),m3P d;

F RCD、F RCD

)))裂缝导流能力和裂缝初始导流能力,L m2;

t)))时间,d;

c)))相应的回归系数。

(6)式是长期导流能力实验拟合得到的裂缝导流能力随时间变化的函数表达式。

(3)式、(4)式和(6)式中的系数由室内实验结果确定,分别为A=0.0348,B=0.003,c= -0.0372。

根据人工裂缝和油藏之间的接触面满足压力相等和流量相等,建立裂缝和油藏之间的内边界连续条件,再加上封闭外边界条件和初始条件,(1)~(6)式即构成了疏松砂岩稠油油藏压裂井渗流数学模型。采用IM PES方法离散求解,计算出压裂井的生产动态数据。

油井在油藏中生产时,由于存在启动压力梯度,当一口井压力波及前缘处流体受到的驱动力不足以克服阻力时,压力波停止传播而形成极限井控面积。因此,可以选择大于极限井控面积的单元来进行单井生产模拟。计算单元选取边长为1000m的封闭矩形,网格划分为200@200@1,生产压差取4 M Pa,对油藏中心一口生产井进行裂缝参数优化。3压裂参数优化

3.1裂缝半长优化

图1是不同半缝长对应的压裂井累积产量随时间的变化曲线。可以看出,压裂井累积产量随着半缝长的增加而增大,但增幅逐渐变缓。当半缝长在20m以上时,累积产量的增加已不明显。生产1000d时,半缝长在30m情况下的累积产量仅比

半缝长为20m时增加1.59%。因此,对于高渗储层而言,由于地层渗透率很高,人工裂缝的主要作用是穿过近井附近的污染带,以及改善裂缝附近的渗流形态,合理的较短缝长即可使压裂井取得和长缝相接近的生产效果。根据图1,优选出最优半缝长为20m。

3.2裂缝导流能力优化

图2是不同裂缝导流能力对应的压裂井累积产量随时间的变化曲线。可以看出,导流能力对压裂井累积产量的影响与缝长类似。当导流能力大于3 L m2#m时,其对压裂井累积产量的影响程度逐渐减弱,生产1000d时,裂缝导流能力从3L m2#m增加到4L m2#m,累积产量仅增加1.92%。因此,高渗储层对裂缝导流能力的要求较高,压裂施工的目的是形成高导流能力的短宽缝。根据图2,优选出最优裂缝导流能力为3L m2#m。

3.3正交方案设计

在进行裂缝长度和导流能力优化时,一般都采用固定一个或几个变量来优化其它参数,这样优化结果不可避免具有一定的局限性[8]。为了从整体上分析各因素的影响,采用正交方法设计了计算方案,其中方案1~9为压裂方案,方案1012为不压裂的基础方案,对各方案分别进行为期10年的生产模拟并进行净收益评价。所用经济参数如下:钻

40油气井测试2012年2月

井成本为4500万元P 井;压裂材料中压裂液成本为

1600元P m 3、支撑剂成本为5200元P m 3;压裂设备

(泵车、管汇车等)、人工服务费等压裂作业费用为

200万元P 井;油价为90美元P 桶。假设支撑剂的利

用率为50%,施工平均砂比为40%,以此来计算正

交方案中的压裂材料费用。设计方案和优选结果

如表1所示。

表1 正交方案设计及经济效果评价表

方案

生产压差(M Pa)裂缝半缝长(m )裂缝导流能力(L m 2#m)10年累产(104m 3)收益(万元)排序1

21020.2495-3801.992122

32030.6925-2195.54563

4304 1.3670258.46414

22040.3012-3628.165115

33020.7034-2171.09556

4103 1.3420223.47527

23030.3264-3551.35998

31040.6688-2266.85989

4202 1.3490182.390310

2P P 0.2452-3602.2791011

3P P 0.6254-2210.2997124P P 1.2710153.3594由表1可知,经济效益最佳的压裂方案设计参数如下:生产压差为4MPa 、裂缝半缝长为30m 、裂缝导流能力为4L m 2#m 。4 井距优化对疏松砂岩稠油油藏进行布井时,要避免发生井间干扰,以获得最好的生产效果。数值模拟结果显示,由于高渗地层本身的传导性很强,压裂后的油井泄油面积仍然接近圆形。因此,最优井距即为压裂井的极限泄油半径。根据正交设计优化结果,在裂缝半缝长30m 、导流能力4L m 2

#m 的情况下,做

出不同生产压差所对应的压裂井井距如图3

所示。由图3可知,最佳压裂方案的合理井距为258m 。

5 结 论(1)建立了考虑疏松砂岩稠油油藏启动压力梯度、压力敏感效应和人工裂缝失效性的压裂井数学模型,实现了该模型的数值求解,使得模拟结果更接近矿场实际。(2)由研究结果可知,生产压差为4M Pa 、油井裂缝半长为30m 、导流能力为4L m 2#m 、井距为258m 时,可以取得最佳的经济效益。优化结果为该区开发方案设计提供了理论依据。(3)在该区实施压裂充填技术是可行的,可以取得比无措施时更好的生产效果和经济效益。参 考 文 献[1]王鸿勋,张士诚.水力压裂设计数值计算方法[M ].北京:石油工业出版社,1998:298-308.[2]谢桂学,李行船,杜宝坛.压裂防砂技术在胜利油田的研究和应用[J].石油勘探与开发,2002,29(3):99-101.[3]张静.压裂防砂技术[J].石油钻采工艺,2004,26(Z):53-57.

[4]G K W ong.Frac &Pack St imulation:Application Desig n

and F ield Ex perience from the Gulf of M exico to Borneo.

SPE26564,1993.

[5]Liangyue Liu,Jianming Deng.Single -T r ip,M ult iple -Zone

Fr ac Packing Offshor e Sand Control:O ver view of 58Case

Histories.SPE 103779,2006.

[6]张士诚,张劲.压裂开发理论与应用[M ].北京:石油工

业出版社,2003:27-37.

[7]蒋建方,张启岩,刘春林,等.榆树林油田树322井区压

裂改造潜力研究[J].油气井测试,2010,19(5):14-17.

[8]刘应红,李宗田,赵碧华.利用正交试验设计方法优选低

渗油藏整体压裂方案[J].断块油气田,2000,7(3):46

-49.

本文收稿日期:2011-07-22 编辑:王 军41第21卷 第1期卞晓冰等:海上疏松砂岩稠油油藏压裂充填优化设计

稠油油藏蒸汽驱的研究

稠油油藏蒸汽驱耐高温堵剂类型及汽窜封堵工艺的研究现状、存 在问题及对策 前言 中国稠油资源较为丰富,陆上稠油资源约占石油总资源量的20%以上。最新研究表明,我国稠油预测资源量197x10gt,己探明稠油地质储量18.1x10gt,己动用地质储量11.93x10gt,剩余未动用地质储量6.14x10gt。主要分布在西藏、青海、新疆、四川、内蒙、广西、浙江、贵州等地约250x10gt。目前己经建立了新疆油区、辽河油区、胜利油区和河南油区四大稠油开发生产区。 稠油热采的主要方法有蒸汽吞吐、蒸汽驱、火烧油层、热水驱等。其中蒸汽吞吐作为一种相对简单和成熟的热采技术己广泛应用于稠油开采中,成为稠油开采的主要方法。目前我国稠油开发方式所占比重为蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等。蒸汽吞吐是单井作业,对各种类型稠油油藏地质条件的适用范围较蒸汽驱广,经济上的风险比蒸汽驱开采小得多,因此蒸汽吞吐通常作为油田规模蒸汽驱开发之前的先导开发方式,以减少生产的阻力和增加注入能力。此外,对于井间连通性差、原油粘度过高以及含沥青砂,不适合蒸汽驱的油藏,仍将蒸汽吞吐作为一种独立的开发方式,因而它在稠油开发中占有重要的地位。 在热力开采过程中,受蒸汽超覆、平面指进和储层非均质性等因素影响,经过多轮次蒸汽吞叶开采的油井,其层间矛盾和平面矛盾口益突出,出现高低渗透层的吸汽差异:高渗透层为强吸汽层,低渗透层为弱吸汽层,甚至不吸汽。在高轮次吞叶阶段还会产生汽窜通道,导致井间汽窜干扰,而蒸汽驱开采必然加重这种趋势。目前,解决这一矛盾最有效的方法之一就是应用高温调剖剂技术,通过解决蒸汽在纵向上和平面上的吸汽不均问题,达到改善吸汽剖面,提高稠油动用程度及采收率的目的。所以此次调研将针对稠油油藏耐高温堵剂以及汽窜封堵工艺进行研究。 正文 1.耐高温堵剂的分类 根据封堵方法的不同,将油井调剖堵剂分为选择性堵剂和非选择性堵剂。其中,选择性堵剂有水基、油基、醇基堵剂;非选择性堵剂有水泥浆封堵、树脂堵剂、硅酸盐堵剂、冻胶堵剂。根据矿场实际,又将堵剂分为沉淀型无机盐类堵水化学剂、聚合物冻胶型堵水和调剖化学剂、颗粒型物理堵塞类调剖剂、泡沫类堵水和调剖化学剂、树脂类堵水化学剂、离子型堵水化学剂、耐高温堵水和调剖剂

最新压裂技术现状及发展趋势资料

压裂技术现状及发展趋势 (长城钻探工程技术公司) 在近年油气探明储量中,低渗透储量所占比例上升速度在逐年加大。低渗透油气藏渗透率、孔隙度低,非均质性强,绝大多数油气井必须实施压裂增产措施后方见产能,压裂增产技术在低渗透油气藏开发中的作用日益明显。 1、压裂技术发展历程 自1947年美国Kansas的Houghton油田成功进行世界第一口井压裂试验以来,经过60多年的发展,压裂技术从工艺、压裂材料到压裂设备都得到快速的发展,已成为提高单井产量及改善油气田开发效果的重要手段。压裂从开始的单井小型压裂发展到目前的区块体积压裂,其发展经历了以下五个阶段[1]:(1)1947年-1970年:单井小型压裂。压裂设备大多为水泥车,压裂施工规模比较小,压裂以解除近井周围污染为主,在玉门等油田取得了较好的效果。 (2)1970年-1990年:中型压裂。通过引进千型压裂车组,压裂施工规模得到提高,形成长缝增大了储层改造体积,提高了低渗透油层的导流能力,这期间压裂技术推动了大港等油田的开发。 (3)1990年-1999年:整体压裂。压裂技术开始以油藏整体为单元,在低渗透油气藏形成了整体压裂技术,支撑剂和压裂液得到规模化应用,大幅度提高储层的导流能力,整体压裂技术在长庆等油田开发中发挥了巨大作用。 (4)1999年-2005年:开发压裂。考虑井距、井排与裂缝长度的关系,形成最优开发井网,从油藏系统出发,应用开发压裂技术进一步提高区块整体改造体积,在大庆、长庆等油田开始推广应用。 (5)2005年-今:广义的体积压裂。从过去的限流法压裂到现在的直井细分层压裂、水平井分段压裂,增大储层改造体积,提高了低渗透油气藏的开发效果。 2、压裂技术发展现状 经过五个阶段的发展,压裂技术日趋完善,形成了三维压裂设计软件和压裂井动态预测模型,研制出环保的清洁压裂液体系和低密度支撑剂体系,配备高性能、大功率的压裂车组,使压裂技术成为低渗透油气藏开发的重要手段之一。 2.1 压裂工艺和技术

多层组砂岩气藏气井出砂机理及对策研究

作者简介:钟兵,详见本刊2003年第1期。地址:(610051)四川省成都市府青路一段1号。电话:(028)86015547。 多层组砂岩气藏气井出砂机理及对策研究 钟兵1 马力宁2 杨雅和1 夏崇双1 李江涛2 (1.西南油气田分公司勘探开发研究院 2.青海油田分公司勘探开发研究院) 钟兵等.多层组砂岩气藏气井出砂机理及对策研究.天然气工业,2004;24(10):89~92 摘 要 涩北气田的砂岩气层多而薄,生产过程中地层易出砂。统计表明,涩北气田在试气或试采阶段,虽然大部分气井控制产量生产,但已经有相当数量的井有出砂现象,出砂井占气田试采井总数一半以上。文章从储层特征、岩性特征、气体渗流速度、作业液浸泡等多个角度对气田地层出砂的机理进行了较为全面的分析。结果表明,气田的储层特征是地层出砂的内因,地层中天然气渗流速度是是否出砂的决定性因素,作业液浸泡和井筒内的动态响应会降低地层出砂临界速度,使地层更易出砂。在此基础上,基于降低单一气层天然气渗流速度的思路,从气藏工程角度提出了高孔密、大孔径射孔以及逐层叠加开采和多层压力平衡合采两种多层合采的开采方式和技术路线。实践表明,两种方式均能达到提高涩北气田气井产量、防止地层出砂的目的,其中,多层合采方式更能兼顾到防止出砂、提高气井产量和气田采收率,进而实现提高气田高效开发的目的。 主题词 砂岩油气藏 出砂 渗流 多层 合采 涩北气田 一、引 言 涩北气田储层岩性以粉砂岩为主,储层岩石胶结程度低,欠压实,岩性疏松,较好的岩心出筒后立即松散难取岩样,而成型较好的砂岩则普遍泥质含量偏高。储层的这些特点对生产的直接影响就是生产时气井易出砂。统计表明,涩北气田相当数量的井出现了出砂现象,出砂井占气田试采井总数一半以上。气井出砂严重妨碍气井单井产量的提高。因此,对涩北气田的出砂机理进行深入地分析,并制订相应的气田合理开采、防止地层出砂、提高气井产能的对策,对实现气田的高效开发具有重要意义。 二、地层出砂原因 1.储层特征是地层出砂的内在原因 涩北气田储层成岩性差、易松散,同时粘土矿物含量高(见表1),且多以泥质杂基的形式填充于粒间孔隙内。在孔隙介质流动摩擦力等作用下,粘土颗粒极易发生速敏或水敏,进而产生运移。当气体的流量达到一定极限,即达到出砂门限流速(对应的生产压差为门限压差)时,在储层孔隙内部首先是填隙物作为流动砂随气体运移。当气体的流量继续增加至一个新的极限,即出砂临界速度(对应的生产压差为极限压差)时,构架储层岩石孔隙的骨架颗粒因处 于松散的点式接触状态。随着作用在岩石颗粒表面摩擦力的增大,骨架颗粒将脱落变成自由砂随气流带出。 表1 涩北气田储层粘土矿物分析统计表 矿物名称 高岭石 伊/蒙混层比 伊利石 绿泥石 矿物含量10%~15%5%~43%38%~69%10%~17% 表 征易速敏易水敏易速敏、水敏易酸敏 此外,储层骨架颗粒和泥质填隙物占的比例很大。据7个井次岩心和砂样的粒度分析结果表明,泥质含量平均为23.9%,粉砂(粒径0.01~0.1mm )平均含量49.4%,细砂(粒径0.1~0.25mm )平均含量21.04%,因此储层较容易出砂。所以,在单井产能要求相对较高的条件下,气井大压差生产,储层出砂是必然的。但是应尽量使生产压差保持在极限出砂生产压差范围内,以保证储层骨架及孔隙结构的相对稳定,防止储层大量出砂。 2.气井出砂是速敏反应 从岩样气驱实验出砂情况统计结果看(见表2),不同岩性的岩样在气流作用下是否出砂总体上决定于气体在岩样中的渗流速度。如1号和2号岩样的岩性同为灰色粉砂质泥岩,两个岩样最大驱替压力相近,1号岩样的气体渗流速度仅为0.145m/s ,但2 ? 98?

稠油油藏精细地质及剩余油分布规律研究

龙源期刊网 https://www.360docs.net/doc/a5686667.html, 稠油油藏精细地质及剩余油分布规律研究 作者:汪宁 来源:《石油研究》2019年第10期 摘要:油田全面实施的开采之后,由于开采深度逐渐增加,对其进行剩余油的开发和利用十分重要,这就需要分析高含水油田中剩余油的分布规律,通过研究其分布状态,从而更好的提高对其开发的效率,提高油田产量。本文结合实际问题,对高含水油田剩余油狀态进行分析,并通过研究其分布规律,提出相关的建议。 关键词:稠油油藏;精细地质;剩余油;分布;研究 剩余油的形成机理多样,主要包括地质和开发因素等,其分布方式多样,主要呈现高度分散和相对富集的特征。我国大多数油田正处于开发后期高含水采油阶段,高含水阶段的油田开发重要研究内容之一就是剩余油的研究,剩余油的研究离不开相应测井方法和评价技术的发展,本文将对剩余油的测井方法和剩余油评价技术展开论述。 1 油藏基本情况 1.1地质概况 锦C块地处欢喜岭油田的中台阶,开发的目的层是在沙一中段的于楼油层。已经探明的含油面积是2.5km2,石油地质储量792×104t。储集层主要由粗~细的砂砾岩和含砾砂岩组成,属于高孔、高渗的储集层。油藏的埋藏深度介于760~990m之间,含油的井段长度为80~ 90m,平均的油层厚度是25m,是层状岩性构造油藏。 1.2开发历程及现状 锦C块在1979年打了第一口探井进行常规试油,历经了两次井网加密调整后,形成了目前的83×83m井网。开发历程上一共有4个开发阶段:一是干抽和蒸汽吞吐的初期阶段(1989年~1995年);二是开发局部调整和井网完善阶段(1986年~1997年);三是产量逐渐递减阶 段(1998年~2002年);四是开发综合治理和低速稳产阶段(2003年-至今)。 截止到目前在锦C块的西部一共有油井95口,开井51口,日产液820t,日产油50t,含水93.9%,累产油165.8×104t,累产水580.9×104t,累注汽420.5×104t,采油速度0.32%,采出程度27.8%,累积油汽比0.39。 1.3 目前存在的问题 (1)油藏水淹严重

稠油油藏钻采方案

第一部分常规热采开发方式采油工程设计

3.1 直井及定向井采油工程方案设计 3.1.1 完井工程设计 3.1.1.1 完井方式 友林稠油油藏出砂普遍,目前开发井都采用套管注加砂水泥预应力固井、射孔完井方式。 根据山东油田稠油开发实践,2013年友林油田超稠油油藏直井(定向井)主体采用套管注加砂水泥预应力固井、射孔完井方式,水泥返至地面,要求固井质量优良。 3.1.1.2 生产管柱设计 3)生产管柱设计 根据理论计算和经济效益对比,2013年部署区直井(定向井)生产管柱选择为: ①油藏埋深≤350m(337口),采用Φ73mm ×5.51mmN80平式油管; ②油藏埋深﹥350m(230口),采用Φ114mm×62mm隔热油管。 按2013年友林油田产能建设实施部署统计,有230口直井(定向井)需要使用隔热油管,按单井平均470m计算,需隔热油管10.81×104m,隔热油管性能参数见表3.1-7和表3.1-8。 表3.1-7 Φ114×62mm隔热油管性能参数 表3.1-8 隔热油管隔热等级参数表 此外,2013年友林油田产能建设实施方案还部署了10口动态监测井,设计单井井深470m。对抽油生产中采用的Φ73mmN80平式油管和Φ60.3mmN80平式油管进行了强度校核和生产适应性分析(见表3.1-9),两种管柱的强度和生产适应性满足采油要求。因此,为满足生产和动态监测的要求,动态监测井采用双管结构:主管、副管都采用Φ60.3mm×4.83mmN80平式油管。 表3.1-9 Φ73mm和Φ60.3mm平式油管强度校核

3.1.1.3 油层套管 根据山东油田稠油开发实践,直井和定向井通常采用Φ177.8mm套管。Φ177.8mm套管井筒半径大,流动阻力较小,有利于稠油流入井筒,也有利于后期防砂及维修作业。推荐采用Φ177.8mm套管。 全生命周期采油工程方案的实现,依赖于井筒的完好。而在热采开发中,套管损坏往往导致生产井提前报废。因此,建议钻井工艺使用TP90H或以上钢级的热采套管,保证井筒完好。 3.1.1.4 射孔工艺 友林油田侏罗系八道湾组压力系数为0.94,原油粘度高,无自喷能力。因此,射孔方式选择电缆传输方式,具体射孔参数如下: 射孔弹:YD-89弹 孔密:20孔/m 布孔格式:螺旋布孔 布孔相位:60° 射孔液:稠油脱油热水 3.1.1.5 井口 为防止地层破裂发生汽窜,友林超稠油注汽压力应不高于地层破裂压力。油藏工程要求结合2012年实施区的实际注汽压力情况见表3.1-10,2013年实施区八道湾组井口注汽压力控制在9.0 MPa ~12.0MPa之间。根据油藏工程设计的注汽参数,采用耐压14MPa的热采井口可以满足要求。 表3.1-10 重18井区2012年投产井井口注汽压力与2013年注汽压力预测 1)生产井:采用KR14-337-65型热采井口,最高工作压力14MPa,最高工

深层油气藏

1. 深层油气藏 随着全球油气工业的发展,油气勘探地域由陆地向深水、目的层由中浅层向深层和超深层、资源类型由常规向非常规快速延伸,水深大于3000m的海洋超深水等新区、埋深超过6000m的陆地超深层等新层系、储集层孔喉直径小于1000nm的超致密油气等新类型,将成为石油工业发展具有战略性的“三新”领域。深层将是石油工业未来最重要的发展领域之一,也是中国石油引领未来油气勘探与开发最重要的战略现实领域。 关于深层的定义,不同国家、不同机构的认识差异较大。目前国际上相对认可的深层标准是其埋深大于等于4500m;2005年,中国国土资源部发布的《石油天然气储量计算规范》将埋深为3500~4500m的地层定义为深层,埋深大于4500m的地层定义为超深层;钻井工程中将埋深为4500~6000m的地层作为深层,埋深大于6000m的地层作为超深层。 尽管对深层深度界限的认识还不一致,但其重要性日益显现,目前,已有70多个国家在深度超过4000m的地层中进行了油气钻探,80多个盆地和油区在4000m以深的层系中发现了2300多个油气藏,共发现30多个深层大油气田(大油田:可采储量大于6850×104t;大气田:可采储量大于850×108m3),其中,在21个盆地中发现了75个埋深大于6000m的工业油气藏。美国墨西哥湾Kaskida油气田是全球已发现的最深海上砂岩油气田,目的层埋深7356m,如从海平面算起,则深达9146m,可采储量(油当量)近1×108t。 中国陆上油气勘探不断向深层-超深层拓展,进入21世纪,深层勘探获得一系列重大突破:在塔里木发现轮南-塔河、塔中等海相碳酸盐岩大油气区及大北、克深等陆相碎屑岩大气田;在四川发现普光、龙岗、高石梯等碳酸盐岩大气田;在鄂尔多斯、渤海湾与松辽盆地的碳酸盐岩、火山岩和碎屑岩领域也获得重大发现东部地区在4500m以深、西部地区在6000m以深获得重大勘探突破,油气勘探深度整体下延1500~2000m,深层已成为中国陆上油气勘探重大接替领域[1]。 中国石油天然气股份有限公司的探井平均井深由2000年的2119m增长到2011年的2946m,其中,塔里木油田勘探井深已连续4年超过6000m(见图1.1),且突破了8000m 深度关口(克深7井井深8023m);东部盆地勘探井深突破6000m(牛东1井井深6027m)中国近10年来完钻井深大于7000m的井有22口,其中,2006年以来完钻19口,占86%目前钻探最深的井是塔深1井,完钻井深8408m,在8000m左右见到了可动油,产微量气,钻井取心证实有溶蚀孔洞,储集层物性较好,地层温度为175~180℃最深的工业气流井是塔里木盆地库车坳陷的博孜1井,7014~7084m井段在5mm油嘴、64MPa油压条件下日产气251×104m3,日产油30t,属典型的碎屑岩凝析气藏;最深的工业油流井是塔里木盆地的托普39井,6950~7110m井段日产油95t、气1.2×104m3。 图1.1 中国石油探井平均井深变化图

我国稠油资源分布

我国稠油资源分布文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田 塔河油田累计探明油气地质储量亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金

低渗砂岩油藏压裂改造技术

低渗砂岩油藏压裂改造技术 低孔、低渗、低压、非均质性强、油水关系复杂是制约低渗油田改造的难点。经多年研究及矿场试验,我公司已形成了从压裂地质研究-室内试验-压裂液支撑剂优化-优化设计及实施-压裂实时监测控制-压后评估完备的技术模式。技术水平上也由单项工艺发展到整体压裂技术并引入开发压裂成功实施了ZJ60井区开发压裂,形成了一套具有长庆特色的低渗砂层油藏压裂改造技术。 岩石力学参数、地应力及裂缝方位测试技术 通过围绕储层进行的岩石力学参数测定、地应力测试、以及现场微型压裂测试和压裂动态监测等试验和现场测试,为方案设计提供科学翔实的基础数据。 压裂液优化技术 针对储层地质特点,压裂液重点研究胍胶水基冻胶液配方系列。对于各区块和层位提出的压裂液配方,在室内进行了伤害试验,形成一系列水基压裂液体系。 油田压裂施工现场 压裂支撑剂评价及导流能力试验 对兰州石英砂和低密度中强度的宜兴陶粒进行不同压力下的破碎率试验。为压裂支撑剂的选择提供科学依据。 优化设计技术 通过试井解释、软件分析、图版拟合和历史拟合等,并结合实际地层参数、压裂施工数据监测对裂缝穿透比、裂缝导流能力、压裂施

工参数(加砂量、排量、砂比、前置液量)、压裂工艺方式进行优选。整体压裂技术 1.通过油藏地质研究,结合油田开发要求,制定整体压裂方案。 2.开展室内相关试验及现场测试,并根据油田开发井网,采用系统工程方法,进行目标设计,编制油田整体压裂方案。 3.现场实施与方案完善。 整体压裂技术已在安塞、靖边等油田全面推广。 开发压裂技术 开发压裂是将水力压裂裂缝先期介入油田开发井网的部署中,以压裂开发为出发点,进行井网优化,使压裂裂缝与井网相匹配,以达到提高单井产量和区块整体开发效果的目的。 该技术达到国内先进水平,通过应用达到了提高单井产量、降低成本目的,在油田开发中取得了实效,为探索提高低渗、特低渗油田单井产量和开发效益创出了一条实用科学途径。

HAL压裂裂缝监测技术说明

哈里伯顿压裂裂缝微地震监测说明 2015年4月

1.微地震数据采集方式 井下微地震裂缝监测理论源于研究天然地震的地震学,主要为利用在水力压裂过程中储层岩石被破坏会产生岩石的错动(微地震)来监测裂缝形态的技术。井下微地震监测法将三分量地震检波器(图1),以大级距的排列方式,多级布放在压裂井旁的一个或多个邻井的井底中(图2)。三分量微地震检波器在压裂井的邻井有两种放置方式:一种是放置在邻井中的压裂目的层以上,用于邻井压裂目的层已射孔生产情况,由于收集微地震信号的检波器非常灵敏;为防止监测井内的液体流动对监测造成井内噪音,必须在射孔段之上下入桥塞封隔储层,然后将检波器仪器串下入到桥塞之上的位置。另一种方法是将检波器放置在邻井中的压裂目的层位置上,这种情况检波器和水力裂缝都位于相同的深度和储层,此时声波传播距离最近、需要穿过的储层最少,属于最佳的观测位置,这种方式用于邻井的目的层未实施射孔生产的情况。 图1 三分量地震检波器

图2 三分量地震检波器下井施工现场 图3显示一个由5级检波器组成的仪器串在压裂井的邻井下入的两种布局方式:图中左边表示邻井已射孔的情况下,射孔段以上经过桥塞封堵,检波器仪器串放置在该井的目的层以上;图中右边表示邻井为新井的情况下,目的层未实施射孔,检波器仪器串放置在该井的压裂目的层位置上。井下微地震压裂测试使用的三分量检波器系统检波器以多级、变级距的方式,通过普通7-芯铠装电缆或铠装光缆放置在压裂井的邻井中。哈里伯顿使用采样速率为0.25ms的光缆检波器采集系统采集和传输数据。常规的电缆一方面数据传输速率低,另一方面对于低频震动信号易受电磁波的干扰大。采用铠装光纤进行数据传输不但传输速度快,并且允许连续记录高频事件,提高了对微小微地震事件的探测能力同时 对微地震事件的定位更加准确,监测到的裂缝形态数据最为可靠。 图3 多级检波器系统在邻井的两种放置方式 另外,由于检波器非常灵敏,井筒中的油气流动会很大程度的影响监测微地震事件的 信噪比,如果监测井为已经射孔的生产井,需要在射孔段以上20米的位置下入桥塞,检

致密砂岩油气成藏机理

致密砂岩油气成藏机理 摘要:致密砂岩油气储量丰富、可采资源量可信度高,已成为我国非常规油气勘探开发的首选领域。 关键字:致密砂岩油气成藏条件生储盖组合成藏过程 0 引言 随着常规油气勘探开发程度的不断提高,油气勘探开发领域从常规油气向非常规油气跨越,是石油工业发展的必然趋势(邹才能等,2012)。非常规油气资源量巨大,全球非常规石油资源规模达4495×108t,全球非常规天然气资源规模达3921×1012m3,是常规天然气资源的8倍(邹才能等,2012)。近年来,国内外非常规油气的勘探开发取得了重大突破。美国已发现的储量排名前100的气藏中有58个是致密砂岩气藏(Baihly,et al,2009);我国2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%(戴金星等,2012)。美国圣胡安盆地向斜轴部白垩系致密砂岩气田可采储量为7079×108m3(Bruce et al,2006);Bakken 致密油含油面积7×104km2,资源量达到566×108t,可采资源量68×108t(USGS,2008);Eagle Ford致密油含油面积约4×104km2、目前产油量为560t/d(Lucas et al,2010)。2011年苏里格致密砂岩大气区实现探明储量超3.0×1012m3,四川盆地须家河组致密砂岩大气区发现三级储量1.0×1012m3;鄂尔多斯盆地晚三叠世仅长6、长7段致密油资源量达20×108t以上,四川盆地侏罗系致密油探明地质储量8118×104t(邹才能等,2012)。 致密油气作为非常规油气的重要组成部分,以其储量丰富、分布范围广、可采资源量可信度高、相关技术理论研究早、发展迅速等诸多优点已成为中国近期非常规油气首选的重要勘探领域(戴金星等,2012;贾承造等,2012;邹才能等,2012)。截止目前统计数据表明,我国致密气地质资源量为(17.4-25.1)×1012m3,可采资源量为(8.8-12.1)×1012m3;已形成鄂尔多斯盆地与四川盆地致密气现实区,松辽盆地、渤海湾盆地、吐哈盆地、塔里木盆地、准噶尔盆地5个致密气潜力区(如图1)。截至2010年底,中国致密砂岩气的探明储量30109.2×108 m3,占全国天然气总探明储量的39.2%,致密砂岩气产量为232.96×108 m3,占全国天然气总产量的24.6%(戴金星,2012),预测2015年中国致密气产量将达到(300-400)×108m3,2020年产量将达到(500-600)×108m3。我国致密油地质资

第一章疏松砂岩油藏出砂机理及出砂预测方法

第一章疏松砂岩油藏出砂机理及出砂预测方法判断油层是否出砂,对于选择合理的完井方式、对经济有效地开采油田是非常重要的。要判断生产过程中是否出砂,必须对影响出砂的因素、出砂机理、出砂预测方法的准确性有比较清楚的认识。通过室内实验和理论研究,搞清油层出砂机理和规律,制订合理的生产制度和防范措施也就显得非常有意义。 1.1油气层出砂原因 影响地层出砂的因素大体划分为三大类,即地质因素、开采因素和完井因素。第一类因素由地层和油藏性质决定(包括构造应力、沉积相、岩石颗粒大小、形状、岩矿组成,胶结物及胶结程度,流体类型及性质等),这是先天形成的,当然在开发过程中,由于生产条件的改变会对岩石和流体产生不同程度的影响,从而改善或恶化出砂程度;第二、三类因素主要是指生产条件改变对出砂的直接影响,很多是可以由人控制的,包括油层压力及生产压差,液流速度,多相流动及相对渗透率,毛细管作用,弹孔及地层损害,含水变化,生产作业及射孔工艺条件等。通过寻找这些因素与出砂之间的内在关系,可以有目的地创造良好的生产条件来避免或减缓出砂。 地层砂可以分为两种,即:骨架砂和填隙物。骨架砂一般为大颗粒的砂粒,主要成分为石英和长石等,填隙物是环绕在骨架砂周围的微细颗粒,主要成分为粘土矿物和微粒。在未打开油层之前,地层内部应力系统是平衡的;打开油层后,在近井地带,地层应力平衡状态补破坏,当岩石颗粒承受的应力超过岩石自身的抗剪或抗压强度,地层或者塑性变形或者发生坍塌。在地层流体产出时,地层砂就会被携带进入井底,造成出砂。 图1-1 炮眼周围地层受损情况 图1-1是射孔造成弱固结的砂岩破坏的示意图。射孔使炮孔周围往外岩石依次可以为分颗粒压碎、岩石重塑、塑性受损及变化较小的较小受损区。远离炮孔的A区是大范围的弹性区,其受损小,B1~B2区是一个弹塑性区,包括塑性硬化和软化,地层具有不同程度的受损,C区是一个完全损坏区,岩石经受了重新塑化,近于产生完全塑性状态

稠油油藏提高采收率技术

稠油油藏提高采收率技术 摘要:作为一种非常规石油资源,“重油”又被称为“稠油”。世界上的重油资源非常丰富,已在多个国家发现了重油资源。专家们估计,在全球约10万亿桶的剩余石油资源中,70%以上是重油。我国的石油储量也相当丰富。已建立了辽河油田、新疆油田、胜利油田、河南油田以及海洋油区等五大重油开发生产区,稠油产量占全国原油总产量的10%。但是稠油粘度大,难以流动,阻碍了原油的顺利开采。针对稠油粘度对温度的敏感性,随着温度升高而急剧下降的特点,目前世界上已形成提高稠油采收率四大技术系列,即化学法、气驱、热力和微生物采油。 关键词:稠油油藏;采收率 稠油,国际上称之为重质油或重油。严格地讲,“稠油”和“重油”是两个不同性质的概念。“稠油”是以其粘度高低作为分类标准,而原油粘度的高低取决于原油中胶质、沥青及蜡含量的多少。“重油”是以原油密度的大小进行分类,而原油密度的大小往往取决于其金属、机械混合物及硫含量的多少。 一.稠油的特点 我国稠油油藏分布广泛,类型很多,埋藏深度变化很大,一般在10m~2000m之间,主要是砂岩储集层,其特点与世界各国的稠油特性大体相似,主要有: (1)粘度高、密度大、流动性差。它不仅增加了开采难度和成本,而且使油田的最终采收率非常低。稠油开采的关键是提高其在油层、井筒和集输管线中的流动能力。

(2)稠油的粘度对温度极其敏感。随稠油温度的降低,其粘度显著增加。大量的实验证明,温度每降低10℃,原油粘度约增加1倍。目前国内外稠油采用的热力开采方法正是基于稠油的这一特点。 (3)稠油中轻质组分含量低,而焦质、沥青质含量高 中国稠油资源多数为中新生代陆相沉积,少量为古生代的海相沉积。储层以碎屑岩为主,具有高孔隙、高渗透、胶结疏松的特征。稠油储量最多的是东北的辽河油区,其次是东部的胜利油区和西北的新疆克拉玛依油区。中国重油油藏具有陆相沉积的特点,油层非均质性严重,地质构造复杂,油藏类型多,油藏埋藏深。油藏深度大于800m的稠油油储量约占已探明储量的80%以上,其中约有一半的油藏埋深在1300m~1700m。吐哈油田的稠油油藏埋深在2400m~3400m,而塔里木油田的轮古稠油油藏埋深在5300m左右。 二.国内外提高稠油采收率技术 2.1.1 蒸汽吞吐 蒸汽吞吐是一种相对简单和成熟的注蒸汽开采稠油技术。 蒸汽吞吐技术机理主要是加热近井地带原油,使之粘度降低,当生产压力下降时,为地层束缚水和蒸汽的闪蒸提供气体驱动力。 蒸汽吞吐的工艺过程是先向油井注入一定量的蒸气,关井一段时间,待蒸汽的热能向油层扩散后,再开井生产,即在同一口井进行注入蒸汽、关井浸泡(闷井)及开井生产3个阶段,蒸汽吞吐工艺描述如图2-1。注入蒸汽的量以及闷井的时间是根据井深、油层性质、原油粘度、井筒热损失等条件预先设计好的。 封隔器 吞 蒸汽 蒸汽注入 油砂层 流体采出 吐

砂岩油气层的土酸处理

第三节砂岩油气层的土酸处理 一、教学目的 了解砂岩土酸增产原理,掌握土酸处理设计,并掌握砂岩地层土酸处理的原理,能够解释为什么砂岩地层要用土酸处理。 二、教学重点、难点 教学重点 1、砂岩土酸增产原理 2、土酸处理设计 教学难点 砂岩地层土酸处理原理 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍两个方面的问题: 一、砂岩地层土酸处理原理 二、土酸处理设计 砂岩土酸处理的增产原理: ①通过酸液溶解部分砂粒和胶结物,扩大孔隙通道。 ②酸液溶解孔隙中的各种堵塞物,恢复提高井底附近的渗透率k。 (一)砂岩地层土酸处理原理 1、砂岩组成:

(2)2HF+SiO2=H2SiF6+2H2O H2SiF6=2H++SiF62- 地层水中含有Na+、K+、Ca2+、NH4+等。 2Na++SiF62-=Na2SiF6

2K++SiF62-=K2SiF6 堵塞地层。 因此在砂岩地层酸处理过程中,为避免地层水与SiF62-接触,产生沉淀堵塞地层,应先将地层水顶替走。 (3)氢氟酸与砂岩中各种成分的反应速度各不相同。 HF与碳酸盐反应最快,其次是硅酸盐(粘土),最慢是石英。当HF进入砂岩地层后,价格较贵的HF大部分首先消耗在与碳酸盐的反应上,而影响HF对泥质成分的反应。但HCl与碳酸盐的反应速度比HF与碳酸盐的反应速度还要快,因此土酸中的HCl成分可先把碳酸盐类溶解掉,从而充分发挥HF溶蚀粘土和石英成分的作用。 (二)土酸处理设计 1、酸组成 地层泥质含量高时:HCl 10%+HF 8% 地层碳酸盐含量高时:HCl 15%+HF 3% 根据处理对象不同而定: 水井:堵塞物(硫化亚铁、氯化铁等),HCl可溶,所以HCl占比例大。 油井:泥浆堵塞,HF占比例大。 此外,还可分以下几种情况: 常规土酸:12%HCl+3%HF 土酸:12%HCl+6%HF 逆土酸:3%HCl+6%HF [HF]>[HCl]

浅论疏松砂岩长效防砂优化技术

浅论疏松砂岩长效防砂优化技术 发表时间:2019-09-04T16:13:41.760Z 来源:《工程管理前沿》2019年第13期作者:封旭 [导读] 合理确定挡砂精度或选择防砂方式,对疏松砂岩油藏快速、高效的开发有广泛借鉴作用。 胜利油田鲁明油气勘探开发有限公司 摘要:近年来加强油藏适应性及热采工艺技术配套,形成筛管砾石充填为主导工艺的防砂模式。但近1/4井防砂后产量下降快,防砂周期短,现场解剖发现防砂管堵塞及出砂现象均存在,导致这种情况的原因是砾石设计不合理。合理的砾石设计,应保证有好的防砂效果,必须使砾石层本身有高的渗流能力,以保证油井有高的产量。影响砾石层渗流能力的因素包括砾石尺寸、砾石粒度均匀、圆度、球度以及地层中进入砾石层中的砂粒和粘土。通过研究砾石直径、砾石层厚度、粘土含量对砾石层渗流能力的影响,筛选出具有好的防砂效果和高的渗流能力的防砂砾石显得尤为必要。合理确定挡砂精度或选择防砂方式,对疏松砂岩油藏快速、高效的开发有广泛借鉴作用。 关键词:油田开发;疏松砂岩;挡砂精度;防砂方式;参数匹配 油田位于构造是一比较完整背斜,稠油区位于背斜构造侧翼。由于油层胶结疏松,开采过程中油井出砂严重,防砂是热采井生产需解决的最突出的矛盾之一。疏松砂岩油层出砂程度加剧、治砂难度大,通过开展油水井后期长效防砂技术优化研究及应用。主体工艺优选、油层保护、技术参数匹配和施工过程的实时监测等措施,实现了防砂有效期的延长和出砂井产能的稳定。疏松砂岩油藏分布较广,在开采中占有重要地位,采用筛管完井防砂,往往由于泥质含量高而导致产能下降严重,一般认为,粘土含量小于5%时防砂筛管都不容易堵塞,高于10%时,致密过滤结构的筛管不适合使用。 1 目前所用的充填材料 有复合陶粒砂、固结剂、包覆石英砂等,各类充填材料的渗透率及各出砂油田的地层渗透率见表1: 曲线可以看出,当 Kg/Kf <100时PR随着 Kg/Kf 的增大而明显上升,当图1砾石与地层渗透率比值对产能比的影响>100后 PR 上升趋势变得缓慢,因此一般取Kg/Kf >100便可满足防砂后产能保持的需要。 1.2 工艺优选 严重出砂油田的地层渗透率在1μm2左右,由以上图、表中数据对比可以看出,石英砂与地层的渗透率比值大于100最有利于防后产量的保持,因此充填材料优选石英砂砾石,同时为了炮眼充填的稳定和防止充填砂的回流,最终优选机械筛管(割缝管)+砾石充填工艺为油田防砂的主体技术。 2砾石注入充填方式的优化和技术参数匹配 2.1 砾石阶梯式注入充填方式 研究表明:在径向流状态原油呈放射状自远处渗流到井底的过程中,越靠近井壁,压力梯度越大,原油流动阻力大部分消耗在近井地带,从而使近井地带压降变化较大,井壁周围的压力变化曲线呈一个陡峭的漏斗状。

我国稠油资源分布

我国有丰富的稠油资源,探明和控制储量已达16×108t,是继美国、加拿大和委内瑞拉之后的世界第四大稠油生产国。重点分布在胜利、辽河、河南、新疆等油田。我国陆上稠油资源约占石油总资源量的20%以上,探明与控制储量约为40亿吨,目前在12个盆地发现了70多个稠油油田。胜利油田地质储量约15000万吨,中原油田约为3200万吨,克拉玛依油田约6660万吨,国内每年稠油产量约占原油总产量的10%。中国尚未动用的超稠油探明地质储量为7.01×108t。 辽河油田 辽河油田公司2007年重新计算确定探明储量中的难动用和未动用储量为4亿吨,目前原油年开采能力1000万吨以上,天然气年开采能力17亿立方米。辽河油区稠油油藏,油层埋藏深度变化较大:最浅小于600m,最深达1700m,一般在700~1300m之间。按埋藏深度统计,超过1300m的深层稠油油藏,其储量占探明储量的42.92%,900--1300m的中深层油藏,储量占41.39%,600--900m的中浅层占15.69%。由上述统计不难看出辽河84.3%储量油藏埋藏深度在900m以上。 塔河油田

塔河油田累计探明油气地质储量7.8亿吨,塔河油田是我国发现的第一个超深超稠碳酸盐岩油藏 ,埋深 5 350~6 600m, 80%的储量为特超稠油 ,稠油产量占总产量 57% 。 随着国家西部大开发的实施,作为我国石油战略接替区的塔里木盆地的油气产量正逐年上升,2002年该地区两大油田生产原油约751万t,发展势头较猛。同时,沿塔里木河一带的稠油探明储量为3.35亿t,可采储量为4500万t。2002年产出稠油约270万t,占塔里木原油产量的36%。比例相当可观.这部分资源开发对今后塔里木石油的发展起着重要作用。然而,该稠油性质极差(目前中国最差),属于高硫、高残碳、高金属、高密度、高黏度、高沥青质含量的”六高”原油,运输困难,一般的已有的炼油工艺很难对其进行加工处理,因此必须采用一种新的工艺对其进行轻质化加工处理。 塔里木油田 塔里木盆地可探明油气资源总量为160亿吨,其中石油80亿吨、天然气10万亿立方米。在寒武系顶部4 573.5~4 577 m获得少量稠油,粘度 2 698 mPa·s。 河南油田

油气田开发地质学重点总结(含图)..

一、油气田开发地质学主要的研究内容: 1、储层研究:包括油气层的储集类型、岩性、物性、厚度、分布、形态、沉积类型等; 2、油层非均质性研究:包括对碎屑岩储层岩性、物性在纵向上、横向上的变化及其造成这种变化的原因; 3、构造、断裂系统研究:包括构造的形态、成因,断层的性质、产状、分布特点、成因,发育时代,演化规律,对油气分布的控制作用和破坏作用; 4、流体分布及流体性质研究:包括油气水的纵向、平面的分布规律,油气水的性质; 5、油气储量研究:包括储量计算方法研究、储量计算参数的确定。 二、开发地质学研究手段: 1、利用钻井资料:包括取心资料、化验分析资料; 2、利用地球物理勘探资料:包括地球物理测井资料,二维地震、三维地震、井间地震等; 3、利用试油、试采、矿场开发资料:包括产量、含水、 含水变化率、地层压力、温度、化验分析资料等。 三、开发地质学的研究方法 四、油藏描述的目的包括: 1、真实、准确、定量化地展示出储层特征; 2、最优化地提高采收率; 3、提高可靠的油藏动态预测; 5、降低风险及效益最大化 一、美国常用API度表示石油的相对密度: 二、动力粘度,运动粘度,相对粘度。 1动力粘度;面积各位1m^2并相距1m的两平板,以1m/s的速度作相对运动时,之间的流体相互作用所产生的内摩擦力。原油粘度的单位是:mPa.s 2运动粘度是动力粘度与同温度、压力下的流体的密度比值。单位m^2/s 3相对粘度,就是原油的绝对粘度与同温度条件下水的绝对粘度的比值。 三、国际稠油分类标准 原油粘度的影响因素:与原油的化学组成、溶解气含量、温度、压力等因素关系密切。 四、气藏气气顶气

稠油分类标准

一、稠油分类 (一)国外重油分类标准 稠油分类不仅直接关系到油藏类型划分与评价,也关系到稠油油藏开采方式的选择及其开采潜力。为此,许多专家对稠油分类标准进行了研究并多次举行国际学术会议进行讨论。联合国培训研究署(UNITAR)推荐的重油分类标准如表1所示,委内瑞拉的重油分类际准见表2 。 表1UNITAR 推荐的分类标准

表2 委内瑞拉能源矿业部的分类标准 (二)中国稠油分类标准 我国稠油沥青质含量低,胶质含量高,金属含量低,稠油粘度偏高,相对密度则较低。根据我国稠油的特点分类标准如表 3 所示。在分类标准中,以原油粘度为第一指标,相对密度为其辅助指标,当两个指标发生矛盾时则按粘度进行分类。 表3 中国稠油分类标准 *指油层条件下的原油粘度;无*者为油层温度下脱气原油粘度。

二、稠油油藏一般地质特征 稠油油藏相对于稀油油藏而言,具有以下特点: (一)油藏大多埋藏较浅 我国稠油油藏一般集中分布于各含油气盆地的边缘斜坡地带以及边缘潜伏隆起倾没带,也分布于盆地内部长期发育断裂带隆起上部的地堑。油藏埋藏深度一般小于1800m ,埋藏浅的有的可出露地表,有的则可离地表几十米至近百米。但井深3000~4500m也有稠油油藏,为数较少。 (二)储集层胶结疏松、物性较好 稠油油藏储集层多为粗碎屑岩,我国稠油油藏有的为砂砾岩,多数为砂岩,其沉积类型一般为河流相或河流三角洲相,储层胶结疏松,成岩作用低,固结性能差,因而,生产中油井易出砂。 稠油油藏储集层物性较好,具有孔隙度高、渗透率高的特点。孔隙度一般为25%~30%,空气渗透率一般高于0.5 ~2.0平方微米。 (三)稠油组分中胶质、沥青质含量高,轻质馏分含量低

稠油的分类及其油藏地质特征

稠油的分类及其油藏地质特征 ---- 所属行业 : 石油化工 发布公司: 公司联系方式:查看 一、稠油分类 (一)国外重油分类标准 稠油分类不仅直接关系到油藏类型划分与评价,也关系到稠油油藏开采方式的选择及其开采潜力。为此,许多专家对稠油分类标准进行了研究并多次举行国际学术会议进行讨论。联合国培训研究署(UNITAR)推荐的重油分类标准如表1所示,委内瑞拉的重油分类际准见表2 。 表1UNITAR 推荐的分类标准 表2 委内瑞拉能源矿业部的分类标准 (二)中国稠油分类标准 我国稠油沥青质含量低,胶质含量高,金属含量低,稠油粘度偏高,相对密度则较低。根据我国稠油的特点分类标准如表3 所示。在分类标准中,以原油粘度为第一指标,相对密度为其辅助指标,当两个指标发生矛盾时则按粘度进行分类。

表3 中国稠油分类标准 *指油层条件下的原油粘度;无*者为油层温度下脱气原油粘度。 二、稠油油藏一般地质特征 稠油油藏相对于稀油油藏而言,具有以下特点: (一)油藏大多埋藏较浅 我国稠油油藏一般集中分布于各含油气盆地的边缘斜坡地带以及边缘潜伏隆起倾没带,也分布于盆地内部长期发育断裂带隆起上部的地堑。油藏埋藏深度一般小于1800m ,埋藏浅的有的可出露地表,有的则可离地表几十米至近百米。但井深3000~4500m也有稠油油藏,为数较少。 (二)储集层胶结疏松、物性较好 稠油油藏储集层多为粗碎屑岩,我国稠油油藏有的为砂砾岩,多数为砂岩,其沉积类型一般为河流相或河流三角洲相,储层胶结疏松,成岩作用低,固结性能差,因而,生产中油井易出砂。 稠油油藏储集层物性较好,具有孔隙度高、渗透率高的特点。孔隙度一般为25%~30%,空气渗透率一般高于0.5 ~2.0平方微米。 (三)稠油组分中胶质、沥青质含量高,轻质馏分含量低 稠油与轻质油在组分上的差别在于稠油中胶质、沥青质含量高,油质含量小。稠油中胶质、沥青质含量一般大于30%~50%,烷烃、芳烃含量则小于60%~50%。 (四)稠油中含蜡量少、凝固点低

低渗透砂岩油气储层裂缝

低渗透砂岩油气储层裂缝及其渗流特征* 曾联波 (石油大学油气成藏机理教育部重点实验室北京 102249) 摘 要 综合分析了不同地区低渗透砂岩油气储层裂缝的发育规律、渗流特征及其控制因素, 发现低渗透砂岩储层裂缝以高角度构造裂缝为主,裂缝的间距一般呈对数正态函数分布,并与岩层厚度呈正线性相关关系。裂缝的发育受岩性、岩层厚度、沉积微相、构造和应力等因素控制。裂缝渗透性受现应力场的影响,通常与现应力场最大主应力方向近平行裂缝的渗透性最好,但其它方向裂缝的渗流作用不容忽视。裂缝提高了低渗透砂岩储层的可动油饱和度,同时又影响井网部署和注水开发效果。 关键词 裂缝 发育规律 渗流特征 低渗透砂岩储层 中图分类号:T E122 文献标识码:A 文章编号:0563-5020(2004)01-0011-07 低渗透砂岩储层一般是指空气渗透率<50 10-3 m 2 的含油气砂岩储层(李道品,1997)。由于其岩石致密,脆性大,在成岩过程和后期构造变动中,在非构造作用力和构造作用力影响下可产生各种微断裂和裂隙(本文统称为裂缝),成为裂缝性低渗透砂岩储层。在低渗透砂岩储层中,裂缝所起的储集作用较小,裂缝的孔隙度通常<0.5%。裂缝主要是提高储层的渗透率或造成储层渗透率强烈的非均质性,裂缝的渗透率通常比基质渗透率高1~2个数量级。因此,研究低渗透砂岩储层裂缝及其渗流特征,对提高这类油气田的开发水平,改善开发效果,提高采收率具有十分重要的意义。1 裂缝发育规律 (1)裂缝间距及其与层厚关系 通过不同构造类型露头区和岩心研究,低渗透砂岩储层裂缝的间距常服从对数正态函数分布。从准噶尔盆地火烧山油田及其附近相似露头区上二叠统平地泉组垂直同一组系裂缝走向的间距测量表明,无论是在全区范围内对所有裂缝进行测量统计,还是在与岩心直径相同的10cm 直径圆的小范围内对裂缝进行测量统计,裂缝间距都服从对数正态函数分布规律,只是10cm 直径圆内的裂缝平均间距小一个数量级(图1)。这表明在相同地质条件下,不同尺度裂缝分布具有较好的自相似性特征,因此可以用分形几何方法来定量描述裂缝的分布规律。 裂缝受岩层控制,裂缝通常分布在岩层内,与岩层垂直,并终止于岩性界面上。通过对火烧山油田和陕甘宁盆地靖安油田三叠系延长组相似露头区裂缝间距测量统计(图2) *本研究受到石油科技中青年创新基金项目(编号:03E7010)和国家重点基础研究发展规划项目(编号:G1*******) 资助。 曾联波,男,1967年11月生,副教授,石油地质学专业。 2001-07-01收稿,2002-03-25改回。 2004年1月地 质 科 学C HINESE JOURNAL OF GEOLOGY 39(1):11 17

相关文档
最新文档