Model Independent Measurement of swave $K^{-}pi^{+}$ systems using $Dpto Kpipi$ Decays from

a r X i v :h e p -e x /0507099v 2 22 D e c 2005

FERMILAB-PUB-05-336-E

UCHEP-05-03

Model Independent Measurement of S -wave K ?π+systems using D +→KππDecays

from Fermilab E791.

E.M.Aitala,9S.Amato,1J.C.Anjos,1J.A.Appel,5D.Ashery,14S.Banerjee,5I.Bediaga,1G.Blaylock,8S.B.Bracker,15P.R.Burchat,13R.A.Burnstein,6T.Carter,5H.S.Carvalho,1N.K.Copty,12L.M.Cremaldi,9C.Darling,18K.Denisenko,5S.Devmal,3A.Fernandez,11G.

F.Fox,12P.Gagnon,2C.Gobel,1K.Gounder,9A.M.Halling,5

G.Herrera,4G.Hurvits,14C.James,5P.A.Kasper,6S.Kwan,https://www.360docs.net/doc/a81271188.html,ngs,12J.Leslie,2

B.Lundberg,5J.Magnin,1A.Massa?erri,1S.MayTal-Beck,14B.Meadows,3J.R.T.de Mello Neto,1D.Mihalcea,7

https://www.360docs.net/doc/a81271188.html,burn,16J.M.de Miranda,1A.Napier,16A.Nguyen,7A.B.d’Oliveira,3,11K.O’Shaughnessy,2

K.C.Peng,6L.P.Perera,3M.V.Purohit,12B.Quinn,9S.Radeztsky,17A.Rafatian,9N.W.Reay,7J.J.Reidy,9

A.C.dos Reis,1H.A.Rubin,6D.A.Sanders,9A.K.S.Santha,3A.F.S.Santoro,1A.J.Schwartz,3M.Shea?,17R.A.Sidwell,7A.J.Slaughter,18M.D.Sokolo?,3J.Solano,1N.R.Stanton,7R.J.Stefanski,5K.Stenson,17D.J.Summers,9S.Takach,18K.Thorne,5A.K.Tripathi,7S.Watanabe,17R.Weiss-Babai,14J.Wiener,10N.Witchey,7E.Wolin,18S.M.Yang,7D.Yi,9S.Yoshida,7R.Zaliznyak,13and C.Zhang 7

Fermilab E791Collaboration

1

Centro Brasileiro de Pesquisas F′?sicas,Rio de Janeiro,Brazil 2

University of California,Santa Cruz,California 950643

University of Cincinnati,Cincinnati,Ohio 45221

4

CINVESTAV,Mexico City,Mexico 5

Fermilab,Batavia,Illinois 60510

6

Illinois Institute of Technology,Chicago,Illinois 606167

Kansas State University,Manhattan,Kansas 665068

University of Massachusetts,Amherst,Massachusetts 010039

University of Mississippi-Oxford,University,Mississippi 38677

10

Princeton University,Princeton,New Jersey 0854411

Universidad Autonoma de Puebla,Puebla,Mexico

12

University of South Carolina,Columbia,South Carolina 29208

13

Stanford University,Stanford,California 9430514

Tel Aviv University,Tel Aviv,Israel

15

Box 1290,Enderby,British Columbia,V0E 1V0,Canada 16

Tufts University,Medford,Massachusetts 0215517

University of Wisconsin,Madison,Wisconsin 5370618

Yale University,New Haven,Connecticut 06511

W.M.Dunwoodie

SLAC.,Stanford,California 94305

(Dated:February 7,2008)

A model-independent partial-wave analysis of the S -wave component of the Kπsystem from decays of D +mesons to the three-body K ?π+π+?nal state is described.Data come from the Fermilab E791experiment.Amplitude measurements are made independently for ranges of K ?π+invariant mass,and results are obtained below 825MeV /c 2,where previous measurements exist only in two mass bins.This method of parametrizing a three-body decay amplitude represents a new approach to analysing such decays.Though no model is required for the S -wave,a parametrization of the relatively well-known reference P -and D -waves,optimized to describe the data used,is required.In this paper,a Breit-Wigner model is adopted to describe the resonances in these waves.The observed phase variation for the S -,P -and D -waves do not match existing measurements of I =1

2

,this observation indicates that the Watson theorem,which requires these phases to have the same dependence on invariant mass,may not apply to these decays without allowing for some interaction with the other pion.The production rate of K ?π+from these decays,if assumed to be predominantly I =1

I.INTRODUCTION

Kinematics and angular momentum conservation in decays of ground state,heavy-quark mesons to three pseu-doscalars strongly favor production of S-wave systems.These decays have therefore been regarded as a source of information on the composition of the scalar meson(spin-parity J P=0+)spectrum.Extracting this information has,however,been done in model-dependent ways that can in?uence the outcome.For the di-meson subsystems, vector and tensor resonances are relatively well-understood,but,as larger samples of D and B meson decays become available,the correct modelling of the S-wave contributions becomes an increasingly important factor in the task of obtaining satisfactory?ts to the data.

Analyses typically use an isobar model formulation in which the decays are described by a coherent sum of a non-resonant three-body amplitude NR,usually taken to be constant in magnitude and phase over the entire Dalitz plot,and a number of quasi two-body(resonance+bachelor)amplitudes where the bachelor particle is one of the three?nal state products,and the resonance decays to the remaining pair.It is assumed that all resonant and NR processes taking part in the decay are described by amplitudes that interfere,and have relative phases and magnitudes determined by the decay of the parent meson.In cases where all three decay products are pseudoscalar(P)particles, angular momentum conservation requires that the resonances produced are scalar(S-wave),vector(P-wave),etc. For D mesons,decays beyond D-wave are highly suppressed by the angular momentum barrier factor and can be neglected.

Within this formalism,the decays D+→π?π+π+and D+→K?π+π+[1]were once thought to require very large, constant NR amplitudes[2,3,4].Using larger samples,the Fermilab E791collaboration found that a satisfactory description of these decays requires more structure.By including S-wave isobars,σ(500)→π+π?inπ?π+π+[5]and κ(800)→K?π+in K?π+π+[6],a much-improved modelling of the Dalitz plots was achieved,and the need for a constant NR term was much reduced in each case.

The FOCUS collaboration,using an even larger sample of D+→π?π+π+decays,found an acceptable?t[7] using a K matrix description of the S-wave with noσ(500)pole.However,a parametrization of the NR background was required to achieve an acceptable?t.The BaBar and Belle collaborations[8,9,10],with the measurement of CP violation parameters in B?→D0(→K0sπ+π?)K?decays as their primary goal,introduceσ(500)and another σ(1000)isobar in order to obtain an acceptable description of the complex amplitude for the D0Dalitz plot.

The important issue of whether scalar particlesσ(500)andκ(800)exist is not convincingly settled.Further observations of these isobars were recently reported inπ?π+and K?π+systems from J/ψdecays[11,12].However, these results were modelled on variations of the simple Breit-Wigner form for the states adopted in the cases cited. Quite di?erent descriptions are probably required,since such forms are seen to contain poles below threshold[13].In a recent publication[14]the E791data on D+→π?π+π+and on the D+→K?π+π+decays discussed here,are re-?tted using input from calculations ofππand Kπscattering that include constraints of chiral perturbation theory, and that?nd bothσandκpoles[15,16].The?ts obtained yield similarχ2per degree of freedom to those in Refs.

[5]and[6]where Breit-Wigners were used,but each resonance is considerably wider.

Ultimately,a less model-dependent analysis of the data should help resolve the issue of theσand theκ.

Model-independent measurements of the energy dependence of these S-wave amplitudes,particularly in the low invariant mass regions,where confusion is greatest,is therefore an important experimental goal.Such a Model-Independent Partial Wave Analysis(MIPWA)is reported here for the K?π+system produced in D+→K?π+π+ decays.One earlier measurement has been made forπ?π+systems from D+→π?π+π+decays[17],in which the “amplitude di?erence”(AD)method[18]was employed.This method can only be used when there exists a region of the Dalitz plot that can be described by the sum of a single resonance and an S-wave amplitude that is to be measured.Interference of the resonance with this S-wave introduces an asymmetry in the distribution of the other invariant mass combinations that can be measured at di?erent values of invariant masses in the band.As there is no such region in the Dalitz plot for the data reported here,this method is not used.

For the K?π+system,the best results of an MIPWA currently available come from the LASS experiment[19],in which K?π+scattering was studied for invariant masses above825MeV/c2.Below825MeV/c2,measurements have been made for the mass bins770-790MeV/c2[20]and700-760MeV/c2[21],though with less https://www.360docs.net/doc/a81271188.html,rmation on the KπS-wave amplitude near or slightly above the K?(892)has been extracted by the BaBar collaboration in studies of B decays to J/ψKπ[22],and by FOCUS in semi-leptonic D decays to Kπ?ν[23],the low mass region has not been covered in either case.

In this paper,we describe an MIPWA in the mass range from K?π+threshold up to1.72GeV/c2,the kinematic limit for decays of D+mesons to K?π+π+?nal states.The amplitudes obtained for the S-wave require no assumptions about its dependence on invariant mass,though they do rely on a model for the relatively well-understood P-and D-waves.As such,they should provide an unbiased input for comparisons with theoretical models for scalar states. This paper is organized as follows.In the following section we present the data sample.Next we describe the method used to extract complex amplitudes from the S-wave K?π+system in a way that does not require a model

for its dependence on invariant mass.In Section IV this is applied to the sample of D+→K?π+π+decays.The amplitudes obtained are then compared,in Section V,with the S-wave amplitude derived from the Breit-Wigner isobar model?t that best represents the data.This model,applied to these data,was presented in Ref.[6],and includes aκ(800)isobar.In Section VI the results of the MIPWA are compared with amplitudes measured in K?π+ elastic scattering,and with the expectations of the Watson theorem[24],whose applicability to weak hadronic decays has not previously been tested.Systematic uncertainties are discussed in Sec.VII.Finally,some conclusions are drawn.In Appendix A we point out limitations,ambiguities and other technicalities inherent in this kind of analysis.

II.THE E791DATA

The analysis is based on a sample of D+→K?π+π+candidates from Fermilab experiment E791.The experiment is described in detail in Ref.[25].The same sample is used in this paper as the one described in Ref.[6],where an isobar model?t to these data was described.The selection process used in obtaining the sample is outlined below, but more details are given in Ref.[6].

In this paper,s is used to denote the K?π+squared invariant mass.Where it is important to distinguish,the

two pions(and their corresponding s values)are labelled,respectively,π+

A andπ+

B

(s

A

and s

B

).A clear peak in the

K?π+π+invariant mass M distribution is observed with15,079events in the mass range1.810

N cosθ>0+N cosθ<0

(1)

where N is the e?ciency-corrected number of events in the indicated regions of cosθ.In Fig.2,αis plotted as

a function of the K?(892)Breit-Wigner(BW)phaseφ

BW

=tan?1[m0Γ/(m20?s)],where the peak mass m0= 896.1MeV/c2and the mass dependent widthΓ=50.7MeV/c2at the peak mass.A change in the sign ofαoccurs

whenφ

BW~56?,at an invariant mass below the K?(892)peak.We note here that,in Kπelastic scattering[19],αis observed to reach zero atφ

BW≈135.5?,a mass above the K?(892)peak.Evidently there is a~?79?shift in s-p relative phase in this D+decay relative to that observed in Kπelastic scattering.

0.5

1

1.5

2

2.5

3

s A = m

2

(K -πA +

)

s B = m 2(K -πB + )

FIG.1:Dalitz plot for D +→K ?π+A π+

B decays.The squared invariant mass s B of one K ?π+combination is plotted against s A ,the squared invariant mass of the other combination.The plot is symmetrized,each event appearing twice.Lines in both directions indicate values equally spaced in squared e?ective mass at each of which the S -wave amplitude is determined by the MIPWA described in section III.Kinematic boundaries for the Dalitz plot are drawn for three-body mass values M =1.810and M =1.890GeV /c 2,between which data are selected for the ?ts.

III.

FORMALISM

A.

K ?π+Partial Wave Expansion

The Dalitz plot in Fig.1is described by a complex amplitude Bose-symmetrized with respect to the identical pions

π+

A and π+

B :

A =A (s A ,s

B )+A (s B ,s A ).

(2)

Considering the simplest,tree-level quark diagrams,iso-spin I =1/2K ?π+systems are most likely to be produced.The contribution of the π+π+amplitude to these decays is not expected to be signi?cant,coming mostly from re-scattering processes.To test this,data are taken from measurements of π+p →π+π+n reactions [27]in which the phase of the π+π+amplitude was found to vary slowly,assuming it to be elastic,from zero at threshold to about ?30?at 1.45GeV /c 2,the upper range of the measurements.No evidence for isospin I =2resonances exists in this range.This amplitude is added to those in model C in Ref.[6].It is found that the π+π+contribution is,indeed,insigni?cantly small (0.7±0.4)%.

The amplitude A is therefore written as the sum of K ?π+partial waves labelled by angular momentum quantum number L ,

A (s A ,s

B )=

L max L =0

(?2pq )L P L (cos θ)×

F L

D (q,r D )×C L (s A ),

(3)

corresponding to production of K ?π+systems with spin J =L and parity (?1)L in these D +decays.In this analysis,the sum is truncated at L max =2since the D -wave K ?

2(1430),as measured in reference [6],contributes only about

-0.4

-0.200.20.40.60.8

φBW

α

FIG.2:The asymmetry αplotted vs.BW phase φBW for the K ?(892).These quantities are described in the text.αbecomes zero at φBW ~56degrees.

0.5%to the decays.This is already small and higher partial-waves are expected to be even further suppressed by

the angular momentum barrier.With no way to distinguish I =12components in the K ?π+

systems produced,their sum is measured in this paper.

In Eq.(3), p and q are momenta for the K ?and bachelor π+B respectively,in the K ?π+

A rest frame.The cosine of

the helicity angle θis then given in terms of the masses m K ?(m π+)and energies E K ?(E π+)of the K ?(π+

B )in the K ?π+

A rest frame by:

cos θ=?p ·?

q =

E K ?E π+B

? s B ?m 2K ??m 2

π+ /22

vector

F 2D

= 9+3(rq )2+(rq )4

?1s

p L F L

D

,(6)

where P L (s ),unknown functions,describe the K ?π+production in each wave in the D decay process [30].These replace the K ?π+

coupling present in elastic scattering (proportional to the 2-body phase-space factor

B.

The Reference Waves

As in previous analyses,a Breit-Wigner isobar model is used to describe the P -and D -waves.Linear combinations of resonant propagators W R ,one for each of the established resonances R having the appropriate spin,and each with a complex coupling coe?cient with respect to K ?(892),B R =b R e iβR ,are constructed.Three possible K ?π+resonances are included in the P -wave,but only one in the D -wave in the invariant mass range available to these decays:

C 1(s )=[W K ?(892)(s )+B K ?1

(1410)W K ?1

(1410)(s )+B K ?1(1680)W K ?1(1680)(s )]×F L

R (p,r R ),(7)C 2(s )= B K ?2

(1430)W K ?2(1430)(s )

×F L

R (p,r R ).(8)

where F L

R is a form factor for the resonances in the K ?π+system,required to ensure that the resonant amplitudes vanish for invariant masses far above the pole masses.It is assumed to have the same dependence on center-of-mass

momentum and angular

momentum

as

the D form factor F L

D ,but to depend on a di?erent e?ective radius r =r R .The

coe?cients in Eq.(7)have their origin in the K ?π+

production process arising from D +decays,and are therefore treated as unknown parameters in the ?ts.

Each propagator is assumed to have a Breit-Wigner form de?ned as:

W R (s )=

1

p R

2L +1

F L R (p,r R )

n i

.(13)

This expression has a three-body mass pro?le Q i(M)and a distributionθi(s

A ,s

B

),with normalization n i,over the

Dalitz plot.For the combinatorial background,the PDF is determined by events in a band of M values above the D+peak,while for the D s re?ections it is determined from the simulated MC samples.

The signal PDF is

P s=Q0(M)?(s

A

,s

B

)|A(s

A

,s

B

)|2

DP| i A i|2ds A ds B.(16)

This is the de?nition most often used in the literature on three body decays.It guarantees that each F

k

is positive.

Due to interference,however,the F

k

do not necessarily sum to unity.

F.Parameters,Phases and Constants

The log-likelihood,Eq.(12),is de?ned by many parameters.By choice,a number of these are held constant in the?ts.Parameters for the background models P i b and their fractions f i are determined by studies of data and of MC samples and are?xed.Masses and widths for well-established P-and D-wave resonances are also held constant at values listed in Table I.These come mostly from the Review of Particle Properties(RPP)publication[32].For the K?1(1680)values appropriate for the state with known coupling to Kπobserved in Kπscattering in the LASS

experiment[19]are used.The form factor radii are?xed at r

D =5.0GeV?1and r

R

=1.6GeV?1,values determined

in Ref.[6]to be those providing the best isobar model description for these data.Isobar coe?cients B

R

and partial wave amplitude parameters c i andγi are generally allowed to vary.

TABLE I:resonance mass m R and widthΓR values used in the?ts described in this paper.With the exception of K?1(1680), parameters are as quoted in Ref.[32].

Resonance m R(MeV/c2)ΓR(MeV/c2)

IV.MIPW A OF THE K?π+S-wave

The technique described in Section III is applied to the data shown in the Dalitz plot in Fig.1.The P-and D-wave amplitudes de?ned as in Eqs.(7)and(8)are chosen as reference waves.The40equally spaced values s k,indicated by lines in the?gure,are chosen.The S-wave magnitude and phase,c k andγk,at each s k,and the P-wave and D-wave are all determined by the?t.With all established vector and tensor resonances with masses and widths couplings B

i

shown in Table I,there are86free parameters.

It is con?rmed that the contribution from K?1(1410)is negligible,as reported in Ref.[6],and this is dropped from

and the further consideration.The?t is made with the remaining84free parameters.The complex coe?cients B

i fractions F

for each of the resonances i included in the P-and D-waves are summarized in Table II.[33] i

TABLE II:Fractions,magnitudes and phases for resonant and S-wave components from four?ts to decays of D+mesons to K?π+π+described in the text.Fit labels are“MIPWA”for the?t,described in Sec.IV,where magnitudes and phases for40 K?π+mass slices described in the text are free to vary.Systematic errors are included for this?t.“Isobar”refers to the?t described in Sec.V.The?t labelled as“Elastic”is described in Section VI.

Channel Fit Fraction Amplitude Phase

F%bβ(degrees)

-200

-1000100200

φ0(s ) (d e g .)

2.557.5

10

|C 0(s )| (G e V /c 2)-2

50

100

150

φ1(s ) (d e g .)

5101520|C 1(s )| (G e V /c 2)-2

100

K π Mass (GeV/c 2

)

φ2(s ) (d e g .)

5

10

K π Mass (GeV/c 2)

|C 2(s )| (G e V /c 2)-2

FIG.3:(a)Phases γk =φ0(s k )and (b)magnitudes c k =|C 0(s k )|of S -wave amplitudes for K ?π+systems from D +→K ?π+π+decays with the amplitude and phase of the K ?(892)as reference.Solid circles,with error bars show the values obtained from the MIPWA ?t described in the text.The e?ect of adding systematic uncertainties in quadrature is indicated by extensions on the error bars.The P -wave and D -wave phases are plotted in (c)and (e)and their magnitudes in (d)and (f),respectively.These curves are derived from Eqs.(7)and (8),respectively,evaluated with the parameters and error matrix resulting from the MIPWA.Curves appear as shaded areas bounded by solid line curves representing one standard deviation limits for these quantities.In all plots,the dashed curves show one standard deviation limits for the predictions of the isobar model ?t described in Sec.V.These curves are computed in the same way,using Eq.(17)in addition to (7)and (8)with parameters and error matrix from the isobar model ?t.

normalized residual,(n f ?n o )/σ,where n o is the number of events observed,n f is the number predicted by the ?t and σ=

TABLE III:Magnitude c and phaseγof the K?π+S-wave amplitude determined,at equally spaced masses,by the MIPWA

?t described in the text.The magnitudes assume a real form-factor F D

0for the D+meson.Values for this form-factor are given

for each mass value in the table.Two further mass values,used in the?t as a result of the?nite resolution in3-body invariant mass,are not included in the table.They lie,respectively,at and above the kinematic limit for D+decay to this?nal state. Statistical and systematic uncertainties are assigned to each magnitude and phase.

√s)cγ

(GeV/c2)(GeV/c2)?2(degrees)

20040060080010001200

M 2

(K -π+) (GeV/c 2)

2

E v e n t s /0.04 (G e V /c 2)

2

100200300

400500

M 2

(K -π+) (GeV/c 2)

2

0100

200

300

400

M 2

(π+π+

) (GeV/c 2)

2

1

1.5

2

2.5

3

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

-2

-10

123Smaller M 2(K -π+) (GeV/c 2)2

L a r g e r M 2

(K -π+

) (G e V /c 2)

2

FIG.4:Comparison between MIPWA ?t and data for D +→K ?π+π+decays.For each event,the distributions of (a)the smaller K ?π+,(b)the larger K ?π+and (c)the π+π+squared invariant masses are plotted as points with error bars.Results of the ?t (solid histogram)are superimposed.(d)The Dalitz plot folded about the axis of symmetry resulting from the identity of the two π+

mesons.The quantity plotted is the normalized residual (n f ?n 0)/

50010000.75

1

1.25

1.5

1.750

50010000.751 1.25 1.5

1.75

250500750

W e i g h t e d E v e n t s /25 M e V /c

2

200-200

200-200

200

-200

-1000

100m K π GeV/c 2

-100

100m K π GeV/c

2

FIG.5:Moments of the K ?π+helicity angle θfor the MIPWA ?t.In each ?gure,events are plotted in bins of K ?π+invariant mass with weights equal to P L (cos θ)as indicated.Two combinations are plotted for each K ?π+π+candidate.Data are represented as points with error bars.Events are not weighted for their estimated e?ciency.The MC events,treated the same way,are used to show the expectation for these moments from the ?t,and are shown as solid histograms.

TABLE IV:Likelihood values for ?ts to the E791K ?π+system from D +→K ?π+π+decays.The ?ts are described in the text and are labelled the same way as in Table II.Model

ln(L )

Number of NDF

χ2/NDF

Probability

Variables

The signi?cance of any di?erences between amplitudes obtained in the two?ts is evaluated by comparing their abilities to describe distributions of kinematic quantities observed in the data.Plots similar to those in Figs.4and 5are made showing similar,excellent agreement between?t and https://www.360docs.net/doc/a81271188.html,ing the method described in the previous Section,the distribution observed on the Dalitz plot is compared,quantitatively,with that described by the isobar ?t results.A value forχ2/NDF=1.08is obtained,and can be compared withχ2/NDF=1.00for the MIPWA.These results are included in Table IV.Di?erences between the two?ts in predicted populations of bins in the Dalitz plot are all less than their statistical uncertainties.It is evident that both MIPWA and isobar?ts are good and that no statistically signi?cant distinction between these two descriptions of the data can be drawn with a sample of this size.

https://www.360docs.net/doc/a81271188.html,PARISON OF MIPW A WITH ELASTIC SCATTERING

It is interesting to compare the amplitudes C L(s)de?ned in Sec.III and measured in Sec.IV with those from

K?π+scattering,T L(s).The relationship between C L and T L is given by Eq.(6).If the K?π+

A systems produced

in D+→K?π+Aπ+B decays do not interact with the bachelorπ+B,then the factor P L(s)describes the production of K?π+as a function of s from these decays.Also,under the same assumptions,the Watson theorem[24]requires that,in the s range where K?π+scattering is purely elastic,P L(s)for each partial wave labelled by L and by iso-spin I,should carry no s-dependent phase.In other words,φL,the phase of C L(s)for each partial wave,should di?er,at most,by a constant relative to that of the corresponding elastic scattering amplitude T L(s).The magnitudes|C L(s)| and|T L(s)|could di?er,however,due to any s-dependence of the production rate of K?π+systems in D+decay.

The validity of the Watson theorem therefore relies on the assumption that no?nal state scattering between(K?π+

A )

andπ+

B occurs.This assumption,for decays such as those studied here in which the?nal state consists of strongly

interacting particles,has often been assumed to hold.However,it has never been objectively tested.The MIPWA results from the present data provide,therefore,an interesting opportunity to make such a test,and also to examine the form for the production factor P L(s).

A.K?π+Scattering

In the S-wave,below Kη′threshold at1.454GeV/c2,K?π+scattering in both the isospin I=1

2Kπ

amplitudes is predominantly elastic.Scattering into Kηat a lower threshold is strongly suppressed by the SU(3)

flavor coupling to this channel.This has been con?rmed by the LASS collaboration in energy independent measurements

of partial wave amplitudes for K?π+scattering through,and beyond this range[19].I=1

2scattering from K+→K+π+n data

Ref.[21].Scattering in higher angular momentum waves can become inelastic at the lower Kππthreshold.It was observed,however,that,in the LASS data,P-wave scattering remained elastic up to approximately1050MeV/c2. For the D-wave,no signi?cant elastic scattering was observed.

In the elastic region,the I=1

pa

+1

m RΓ(r R,s)

,

γ0=0(arbitrary o?set).

(19) The?rst is a non-resonant contribution de?ned by a scattering length a and an e?ective range b.The second

contributionγ

R has parameters m

R

andΓ

R

,the mass and width of the K?0(1430)resonance.In the LASS analysis,

the arbitrary phaseγ0was set to zero.The I=1

2

data from LASS.The S-wave phase measurements,and

the curves for the P -and D -waves resulting from the MIPWA,previously shown in Fig.3,are plotted,respectively,in Figs.6(a),(b)and (c).The LASS measurements are superimposed,as ×’s with error bars,in the appropriate places in the ?gure.

-100

100

200

φ0(s ) (d e g .)

050100150φ1(s ) (d e g .)

-50

050100150

K π Mass (GeV/c 2

)φ2(s ) (d e g .)

K π Mass (GeV/c 2

)

FIG.6:Plots show comparisons between results obtained from the MIPWA,described in Sec.IV,for phases of the (a)S -wave,(b)P -wave and (c)D -wave K ?π+scattering amplitudes with measurements made by the LASS collaboration [19].Solid circles in (a)are the phases γk obtained at each invariant mass s k from the MIPWA.The vertical dashed line at the Kη′threshold (1454MeV /c 2)indicates the upper limit of the range where K ?π+scattering is predominantly elastic in the S -wave.Solid curves in (b)and (c)enclose the zones within one standard deviation of the MIPWA P -and D -waves,computed as described in Sec.IV.Arrows indicate the position of the Kππthreshold,at which K ?π+scattering in the P -and D -waves can become inelastic.In (b)a further arrow at 1050MeV /c 2indicates the approximate invariant mass at which the P -wave data from Ref.[19]were observed to become inelastic.In (d)-(f)the results from the “elastic ?t”are shown in place of those from the MIPWA.In all plots I =1

C.

Fit with LASS Model for S -wave Phase

Some of the discrepancies noted above could arise from the modelling of the P -wave.A di?erent model could result in a di?erent dependence on s of the S -wave measured here.To judge the signi?cance of the observed discrep-ancies,therefore,a ?t is made to the

data

in

which the S -wave phase is constrained to precisely follow the LASS

parametrization in Eqs.(18-19)for invariant masses below Kη′threshold.The mass and width of the K ?

0(1430)and the parameters a and b are required to assume the values obtained by LASS.However,the overall phase γ0,all phases above Kη′threshold,all magnitudes throughout the entire range of s ,and the complex couplings for P -and D -waves are determined by the ?t.

This is labelled as the “elastic ?t”.A value γ0=(?74.4±1.8±1.0)?is obtained.The isobar couplings and

resonance fractions obtained are listed in Table II.The K ?

1(1680)resonance has a more signi?cant contribution to this ?t than in the MIPWA.

The phases obtained for the three partial waves from the elastic ?t are compared,in Figs.6(d)-(f),with those measured in the LASS experiment.The comparison is shown in the same way as in Figs.6(a)-(c)for the MIPWA ?t.The shape of the S -wave phase is,as required in this ?t,in perfect agreement with the LASS results.The large o?set in overall phase,γ0does,however persist.Additionally,both the P -and D -wave phases now show larger di?erences than before.The D -wave phase shifts by ~50?,and the P -wave phase shows signi?cant di?erences in the region between the K ?(892)peak and the e?ective limit of elastic scattering at ~1050MeV /c 2.

This ?t provides another excellent description of the data,with χ2/NDF =0.99and probability 55%,as recorded in Table IV.This is comparable with both the isobar and MIPWA ?ts.However,if these observations are predominantly of production of I =1

s

p L F L

D

×

sin[γ(s )?γ0]e i [γ(s )?γ0].

(20)

For L =0|P 0(s )|=

p s

F 0D |C 0(s )|

σ(P 0)

2

,(22)

where |P 0(s k )|are computed from Eq.(21),for the values of S -wave amplitude,C 0(s k )=c k e iγk ,determined by the

MIPWA ?t,and σ(P 0)are the associated uncertainties.The summation in Eq.(22)is made only for the N Kη′values of s k up to the K ?η′threshold.The value γ0=(?123.3±3.9)?is obtained,with P =0.74±0.01(GeV /c 2)?2.Fig.3(a)shows that this value for γ0is approximately equal to the measured S -wave phase at K ?π+threshold,consistent with the physical meaning of this parameter in the formulation in Eq.(20).

Inserting this value for γ0into Eq.(21),the quantities |P 0s k |are plotted in Fig.7.The solid,horizontal line indicates the value for P obtained from the ?t.The points are seen to lie close to this line,showing very little dependence on s in the invariant mass range from K ?π+threshold up to about 1.25GeV /c 2.From 1.25to 1.5GeV /c 2,strong variation is observed.In this region,as seen in Fig.3(a),the value of sin(γ?γ0),which appears in the denominator of Eq.(21),is approximately zero.

m K -π+ (GeV/c 2

)

(p /√s ) x (|C 0| F D 0/s i n (γ-γ0) (G e V /c 2)-2

FIG.7:The quantities p/

The second largest uncertainty arises from the smearing of events near the high mass boundary of the Dalitz plot which results from the resolution in three-body mass M.This directly a?ects part of the K?1(1680)band.Events in the region of M closest to the D+mass are?tted separately,and the results compared with that from the larger sample. Average systematic uncertainties arising from the e?ects of smearing are determined to be7%of the statistical uncertainties for magnitudes and14%of the statistical uncertainties for phases.Other e?ects are studied.These include the uncertainty in precise knowledge of the background level,variations in the values assumed for the radii

r R

and r

D

,or for the mass and width for the K?1(1680)resonance.All these other e?ects are found to be small.

A further source of systematic uncertainty arises from variations in the presumed resonant composition of the

K?π+P-and D-waves.The K?(892)resonance obviously contributes,and it is clear that a contribution from a higher resonance,must also exist.What is less clear is the identity of this resonance-K?2(1430),K?1(1680)or for K?1(1410).Fits are made with various combinations of these resonances.It is found that systematic shifts are negligibly small in most cases.Fits where only K?(892)and K?2(1430)are included do lead to shifts comparable to the statistical uncertainties in the lowest?ve magnitudes.At higher invariant masses,the e?ects become smaller. The phases are almost unchanged,however.

These uncertainties are combined in quadrature and listed for each invariant mass in Table III,and for the reference wave parameters in the MIPWA?t in Table II.

VIII.SUMMARY AND CONCLUSIONS

A Model-Independent Partial Wave Analysis(MIPWA)of the S-wave K?π+system is made using the three body decay D+→K?π+π+.This is the?rst time such a technique has been used in studying heavy quark meson decays, and new information on the K?π+system is obtained,including the invariant mass range below825MeV/c2.The isospin I of the S-wave measured is unknown,and the P-and D-waves are assumed to be I=1

2components is available.The method does

not assume any form for the energy dependence of the S-wave.However,it does so for the P-and D-reference waves. The P-wave is described as the sum of a Breit-Wigner propagator term for the K?(892)resonance,and a similar term,with a complex coe?cient,for the K?1(1680).The K?1(1410)is found to have an insigni?cant contribution to the decays,and is omitted from this wave.The D-wave is described by a single Breit-Wigner term for the K?2(1430) resonance,with a further complex coe?cient.The results obtained in Fig.3and Table III depend on the accuracy of this description of the reference waves.

Results of the MIPWA are compared with a description of the S-wave amplitude that includes Breit-Wigner κ,K?0(1430)isobars and a constant,non-resonant(NR)term similar to the description used in Ref.[6].At the statistical level of this experiment,di?erences between the MIPWA and the isobar-model result are not found to be signi?cant,and both provide good descriptions of the data.A closer examination of the phase behavior in the low mass region below825MeV/c2,the limit of measurements of K?π+elastic scattering from the LASS experiment [19],is of considerable importance to the further understanding of scalar spectroscopy.The data here provide new information in this region,but the error bars are large compared to those typical for the LASS data.We note that,since these data became available,a?t that includes requirements of chiral perturbation theory has been made together with the LASS I=1/2measurements and data from J/ψ→K?(892)K?π+.This?t?nds aκpole at

(740+30

?55)?i(342±60)MeV/c2[34].A full understanding of scalar K*spectroscopy may,nevertheless,need to wait

until larger data samples become available.A better consensus on the proper theoretical description of such states and the need for,and the form of,any accompanying background amplitudes may also be required.

The phases observed in the S-and P-waves do not appear to match those seen in the I=1

2)Kπelastic scattering,in the range where s lies below Kη′threshold,does lead to a good?t

to the data.However,an overall shift in phase of(?74.4±1.8±1.0)?relative to the P-wave is still required.This constraint also results in a shift of approximately?50?in the D-wave phase.It also makes agreement in P-wave phase worse.These results do not conform,exactly,to the expectations of the Watson theorem which would require phases in each wave to match,apart from an overall shift,those for K?π+scattering for invariant masses below Kη′threshold.The theorem is expected to apply in kinematic regions where secondary scattering of the Kπsystem from the bachelor pion can be neglected.It is possible that,in this case,such scattering cannot be neglected,or that the K?π+systems in D+decay are not predominantly(I=1

The reason for this behavior is unknown.The growth observed at1.25GeV/c2could result from a signi?cant I=3

2components in the system.

The?rst two limitations should be mitigated when much larger data samples are available.A better formulation for the P-wave could be to use a K-matrix,requiring more parameters.Alternatively,the P-wave,too,could be parametrized like the S-wave,in a model-independent way.The third limitation can be improved when larger samples of K+π+or K?π?systems can be studied to better understand these waves.

Systematic studies of various heavy quark meson decays in future experiments(BaBar,Belle,CLEO-c,and hadron colliders),with much larger samples,may be able to use a similar MIPWA technique,with some of these improvements, to shed further light on important questions in light quark spectroscopy,the realm of applicability of the Watson theorem,etc.For studies that require an empirically good description of the complex amplitude in three body decays, for example in the extraction of theγCP violation parameter recently reported by BaBar and Belle[8,9,10],this technique may also be particularly useful.

In the mean time,theoretical models of the S-wave amplitude can be compared to the data of Table III.

Acknowledgments

We wish to thank members of the LASS collaboration for making their data available to us.We gratefully acknowl-edge the assistance of the sta?s of Fermilab and of all the participating institutions.This research was supported by the Brazilian Conselho Nacional de Desenvolvimento Cient′??co e Tecnol′o gico,CONACyT(Mexico),FAPEMIG (Brazil),the Israeli Academy of Sciences and Humanities,the U.S.Department of Energy,the U.S.-Israel Binational Science Foundation,and the U.S.National Science Foundation.Fermilab is operated by the Universities Research Association for the U.S.Department of Energy.

APPENDIX A:LIMITATIONS AND TECHNICALITIES OF THE METHOD

1.Quality of S-wave Measurements

The MIPWA analysis of the S-wave component in the observed D+→K?π+Aπ+B decays relies upon a good description of the reference P-and D-waves.

The P-wave de?ned in Eq.(7)is a combination of two Breit-Wigner’s(the K?1(1410)is neglected),with a complex coupling coe?cient(two parameters).The peak regions,0.502.2(GeV/c2)2,are well described by this parametrization,since data in these regions are likely to be dominated by these resonances.In the tail regions,the Breit-Wigner may be a less appropriate description of the data,since other P-wave contributions, from non-resonant(or I=3

-20002000510-20002000510-2000200φ0(s ) (d e g .)

0510|C 0(s )| (G e V /c 2)

-2

-20002000510-20002000510-200

0200K π Mass (GeV/c 2

)0

510K π Mass (GeV/c 2

)

FIG.8:Comparison between ?tted S -wave amplitudes (solid circles with error bars representing statistical uncertainties)and generated amplitudes,represented as shaded regions between dashed curves computed as described in Sec.V.Generated curves follow the isobar ?t model described in Sec.V.The ?gure shows results from the ?rst six (of 100)samples used in the test.

As an illustration,consider measurement of S A in the range 1.1

for the K ?

1(1680)peak region s >2.9(GeV /c 2)2.

Relatively poor measurements are expected for the other regions since,in these,T A is not dominated by any one source,and is de?ned by a linear combination of several Breit-Wigner tails.So T A in these regions has phase and

magnitude that are sensitive to the complex couplings of K ?1(1680)and K ?

2(1430)resonances.

These observations are supported by the results of the MIPWA ?t shown in Fig.3(a)and (b).It is seen that uncertainties are small for 1.1

2.

MC Studies with Isobar Fit

The K ?1(1680)and K ?

2(1430)resonances represent small contributions to the Dalitz plot,and statistical uncertainties in their complex couplings are large enough to a?ect the P -wave phase,especially in the region between K ?(892)and K ?

1

(1680),as discussed in Sec.A 1.This can lead to systematic uncertainties in the S -wave amplitudes measured.MC studies are required to estimate such e?ects.

MC samples of the approximate size of the data presented in this paper are generated as described by the PDF given in Eq.(14).Parameters from Table II for the isobar ?t described in Sec.V are used for this purpose.Background events whose distributions are given in Eq.(13)are also generated to match those thought to be present in the data.Events are selected according to the e?ciency ?(s A ,s B )across the Dalitz plot.

Each sample is subjected to the MIPWA ?t described in Sec.IV.In Fig.8,S -wave amplitudes determined in the MIPWA for the ?rst six of the 100samples studied are compared with those used to generate the events.The

amplitudes generated come from the isobar?t,and are shown,as usual,as

shaded regions between dashed curves. Phases are shown on the right and magnitudes on the left.Plots similar to Fig.3appear often.

The S-wave amplitudes(c k e iγk)obtained are compared with those generated and,for each k the normalized residuals are used to determine systematic uncertainties discussed in Sec.VII.

3.Other Solutions

-200

-100

100

200

φ

(

s

)

(

d

e

g

.

)

5

10

|

C

(

s

)

|

(

G

e

V

/

c

2

)

-

2

100

200

300

φ

1

(

s

)

(

d

e

g

.

)

5

10

15

20

|

C

1

(

s

)

|

(

G

e

V

/

c

2

)

-

2

-100

100

200

300

Kπ Mass (GeV/c2)

φ

2

(

s

)

(

d

e

g

.

)

5

10

Kπ Mass (GeV/c2)

|

C

2

(

s

)

|

(

G

e

V

/

c

2

)

-

2

FIG.9:A second solution for the S-wave amplitude from MIPWA?ts to D+→K?π+π+decays with P-and D-wave parametrized by theκmodel described in the text.Plots show the(a)phase and(b)magnitude for solution B for the S-wave obtained by using di?erent starting values for the amplitudes.The dashed curves delineate the regions that lie within one standard deviation of the isobar model?t described in Sec.V.The P-wave is shown in(c)and(d)and the D-wave in(e)and (f).

The?tting procedure allows a great deal of freedom to the S-wave amplitude.Consequently,ambiguities in solutions are anticipated.To study possible ambiguities in the MIPWA solution,?ts with random starting values for the c i,γi parameters,and also with di?erent K?π+mass slices are made.One other local maximum in the likelihood is found, and this is labelled solution B.The solution described in Sec.IV,and shown in Figs.3(a)through(f),is labelled,for contrast,solution A.Solution A is the only one with an acceptableχ2/NDF and has the greatest likelihood value.So it is emphasized that solutions A is,in fact,unique.

Solution B is shown in Fig.9.It provides a qualitatively reasonable description of the distribution of the data on the Dalitz plot.However,this solution clearly exhibits retrograde motion around the unitarity circle as K?π+invariant mass increases.This violates the Wigner causality principle[36],thus eliminating it from further consideration. The possible existence of other maxima in the likelihood,when all S-wave magnitudes and phases are free param-eters,cannot be completely ruled out.However,the solution in Sec.IV is unique in that it is the only one giving an

3D模型管理系统技术设计书V

3D模型管理系统技术设计书 2014年9月21日

目录 1.项目背景 (1) 2.建设目标 (1) 3.建设内容 (1) 3.1.模型库建设 (1) 3.2.三维模型管理系统建设 (2) 4.总体设计 (2) 5.数据库设计 (4) 5.1.数据库逻辑结构 (4) 5.2.FTP服务 (8) 6.功能设计 (9) 6.1.模型上传 (9) 6.2.模型文件下载 (9) 6.3.查询 (10) 6.4.统计 (10) 6.5.模型文件浏览 (10) 6.6.删除 (11)

1.项目背景 三维GIS形象真实的描述了城市三维地理空间内容,三维城市模型是三维GIS中非常重要的内容。三维模型不仅给人一种直观的感受,而且广泛应用于城市规划的方方面面。与二维GIS数据相比,三维模型的生产过程、数据内容和数据规模有很大不同,生产过程复杂很多,数据内容更加丰富,数据量成倍增加。 在城市规划中三维模型以文件形式存放,包含Max格式导出的X格式文件、skyline入库打包文件、Jpg格式效果图(含总平图)、CAD格式的总平图。随着现代城市的高速发展,城市建筑更新不断加快,规划管理中的三维模型成倍增加,若仍旧采用文件方式进行管理,将面临如下困难:数据的安全性和共享性得不到保障,历史数据难以有效管理,缺乏对数据的高效查询与检索,缺乏对数据的更新维护机制。建立城市三维模型管理系统,建立三维模型文件的目录索引,对三维模型进行有效的组织和管理,对城乡规划信息化和城乡规划管理具有实际意义。 2.建设目标 基于FTP服务建立三维模型文件库,同时建立与之匹配的关系库,存储模型文件的索引、类别信息,在此基础上建立支持三维模型上传、下载、查询、浏览、统计、历史数据管理的城市三维模型管理系统。 3.建设内容 3.1.模型库建设 (1)基于FTP服务建立三维模型文件库,按照模型的类型和名称对模型中包含的各个部分进行组织存储。每一个模型以唯一的文件标识作为文件夹名称进

Creator三维模型数据库优化技术(最新)

2010年4月第6卷第2期 系统仿真技术 Syste m S i m u l ation Tec hno l ogy A pr.,2010 V o.l6,N o.2 中图分类号:TP39 文献标识码:A Creator三维模型数据库优化技术 张 建 (91404部队93分队,河北秦皇岛 066001) 摘 要:从提高视景仿真系统的运行效率角度出发,首先简要介绍了著名的三维建模软件M ulti G en Creator,然后针对用于视景仿真系统的三维模型数据库的特点,详细阐述了Creator模型数据库的优化技术。通过对模型数据库进行减少多边形数量、优化层次结构、使用布告板等方法,能显著提高视景仿真系统的运行效率。 关键词:可视化仿真;三维模型;数据库;优化 Optim i zati on Technique of Cr eat or Thr ee dimensi onalModel Database Z HANG J ian (Th e93Un it of91404PLA,Q i nhuangdao066001,Ch i na) Abstract:Taking i m prove the r un efficiency o f v isua l si m ulation syste m as purpo se,the author i n troduce t h e M ulti G en C reato r,then,base on the characteristics o f t h ree di m ensi o nal m ode l da taba se,ill u m i n a te t h e opti m ization techn i q ue o f C reato r three d i m ensiona l m o de l database.The run effic i e ncy o f v isua l si m u l a ti o n sy ste m can be i m prov e through reduce the nu m bers o f po lygon,opti m ize arrange m ent structure and B ill b oard,etc. Key words:scene si m u lation;t h ree di m ensi o nalm ode;l database;opti m izati o n 1 引 言 视景仿真技术(V isual S i m u lation Technology)是计算机技术、图形处理与图像生成技术、立体影像和音响技术、信息合成技术、显示技术等高新技术的综合运用。它分为仿真环境制作和仿真运行驱动2个环节,仿真环境制作主要包括:模型设计、场景构造、纹理设计制作、特效设计等,它要求构造出逼真的三维模型和制作逼真的纹理与特效。仿真驱动主要包括:场景驱动、模型调动处理、分布交互等,它要求高速逼真的再现仿真环境,实时响应交互操作等。 随着三维场景数据量的日益增大以及专为图形渲染设计的图形处理器(graph ic processing un i,t GPU)的普及,在不明显降低图形质量和复杂程度的前提下,解决大数据量仿真场景在速度、质量及场景复杂度之间越来越突出的矛盾,成为一个值得研究的问题。对于可视化仿真系统而言,重要的是仿真系统运行时的速度和流畅性,要在保证系统运行速度的前提下适当提高模型逼真度,在模型逼真度和运行速度之间找到1个平衡点。 2 M ulti G en Creator简介 著名的三维图形建模软件,如M aya,3DMAX, 3Dstud i o等,都以视觉效果为第一建模目标,能生成逼真的三维模型。但是这些软件不考虑模型的

三维模型轻量化技术

三维模型轻量化技术 1 模型轻量化的必要性 设计模型是一种精确的边界描述(B-rep)模型,含有大量的几何信息,在现有的计算机软硬件条件下,使用设计模型直接建立大型复杂系统装配、维修仿真模型是不可能的,因此需要使用轻量化的模型建立仿真模型,以达到对仿真模型的快速交互、渲染。 2 细节层次轻量化技术 90年代中期以来,模型轻量化技术得到了快速的发展,出现了抽壳(hollow shell)技术和细节层次(Level of Details, LOD)技术。抽壳技术只关心产品模型的几何表示而不考虑产品建模的过程信息,LOD技术将产品几何模型设定不同的显示精度和显示细节,根据观察者眼点与产品几何模型之间的距离来使用不同的显示精度,以此达到快速交互模型的目的。 LOD技术是当前可视化仿真领域中处理图形显示实时性方面十分流行的技术之一。LOD模型就是在不影响画面视觉效果的条件下,对同一物体建立几个不同逼近精度的几何模型。根据物体与视点的距离来选择显示不同细节层次的模型,从而加快系统图形处理和渲染的速度。保证在视点靠近物体时对物体进行精细绘制,在远离物体时对物体进行粗略绘制,在总量上控制多边形的数量,不会出现由于显示的物体增多而使处理多边形的数量过度增加的情况,把多边形个数控制在系统的处理能力之内,这样就可以保证在不降低用户观察效果的情况下,大大减少渲染负载。 通常LOD算法包括生成、选择以及切换三个主要部分。 目前轻量化的技术有多种,具有代表性的有JT和3DXML两种。3DXML是Dassault、微软等提出的轻量化技术,JT是JT开放组织提出的轻量化技术。SIEMENS公司的可视化产品都采用JT技术,如我们使用的VisMockup软件。 JT技术用小平面表示几何模型,采用层次细节技术,具有较高的压缩比,模型显示速度很快。 jt、ajt模型及其结构 jt模型文件是三维实体模型经过三角化处理之后得到的数据文件,它将实体表面离散化为大量的三角形面片,依靠这些三角形面片来逼近理想的三维实体模型。 模型精度不同,三角形网格的划分也各不相同。精度越高,三角形网格的划分越细密,三角形面片形成的三维实体就越趋近于理想实体的形状。模型曲面精度由Chordal、Angular 两个参数控制。图1(a),Chordal表示多边形的弦高的最大值,图1(b),Angular表示多边形相邻弦的夹角的最大值。?????????????????????????????? 图1 Chordal和Angular示意图 jt模型有三种结构形式,都保持了原来的产品结构。分别是: (1)Standard(标准结构形式)。包含一个装配文件和多个零件文件,其中零件文件都放在一个和装配文件同名的目录下。我们建立的虚拟样机模型都采用这种结构形式。 (2)Shattered(分散结构形式)。包含多个子装配文件和多个零件文件,其中子装配文件和零件文件都放在一个目录下。这种结构的优点是有子装配文件,并可以直接使用子装配,缺点是文件管理比较乱、不清晰。

人体三维模型解读

三维人体建模 摘要:对当今广为应用的线框模型、体模型和曲面模型等传统的三维人体建模方法进行了研究和分析,本文通过对三维人体建模的介绍,它的发展现况以及它对服装行业的影响,来阐述三维人体建模。 关键词:人体建模,发展,影响

目录 一:人体(三维)建模定义和内涵 1.1.三维模型(定义) 1.2.三维模型的构成 1.3.构建三维模型的方法 1.4.人体三维建模(定义) 二:人体建模发展现状 2.1.“3D人体扫描仪介绍” 2.2.主要人体三维扫描仪3D CaMega DCS系列(人体数字化系统)三:对服装产业的影响意义 3.1.三维服装仿真中的参数化人体建模技术 3.2.3D试衣系统中个性化人体建模方法 3.3.服装CAD中三维人体建模方法综述 四.文献来源

一:人体(三维)建模定义和内涵 1.1.三维模型(定义) 是物体的多边形表示,通常用计算机或者其它视频设备进行显示。显示的物体是可以是现实世界的实体,也可以是虚构的物体。任何物理自然界存在的东西都可以用三维模型表示。 1.2.三维模型的构成

(1)网格网格是由物体的众多点云组成的,通过点云形成三维模型网格。点云包括 三维坐标、激光反射强度和颜色信息,最终绘制成网格。这些网格通常由三角形、四边形或者其它的简单凸多边形组成,这样可以简化渲染过程。但是,网格也可以包括带有空洞的普通多边形组成的物体。 (2)纹理纹理既包括通常意义上物体表面的纹理即使物体表面呈现凹凸不平的沟纹, 同时也包括在物体的光滑表面上的彩色图案,也称纹理贴图,当把纹理按照特定的方式映射到物体表面上的时候能使物体看上去更真实。纹理映射网格赋予图象数据的技术;通过对物体的拍摄所得到的图像加工后,再各个网格上的纹理映射,最终形成三维模型。 1.3.构建三维模型的方法 目前物体的建模方法,大体上有三种:第一种方式利用三维软件建模;第二种方式通过仪器设备测量建模;第三种方式利用图像或者视频来建模。 三维软件建模目前,在市场上可以看到许多优秀建模软件,比较知名的有 3DMAX,SoftImage, Maya,UG以及AutoCAD等等。它们的共同特点是利用一些基本的几何元素,如立方体、球体等,通过一系列几何操作,如平移、旋转、拉伸以及布尔运算等来构建复杂的几何场景。利用建模构建三维模型主要包括几何建模(Geometric Modeling)、行为建模(KinematicModeling)、物理建模(Physical Modeling)、对象特性建模(Object Behavior)以及模型切分(Model Segmentation)等。其中,几何建模的创建与描述,是虚拟场景造型的重点。 仪器设备建模三维扫描仪(3 Dimensional Scanner)又称为三维数字化仪(3 Dimensional Digitizer)。它是当前使用的对实际物体三维建模的重要工具之一。它能快速方便的将真实世界的立体彩色信息转换为计算机能直接处理的数字信号,为实物数字化提供了有效的手段。它与传统的平面扫描仪、摄像机、图形采集卡相比有很大不同:首先,其扫描对象不是平面图案,而是立体的实物。其次,通过扫描,可以获得物体表面每个采样点的三维空间坐标,彩色扫描还可以获得每个采样点的色彩。某些扫描设备甚至可以获得物体内部的结构数据。而摄像机只能拍摄物体的某一个侧面,且会丢失大量的深度信息。最后,它输出的不是二维图像,而是包含物体表面每个采样点的三维空间坐标和色彩的数字模型文件。这可以直接用于CAD或三维动画。彩色扫描仪还可以输出物体表面色彩纹理贴图。早期用于三维测量的是坐标测量机(CMM)。它将一个探针装在三自由度(或更多自由度)的伺服装置上,驱动探针沿三个方向移动。当探针接触物体表面时,测量其在三个方向的移动,就可知道物体表面这一点的三维坐标。控制探针在物体表面移动和触碰,可以完成整个表面的三维测量。其优点是测量精度高;其缺点是价格昂贵,物体形状复杂时的控制复杂,速度慢,无色彩信息。人们借助雷达原理,发展了用激光或超声波等媒介代替探针进行深度测量。测距器向被测物体表面发出信号,依据信号的反射时间或相位变化,可以推算物体表面的空间位置,称为“飞点法”或“图像雷达”。

国外60个免费的3D模型网站

1.3D Total 3D Total provides free stuff on 3D model in categories of human characters, household, body parts, vehicles, weapons, alien characters, architecture, medieval, cartoon, star wars, scenes, animals, sci-fi, low-polu and mechaniods. Model formats: Max, 3ds, dxf, lwo, mb 2.TurboSquid TurboSquid is the largest library of 3D products in the world. They offers over 300 free 3D models for download. Model formats: Max, 3ds, oth, obj, lwo, mb

3.Great Buildings The models range in detail from very simple formal massing models of just a few blocks, through basic interior/exterior spatial walkthrough models, up to detailed interior/exterior models complete with furnishings and landscaping. Model formats: 3dmf https://www.360docs.net/doc/a81271188.html, Free 15000+ 3D models for download without registration required. Model formats: gms, 3ds

怎么proE建立3D模型库

怎么proE建立3D模型库 一、零件命名规则: 文件名为:“类型代号”+ "_" + "标准代号" 其中:类型代号为:“标准代号第一个大写拼音字母”加“零件名称的大写拼音字母组合” 例如:GB/T5780-2000六角头螺栓表示为GLS_GBT5780_2000 TB/T333-1993管接头IDg3 表示为TJT_ TBT333_1993 GB/T119.1-2000圆柱销表示为GX_GBT119_1_2000 二、建库步骤 1、建立标准件库文件目录:见(标准件库目录代码表) 2、新建三维零件名: 新建零件名:零件名称按命名规则执行。如:GLS_GBT5780_2000 采用工厂(企业)模板:qjc/qjc_part_solid.prt 3、创建三维零件普通模型 利用Pro/E软件创建三维实体模型,注意如下要求: (1)建立坐标系:规定一般标准件的坐标原点应该在轴线和与轴线 垂直的安装基准面的交点上。 (2)普通模型的尺寸采用一组标准数据。 (3)标准件应完全实现参数化驱动,每个参变量的名称代号要求和国标中标注的代号一致。修改系统默认的参变量符号,如:尺寸符号d5用L替代 (4)当参变量的个数不能满足尺寸驱动的需要时,应增加尺寸约束,某些情况(如六角尺寸、斜度、锥度等的表示)尽量采用创建参数和关系来驱动(如:d5=d6/sin(60))。 (5)删除工厂模板中建立的重量计算关系: 重量=mp_mass("") 三、设置参数 代号= 标准代号(如:GB/T5780-2000)(直接输入值) 名称= 标准名称+规格(如:螺母M20×1.5)(在一级族表中输入值) 材料= 标准目录中的材料(在二级族表中输入值) 重量= 标准目录中的数值(在二级族表中输入值) (注意:当重量值小于0.001时,应增加判断关系式,使重量等于0.001。) 机车型号= (暂不输入值) 四、创建族表零件 在完成零件结构设计和变量的定义后,创建族表零件。将每种形状相同,尺寸不同的零件定义为一个零件组,每个零件组有一个模板文件,并带有一个数据文件称为零件族表,表中的每个记录是零件组中一个零件成员的数据,通过选择不同的记录,可得到所有零件成员的实体模型。 表中记录项目:零件尺寸列项和参数列项。 具体要求如下:(要求先熟悉GB标准内容) 1/族表零件中实例名的命名规则: 实例名=“规格”+“_”+“标准代号(去掉年份)” 如:M8×45_GB5780 2/建立一级族表零件: 族表列项包括尺寸列项和“名称”参数等列项

PCB元件库3D模型的导入说明

PCB元件库3D模型的导入 一、目的 通过新软件Altium designer 6(AD6)的 3D 功能能够快速提前的为机构部门提供结构设计上的参考,提高合作的效率与准确性。 二、电子与机构需协作流程为: 电子部门建立好项目需要的原理图库、PCB库; 机构部门使用结构软件建立关键器件的3D模型,另存为Step或IGS文件转交给电子部门,电子部门再把文件导入到建立的PCB 3D库(*. PCB3DLib)中; 电子部门绘制好原理图,并在原理图库或原理图中,正确添加器件属性里的PCB模型名称和3D模型名称; 绘制好最终的PCB图后,查看PCB的3D效果(View \ Legacy 3D View); 导出整板PCB的3D图为Step或IGES文件转交给机构部门; 机构部门把整板PCB的3D图导入到结构设计软件中,作为结构设计的参考数据。 三、电子提供资料: PCB元件库清单 四、机构注意事项: 在结构软件中建立器件3D模型时,要事先定义好器件的原点和3D坐标,3D模型的原点要和PCB封装库的原点保持一致,3D中的XY坐标则要和PCB封装库中的XY方向保持一致然后导出为Step格式,软后导入到自建的3D库中。这样在3D状态下才能看到元件准确的定位在PCB立体视图中,否则3D元件会偏离PCB 3D中的丝网位置。如果角度不对也会出现错位,甚至部分在PCB上面,部分在PCB下面。(在结构软件中,当元件为单个实体时,原点即为实际定义原点,当元件为装配实体时,先定义好总的参考原点,再装配好各部件,最后另存为Step或IGS文件转交给电路部门,电路部门再把文件导入到自己建立的PCB 3D库(*. PCB3DLib) 电子与机构需协作流程为: 1.电子部门建立好项目需要的原理图库、PCB库.

盘点2015年十大好用的3D模型网站

盘点2015年十大好用的3D模型网站 随着3D技术的发展,建模技术的飞速进步,3d技术的跨界以及创新永无穷尽。近几年3d模型在网上铺天盖地,3d模型正在以我们所不能想象的速度在快速更替。常见的国内外3d模型库海量,对于设计师来说,如此多的模型网站,但是真正想找模型的时候,却不能第一时间找到,花一分钟细细想一想, 这是为什么呢?究竟哪家网站的3d模型强呢? 笔者在此盘点一下2015年十大好用的3D模型网站,以下十个网站并不是以流量指数来衡量的,而是以网站的与众不同的风格和用户好评程度来盘点的,希望为广大设计师们提供更多寻找模型的便利。 1.3d侠模型下载网,大概是08年的时候,网上的模型资源可谓凤毛麟角,能够画效果图的设计师很吃香,这个模型基地因为能够为设计师提供3d模型下载、素材贴图以及vray材质下载等资源而备受肯定,也算是口碑非常好的网站,同一时期推出的还有3dfrom/3dmo等等模型网站,现在看来,网站界面风格稍微显low啊,怀疑→_→是用一套模板做的,黑色的背景,上面赋予亮色醒目的文字;但是由于年代久远,好像2010年之后,这个网站就不再更新了,知名度降低了不少,一不小心就被那些“小鲜肉”风格的模型网站给吞噬掉了 2.3D溜溜网是一个被称为中国最好的3D素材基地,设计师找不到模型时可能第一时间想到的就是3d溜溜啦,话说3d溜溜的模型是以小时更新的,3D溜溜网致力于建立一个开放、便捷、强大的3D素材基地!找模型上溜溜,全站hold住你,其他的一些模型网站也弱爆了,在这里常用的3D模型,Vray材质,光域网,3DMAX脚本文件等,都是很全哒。 尤其是独家研发的3D溜溜资源管理系统,国内第一个专业的3D资源库管理软件,帮助3D制作人员提高至少3倍以上的作图效率,不用注册就可以直接免费下载模型,这种模型管理系统以简单粗暴的姿态征服了灰常多的设计师,因为只要把溜溜里下载的3DL格式文件拖入溜溜管理器里,设计师就有了自己的模型库,非常方便调用模型,自己做的模型也能保存在溜溜管理器中,直接拖动模型到3dmax里面就可以使用,可谓是一秒钟变高大上的神器,效果图设计师的效率也大大提高了啊! 对于一般的多数设计师来说,3d溜溜的用户口碑还是非常好的, 3d溜溜原创单体收费模型也从最初的第1季到如今第17季的发布,已经追剧很久了有米有? 掐指一算,要是在官网上面购买的话,官方定价198吧,现在只需要30块大洋就可以买24个模型,买还是不买吗?作为一名屌丝设计师,我表示很无力...... 设计师你就是苦逼的画图崽崽啊! 有些熟悉的小伙伴们可能在整体模型里面经常看到,对伐?提取出来的模型经过加工再次发布成为原创单体模型,或者来自国外,好吧,我也是醉了,一致持续更新中的单体模型能否换个花样呢?

网页显示三维模型

Web技术下的三维模型库及网络展台的设计与研究P40 在产品的三维展示领域,所使用的虚拟现实技术分为以下几种[59】: (1)VRML技术 vRML技术是最早应用的网络虚拟现实技术,即虚拟现实构造语言(VirtualReality MedelingLanguage),它是一种面向对象的网上三维语言,用来描述交互式3D对象的文 件格式,利用它可以在Internet上创建交互式三维虚拟世界和动态的三维虚拟物体,其 基本特征包括交互式、分布式、平台无关性、三维、多媒体集成、逼真性等。VRML对 三维世界具有真实表现的强大能力,所以在电子商务、工程和科学可视化、娱乐和教育 等领域都有着广泛的应用160一]。 (2)Flash技术 Flash技术是网络平面交互动画的三维扩展。在ActionscriPt的强大支持下,Flash 这款在网络中二维交互方面表现优异的软件在VR上也得到了良好的发展。Flash的VR 技术是通过ActionscriPt控制3600图片的播放,达到使物体前后旋转的效果,还可以加 上放大缩小和鼠标交互的功能,由此可以实现全空间的360“视角,实现三维空间的模拟。Flash提供了几个方面的虚拟现实支持:模拟物体的三维展示,模拟场景的三维展示。 (3)Cult3D技术 Cult3D是一种崭新的3D网络技术,并不在新的语言上有所创新,而是利用现有的 技术。利用Cult3D技术可以制作出3D立体的产品,利用Cult3D可以以视觉的方式呈 现出不同的时间和功能的互动性,交互能力强,采用流的形式,文件较小,效果较好。 可以旋转,放大,缩小,体现真实的物体属性。 (4)VieWPoint技术 ViewPoint技术是真正的3D模型建立的,它具有完全的互动功能,可以真实地还原 现实中的物体功能。可以创建照片级/的真实的3D影像,并且可以和其它高端媒体(rich 山东科技大学硕士学位论文绪论 media)综合使用。在3D贴图上,它使用JPEG的压缩格式,保证文件的贴图不会使3D 文件加大。它传送给用户的方式像Flash、Quiektime、Realmedia等流行媒体一样,使用 了流式播放方式,这就是用户不用下载完所有的文件即可看到。 vRML(vi血alRealityModelingLanguage)是一种三维造型和渲染的图形描述语言,已成为国际标准[38]。它通过创建一个虚拟的场景以达到现实中的效果。它定义了三位应用系统中常用的语言描述,如层次变换、光源、视点、稽核、动画、雾、材料特性和纹理映射等,并具有简单的行为特征描述功能。 设计VRML的一个主要目标就是保证它成为多个虚拟现实(VR)系统或其组成部分中有效的三维文件交换格式,并且这些VR系统或其组成部分可分布在网络中的不同计算机上。VRML类似于HTML,它趋向于发展成为一种单一的多平台用于发布三维WWW网页的语言,解决了基于页、文字或图像格式的语言(HTML)所不能表达的一些问题,诸如需要大量交互、动画及用户参与的游戏、工程、科学计算可视化、教学实验和建筑等方面的课题[39]。 VRML提供了将二维、三维文字和多媒体集成为一个混合模型的技术。当这些媒体 类型与脚本语言以及WWW网的功能结合起来的时候,就可以开发出全新的交互应用。 这种实时交互功能大大改变了原来因特网上单调、交互性差的弱点,它在网上创建逼真 的三维虚拟场景,把“虚拟世界”看作一个“场景”,而场景中的一切都被看作是“对象”,这样对每一个“对象”的描述就构成了.wrl文件。

3D建模练习题

图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。 图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。 图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。

图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。 图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。 图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。

图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。图16提示:①旋转生成齿轮主体→切除拉伸键槽→画一个齿的曲线→扫描生成一个齿→阵列其它齿。 ②从库中提取→保存零件。 图17 图18 图17提示:旋转主体→切除拉伸孔。 图18提示:旋转主体→切除拉伸孔。

100多个3D模型下载站

100多个3D模型下载站 https://www.360docs.net/doc/a81271188.html,/2001/ https://www.360docs.net/doc/a81271188.html,/asp/default.asp http://www.3dcar.kg/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/~modeloutlet/index.html https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ http://www.brilliantdigit......pers/model_categories.asp https://www.360docs.net/doc/a81271188.html,/helmut/ https://www.360docs.net/doc/a81271188.html,/homet.htm http://gasa.dcea.fct.unl.pt/carita/models.html http://membres.lycos.fr/albertp6m/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ http://www.maxnet.ru/aks/ https://www.360docs.net/doc/a81271188.html,/free/free.html https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ http://www.astralgfx.de/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/portfolio/ http://jlejolly.free.fr/cephalene/cadre1_eng.htm https://www.360docs.net/doc/a81271188.html,/opening.html http://www.datastation.jp/ https://www.360docs.net/doc/a81271188.html,/us/pages/frameset.htm https://www.360docs.net/doc/a81271188.html,/ https://www.360docs.net/doc/a81271188.html,/HTM/HomeSet1.htm https://www.360docs.net/doc/a81271188.html,/ http://www.graphicdesignp......n/DigitalMagic/index.html https://www.360docs.net/doc/a81271188.html,/

(完整版)三维建模标准

三维建模规范 1.1. 建筑物三维建模标准 1.1.1.模型 1、建筑物模型平面精度在30cm以内,高程精度在17cm以内。 2、统一采用MAX,CREATOR建模,在MAX软件中单位设置为Meter,在CREATOR 中单位 为Inch。 3、模型不存在共面和相距太近的面。当两个目标共面时,将小面模型的共面面片删除。两个平行面之间的垂直距离应大于1m,如果小于1m则删除模型内部冗余的面。 4、删除冗余的点、线、面,以及重合线、重叠面,并焊接相近或重合的点,保证模型无裂缝。 5、凸出建筑物墙面1米以内的目标不必实际建模,贴图即可,但欧式建筑、风貌保护区、文物保护建筑,以及临街的重要建筑物需要精细建模,凸出建筑物墙面0.6m的目标实际建模。建筑物临街部分基本按实际建模,尤其台阶全部表示,非临街部分简略表示,采用贴图表现即可。但标志性建物、重要公建(政府、学校、医院等)、高层建筑物(大于15层)无论临街与非临街部分均精细建模。 6、不要制作近于白色的纹理进行贴图,否则看上去似乎该面未贴图。 7、在MAX中分离每个房屋并进行附加操作,保证在CREATOR中每个房屋为一个单独的OBJECT。在CREATOR中建立合理的层级结构,GROUP下面是OBJECT,不要再建GROUP,层级结构命名合理。 8、模型不缺面,所有面必须贴图,可以统一检查是否存在未贴图的面。 9、不存在闪烁重叠的面,不允许存在变形的凹面。 10、为降低数据量,烘培后需在CREATOR中合并面。 11、平面屋顶通常有女儿墙(参考DOM影像),有女儿墙的必须实际建模,女儿墙尺寸通常为宽0.4米,高0.6米,但一些特殊的女儿墙按实际的宽度和高度建模。 12、为减少数据量,在基本达到相同视觉效果的情况下,能够采用透明纹理的则尽量采用透明纹理,而不必实际建模。 13、围墙、栅栏根据地形图和外业数据按实际位置、尺寸建模,栅

三维模型网 标准件

三维模型网 1.三维模型网介绍 三维模型网允许注册用户发布个人设计的三维模型及相关资料,同时也提供企业发布各种企业信息,企业的产品信息,包括三维模型信息等。网站已经发布了800多个标准,约5万多个规格的标准件,包括这些标准件的标准标记方法,比如编码、命名、规格、尺寸信息以及6种常见的三维软件格式的三维模型。 2.用户注册 2.1、进入三维模型网主页,点击【注册】 2.2、填写注册信息 2.3、点击【注册】按钮,注册成功。 3.用户信息修改 3.1、用户登录

3.2、登录成功之后,点击【我的空间】--【个人信息】--【基本信息】,点击【修改按钮】,修改用户基本信息,修改之后点击【确定按钮】。 3.3、登录成功之后,点击【我的空间】--【个人信息】--【修改密码】--点击【确认按钮】,修改用户密码。 4.标准件目录 温馨提醒: a)标准件目录是根据机械设计手册第五版编制而成。 功能说明: b)选择任意目录分类,可以快速进入标准件展示页面。

5.标准件展示 5.1、在主页选择任意目录分类,例如选择:【螺母】--【六角形螺母】。 5.2、新打开的页面会显示选择分类下所有标准件。 功能说明: a)左侧显示所有的分类,可以进行选择。 b)右边上部显示共有多少个标准件 c)右边下部分显示标准件的产品图、名称和标准。 5.3规格页展示 5.3.1、在标准件分类页面选择任一标准件。例如选择:

5.3.2、在新打开的页面会显示当前选择标准件的所有规格参数。 功能说明: a)左侧显示所有的标准件目录分类,可以进行重新选择。 b)右侧上部分显示当前选择标准件的详细信息,包括:目录中的位置、编码、国标号、浏览量、下载量和关注量。 c)右侧中间部分显示的是规格的相关文档,包括:产品图、三维模型和尺寸图,对于当前登录的用户,提供了六种设计软件的模型下载。 d)右侧下部分显示的是所有的规格参数列表,当双击任一规格的时候,会显示对应的产品图、三维模型和尺寸图。 6.搜索 6.1、在标准件网站的主页及其他大部分页面的顶部都有一个搜索的输入框,输入要查询的内容,点击【搜索】