核磁谱图NMR常见溶剂峰杂质峰分析(中文版)

核磁谱图NMR常见溶剂峰杂质峰分析(中文版)
核磁谱图NMR常见溶剂峰杂质峰分析(中文版)

核磁谱图NMR常见溶剂峰杂质峰分析常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm

nmr常见溶剂峰和水峰()

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 ??? 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7.26 1.56 DMSO 2.50 3.33 CD3OD 3.31 4.87 D2O 4.79 CD3COCD3 2.05 2.84

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

核磁共振氢谱解析方法

2.3 核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被 测样品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I 是否有-CH3-O- 、CHCOC3NH=、 CH3C、RCOC2CHl 、RO-CH2-Cl 等基团。 g.确定有无芳香族化合物。如果在 6.5-8.5 范围内有信号,则 表示有芳香族质子存在。如出现AA'BB'的谱形说明有芳香邻位 或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关 系,确定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I 相对照,确定是 何官能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合 理。再对照已知化合物的标准谱图。

2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3HNO。测定氢谱谱图如下所示, 推定其结构。 图3七0未知化合物C3H7NO3的图谱解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm 有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质 子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群 的积分强度为2: 2:3,可能有一CH—、一CH—、一CH —基 团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为 8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互 作用。这六重峰的质子为2个,所以使两边信号各裂

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

NMR常见溶剂峰和水峰

常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 ? ? ? ? DMSO? ? ? ? ? ? ? ? CD3OD? ? ? ? ? ? ? ? D2O? ? ? ? ? ? ? ? CD3COCD3? ? ? ? ? ? ? ?

核磁常见溶剂峰

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,and Abraham Nudelman* Department of Chemistry,Bar-Ilan University, Ramat-Gan52900,Israel Received June27,1997 In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice. We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist. Experimental Section NMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected. In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine. Results Proton Spectra(Table1).A sample of0.6mL of the solvent,containing1μL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3μL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once. For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively). Carbon Spectra(Table2).To each tube,50μL of the stock solution and3μL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts (1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217. (2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz. (3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture. https://www.360docs.net/doc/a51660871.html,.Chem.1997,62,7512-7515 S0022-3263(97)01176-6CCC:$14.00?1997American Chemical Society

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

核磁共振氢谱解析方法

WOIRD格式 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH3-O-、CHCOC3N H=、CH3C、RCOC2H C l、 RO-CH2-Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照 已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3H7NO2。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和 1.59ppm有小峰, 峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3,可能有-CH2-、-CH2-、-CH3-基团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们 与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH3-CH2-CH2-结构单元。参考所给定的分子式应为CH3-CH2-CH2-NO2,即1-硝基丙烷。 例2:已知某化合物分子式为C7H16O3,其氢谱谱图如下图所示,试求其结构。

NMR常见溶剂峰和水峰

注:JHD为溶剂本身得其她1H对与之相对应得1H之间得耦合常数,JCD为溶剂本身1H对13C得耦合常数,H2O与交换了D得HOD上得1H产生得即水峰得化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还就是芳香甙,都为首选。 吡啶:极性大得,特别就是皂甙 对低、中极性得样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大得化合物可采用氘代丙酮、重水等。 针对一些特殊得样品,可采用相应得氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物) 、氘代二甲基亚砜(用于某些在一般溶剂中难溶得物质) 、氘代吡啶(用于难溶得酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙5;1小极性 石:丙2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖得三萜皂甙:一般用吡啶 ?常见溶剂得化学位移 常见溶剂得1H在不同氘代溶剂中得化学位移值

常见溶剂得化学位移 常见溶剂得13C在不同氘代溶剂中得化学位移值

核磁知识(NMR)?一:样品量得选择??氢谱,氟谱,碳谱至少需要5mg、1H-1HCOSY,1H-1HN OESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg、碳谱需要30mg、 二:如何选择氘代溶剂? 常用氘代溶剂: CDCl3,DMSO,D2O,CD3OD、特殊氘代溶剂:CD3COCD3, C6D6, CD3C N。 极性较大得化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O与CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7、26 1、56?DMSO 2、50 3、33?CD3OD 3、31 4、87?D2O4、79 CD3COCD3 2、052、84

NMR常见溶剂峰和水峰

N M R常见溶剂峰和水峰 Revised as of 23 November 2020

13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙5;1小极性 石:丙2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要,1H-1HNOESY,1H-13CHMBC,1H-13CHSQC需要10-15mg.碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂:CDCl3,DMSO,D2O,CD3OD.特殊氘代溶剂:CD3COCD3,C6D6,CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O 和CD3OD。 CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。 Solvent化学位移(ppm)水峰位移(ppm) CDCl3 DMSO CD3OD D2O CD3COCD3

NMR常见溶剂峰和水峰

. 的耦合常13C1H对为溶剂本身1H对与之相对应的1H之间的耦合常数,JCD注:JHD为溶剂本身的其他产生的即水峰的化学位移上的1HH2O和交换了D的HOD数,氯仿:小、中小、中等极性。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为DMSO:芳香系统(日光下自然显色、紫外荧光)首选。吡啶:极性大的,特别是皂甙对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。、针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物) 、氘代吡啶(用于难溶的酸性或芳香化合物)氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)等。丙酮:中等极性甲醇:极性大氯仿—甲醇: 1小极性;石:乙 5 中等极性1:1——石:丙 2:1 含有一个糖 6氯仿:甲醇:1极性以上 1 含有两个糖: 2 含有糖的三萜皂甙:一般用吡啶 ,.. . 常见溶剂的化学位移

1H在不同氘代溶剂中的化学位移值常见溶剂multCO(CSCCCDCC(C7.20 7.571.97.12.57.22.03.34.7残余溶剂 8.7brs 4.90.42.83.32.14.74.81.5水 7.2CHC8.08.36.17.57.92.1C2.22.12.0(C1.52.02.01.6(C2.52.52.62.6S2.72.57.37.37.17.37.37.32.02.02.0 2.0C2.11.5C1.9C,s3.493.163.313.28O3.33.3C3.0OH,s1.04.02.13.18.62 8.588.528.538.538.588.728.57CH(2),m 7.357.297.457.397.206.667.337.44CH(3),m7.67.87.77.77.77.56.97.8CH(4),2.051.992.071.651.971.972.01,s C4.124.034.143.894.054.094.06,q CCOOC 1.261.171.240.921.201.241.20,tCH3s5.445.304.275.49CHCl5.635.76220.88 0.89 0.88 0.86 0.90 0.89 ,t CH3n-hexane 1.261.281.281.251.291.24,mCH21.25 0.96 1.19 1.12 1.12 1.06 1.17 ,t CH3OHCH52 3.723.603.543.653.573.443.34,qCH2 ,.. . 常见溶剂的化学位移 13C在不同氘代溶剂中的化学位移值常见溶剂的 CSOCCDC(CCC(C123.441.32206.26135.4339.549.0128.077.1溶剂 118.229.8149.8CHC79.177.777.379.179.479.1215.94207.43205.87204.43209.67206.31207.07C(C30.8 30.130.930.530.630.930.639.341.341.240.0S(C40.440.740.4129.1128.6129.3128.3129.3128.3119.6811 7.60116.43116.02118.06118.26117.91CC1.40.21.81.10.81.71.049.550.4OC49.948.549.849.749.9149.1 8150.07150.67150.27149.90150.76149.58 125.12123.75125.53127.76123.84124.57123.58138.2136.0136.5138.3135.9135.2136.821.1520.8320.8 820.5620.6821.1621.04 171.36 171.68170.96170.31172.89175.26170.44COOC60.4960.9861.5059.7460.5660.2162.32 14.113.914.114.514.414.414.5053.52Cl55.3254.78CH53.4654.8454.952214.14 14.45 14.43 14.32 13.88 14.34 22.70 23.40 23.04 22.05 23.28 n-hexane23.68 31.6432.3630.9532.3031.9632.73 ,.. . 核磁知识(NMR) 一:样品量的选择

核磁常见溶剂峰

Table1.1H NMR Data proton mult CDCl3(CD3)2CO(CD3)2SO C6D6CD3CN CD3OD D2O solvent residual peak7.26 2.05 2.507.16 1.94 3.31 4.79 H2O s 1.56 2.84a 3.33a0.40 2.13 4.87 acetic acid CH3s 2.10 1.96 1.91 1.55 1.96 1.99 2.08 acetone CH3s 2.17 2.09 2.09 1.55 2.08 2.15 2.22 acetonitrile CH3s 2.10 2.05 2.07 1.55 1.96 2.03 2.06 benzene CH s7.367.367.377.157.377.33 tert-butyl alcohol CH3s 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH c s 4.19 1.55 2.18 tert-butyl methyl ether CCH3s 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3s 3.22 3.13 3.08 3.04 3.13 3.20 3.22 BHT b ArH s 6.98 6.96 6.877.05 6.97 6.92 OH c s 5.01 6.65 4.79 5.20 ArCH3s 2.27 2.22 2.18 2.24 2.22 2.21 ArC(CH3)3s 1.43 1.41 1.36 1.38 1.39 1.40 chloroform CH s7.268.028.32 6.157.587.90 cyclohexane CH2s 1.43 1.43 1.40 1.40 1.44 1.45 1,2-dichloroethane CH2s 3.73 3.87 3.90 2.90 3.81 3.78 dichloromethane CH2s 5.30 5.63 5.76 4.27 5.44 5.49 diethyl ether CH3t,7 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2q,7 3.48 3.41 3.38 3.26 3.42 3.49 3.56 diglyme CH2m 3.65 3.56 3.51 3.46 3.53 3.61 3.67 CH2m 3.57 3.47 3.38 3.34 3.45 3.58 3.61 OCH3s 3.39 3.28 3.24 3.11 3.29 3.35 3.37 1,2-dimethoxyethane CH3s 3.40 3.28 3.24 3.12 3.28 3.35 3.37 CH2s 3.55 3.46 3.43 3.33 3.45 3.52 3.60 dimethylacetamide CH3CO s 2.09 1.97 1.96 1.60 1.97 2.07 2.08 NCH3s 3.02 3.00 2.94 2.57 2.96 3.31 3.06 NCH3s 2.94 2.83 2.78 2.05 2.83 2.92 2.90 dimethylformamide CH s8.027.967.957.637.927.977.92 CH3s 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3s 2.88 2.78 2.73 1.86 2.77 2.86 2.85 dimethyl sulfoxide CH3s 2.62 2.52 2.54 1.68 2.50 2.65 2.71 dioxane CH2s 3.71 3.59 3.57 3.35 3.60 3.66 3.75 ethanol CH3t,7 1.25 1.12 1.060.96 1.12 1.19 1.17 CH2q,7d 3.72 3.57 3.44 3.34 3.54 3.60 3.65 OH s c,d 1.32 3.39 4.63 2.47 ethyl acetate CH3CO s 2.05 1.97 1.99 1.65 1.97 2.01 2.07 C H2CH3q,7 4.12 4.05 4.03 3.89 4.06 4.09 4.14 CH2C H3t,7 1.26 1.20 1.170.92 1.20 1.24 1.24 ethyl methyl ketone CH3CO s 2.14 2.07 2.07 1.58 2.06 2.12 2.19 C H2CH3q,7 2.46 2.45 2.43 1.81 2.43 2.50 3.18 CH2C H3t,7 1.060.960.910.850.96 1.01 1.26 ethylene glycol CH s e 3.76 3.28 3.34 3.41 3.51 3.59 3.65“grease”f CH3m0.860.870.920.860.88 CH2br s 1.26 1.29 1.36 1.27 1.29 n-hexane CH3t0.880.880.860.890.890.90 CH2m 1.26 1.28 1.25 1.24 1.28 1.29 HMPA g CH3d,9.5 2.65 2.59 2.53 2.40 2.57 2.64 2.61 methanol CH3s h 3.49 3.31 3.16 3.07 3.28 3.34 3.34 OH s c,h 1.09 3.12 4.01 2.16 nitromethane CH3s 4.33 4.43 4.42 2.94 4.31 4.34 4.40 n-pentane CH3t,70.880.880.860.870.890.90 CH2m 1.27 1.27 1.27 1.23 1.29 1.29 2-propanol CH3d,6 1.22 1.10 1.040.95 1.09 1.50 1.17 CH sep,6 4.04 3.90 3.78 3.67 3.87 3.92 4.02 pyridine CH(2)m8.628.588.588.538.578.538.52 CH(3)m7.297.357.39 6.667.337.447.45 CH(4)m7.687.767.79 6.987.737.857.87 silicone grease i CH3s0.070.130.290.080.10 tetrahydrofuran CH2m 1.85 1.79 1.76 1.40 1.80 1.87 1.88 CH2O m 3.76 3.63 3.60 3.57 3.64 3.71 3.74 toluene CH3s 2.36 2.32 2.30 2.11 2.33 2.32 CH(o/p)m7.177.1-7.27.187.027.1-7.37.16 CH(m)m7.257.1-7.27.257.137.1-7.37.16 triethylamine CH3t,7 1.030.960.930.960.96 1.050.99 CH2q,7 2.53 2.45 2.43 2.40 2.45 2.58 2.57 a In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed;it appears at 2.81and 3.30ppm in acetone and DMSO,respectively.In the former solvent,it is often seen as a1:1:1triplet,with2J H,D)1Hz. b2,6-Dimethyl-4-tert-butylphenol.c The signals from exchangeable protons were not always identified.d In some cases(see note a),the coupling interaction between the CH2and the OH protons may be observed(J)5Hz).e In CD3CN,the OH proton was seen as a multiplet atδ2.69,and extra coupling was also apparent on the methylene peak.f Long-chain,linear aliphatic hydrocarbons.Their solubility in DMSO was too low to give visible peaks.g Hexamethylphosphoramide.h In some cases(see notes a,d),the coupling interaction between the CH3and the OH protons may be observed(J)5.5Hz).i Poly(dimethylsiloxane).Its solubility in DMSO was too low to give visible peaks. show their degree of variability.Occasionally,in order ambiguous,a further12L of a specific substrate were

相关文档
最新文档