黏度检查操作规程

黏度检查操作规程
黏度检查操作规程

1.目的

建立一个黏度检查操作规程,以保证黏度检查检验的规范性,获取正确的检验数据。

2.范围

适用于黏度检查。

3.责任人

质控部负责人、质控部化验员。

4.内容

4.1.规程依据:中国药典2010年版二部附录ⅥG及中国药品检验标准操作规程。

4.2.简述

4.2.1.黏度系指流体对流动的阻抗能力,本法以动力黏度、运动黏度或特性黏数表示。测定

供试品黏度可用于纯度检查等。

4.2.2.流体分牛顿流体和非牛顿流体两类。牛顿流体流动时所产生的剪应刀不随流速的改变

而改变,纯液体和低分子物质的溶液属于此类;非牛顿流体流动时所产生的剪应力随流速的改变而改变,高聚物的溶液、混悬液、乳剂和表面活性剂的溶液属于此类。4.2.3.黏度的测定可用黏度计。黏度计有多种类型,本法采用毛细管式和旋转式两类黏度计。

毛细管黏度计因不能调节线速度,不便测定非牛顿流体的黏度,但对高聚物的稀薄溶液或低黏度液体的黏度测定较方便;旋转式黏度计适用于非牛顿流体的黏度测定。4.2.4.液体以1m/s的速度流动时,在每1m2平面液层与相距1m的平行液层间所产生的剪

应力的大小,称为动力黏度(η),以Pa·s为单位。因Pa·s单位太大,常使用mPa·s。

在相同温度下,液体的动力黏度与其密度的比值,即得该液体的运动黏度( ),以m2/s为单位。因m2/s单位太大,故使用mm2/s单位。本法采用在规定条件下测定供试品在平氏黏度计中的流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm2/s2)相乘,即得供试品的运动黏度。

4.2.

5.溶剂的黏度ηo常因高聚物的溶入而增大,溶液的黏度η与溶剂的黏度ηo的比值(η/ηo)

称为相对黏度(ηr),通常用乌式黏度计中的流出时间的比值(T/To)表示;当高聚物溶液的浓度较稀时,其相对黏度的对数值与高聚物溶液浓度的比值,即为该高聚物的特性黏度[η]。根据高聚物的特性黏度数可以计算其平均分子量。

4.3.第一法用平氏黏度计测定运动黏度或动力黏度

4.3.1 简述

4.3.1.1.本法系用相对法测量一定体积的液体在重力作用下流经毛细管所需时间,以求得液

体的运动黏度或动力黏度。

4.3.1.2.本法适用于测定牛顿流体(如纯液体和低分子物质的溶液)的动力黏度或运动黏度。

4.3.1.3.照各品种项下的规定,取毛细管内径符合要求的平氏黏度计1支,在支管F上连接

一橡皮管,用手指堵住管口2。倒置黏度计,将管口1插入供试品(或供试溶液,下同)中,自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m2处,提出

黏度计并迅速倒转,抹去黏附于管外的供试品,取下橡皮管使连接于管口1上,将黏度计垂直固定于恒温水浴中,并使水浴的液面高于球C 的中部,放置15分钟后,自橡皮管的另一端抽气,使供试品充满球A 并超过测定线m 1,开放橡皮管口,使供试品在管内自然下落,用秒表准确记录液面自测定线m 1下降至测定线m 2处的流出时间;依法重复测定3次以上,每次测定值与平均值的差值不得超过平均值的±5%。另取一份供试品同样操作,并重复测定3次以上。以先后两次取样测得的总平均值按下式计算,即为供试品的运动黏度或供试品溶液的动力黏度。

Kt =ν

ρη?=Kt

式中 K 为用已知黏度的标准液测得的黏度计常数,mm 2/s 2

t 为测得的平均流出时间,s

ρ为供试品溶液在相同温度下的密度,g/m 3

4.3.2.注意事项

4.3.2.1.实验室温度与黏度测定温度相差不应太大,当室温高于测定温度时,应注意降低室

温。

4.3.2.2.在抽气吸取供试液时,不得产生断流或气泡。

4.3.2.3.黏度计应垂直固定于恒温水浴中,不得倾斜,以免影响流出时间。

4.4.第二法 用旋转式黏度计测定动力黏度。

4.4.1.简述

4.4.1.1.旋转式黏度计通常是根据在旋转过程中作用于液体介质中的切应力大小来完成黏

度测定的。

4.4.1.2.本法用于测定液体的动力黏度。

4.4.1.3.用于测定液体动力黏度的旋转式黏度计通常都是根据在旋转过程中作用于液体介

质中的切应力大小来完成测定的,并以下式计算供试品的动力黏度:

)/(ωηT K ?=

式中 K 为用已知黏度的标准液测得的旋转式黏度计常数

T 为扭力矩

ω为角速度

4.4.2.常用的旋转式黏度计有以下几种

4.4.2.1.同轴双筒黏度计 将供试品注入同轴的内筒和外筒之间,并各自转动,当一个筒以

指定的角速度或扭力矩转动时,测定对另一个圆筒上产生的扭力矩或角速度,由此可计算出供试品的黏度。

4.4.2.2.单筒转动黏度计在单筒类型的黏度计中,将单筒浸入供试品溶液中,并以一定的角

速度转动,测量作用在圆筒表面上的扭力矩来计算黏度。

4.4.2.3.锥板型黏度计 在锥板型黏度计中,供试品注入锥体和平板之间,锥体和平板可同

轴转动,测量作用在锥体或平板上的扭力矩或角速度以计算黏度。

4.4.2.4.转子型旋黏度计 按各品种项下的规定选择合适的转子浸入供试品溶液中,使转子

以一定的角速度旋转,测量作用在转子上的扭力矩以计算黏度。常用的旋转式黏度计有多种类型,可根据供试品的实际情况和黏度范围适当选用。

4.4.3.常用的旋转式黏度计有多种类型,可根据供试品的实际情况和黏度范围适当选用。

4.4.4.照各品种项下所规定的仪器,按照仪器说明书操作,并测定供试品的动力黏度。

4.5.第三法用乌氏黏度计测定特性黏数

4.5.1.简述

4.5.1.1.溶剂的黏度常因高聚物的溶入而增大。本法利用毛细管法测定溶液和溶剂流出时间

的比值,可求出高聚物稀溶液的特性黏数,以间接控制其分子量值。

4.5.1.2.取供试品,照各品种项下的规定制成一定浓度的溶液,用3号垂熔玻璃漏斗滤过,

弃去初滤液(约1ml ),取续滤液(不得少于7ml )沿洁净、干燥乌氏黏度计的管2内壁注入B 中,将黏度计垂直固定于恒温水浴(水浴温度除另有规定外,应为25℃±0.05℃)中,并使水浴的液面高于球C ,放置15分钟后,将管口1、3各接一乳胶管,夹住管口3的胶管,自管口1处抽气,使供试品溶液的液面缓缓升高至球C 的中部,先开放管口3,再开放管口1,使供试品溶液在管内自然下落,用秒表准确记录液面自测定线m 1下降至测定线m 2处的流出时间,重复测定2次,两次测定值相差不得超过0.1秒,取两次的平均值为供试液的流出时间(T )。取经3号垂熔玻璃漏斗滤过的溶剂同样操作,重复测定2次,两次测定值应相同,为溶剂的流出时间(To )。按下式计算特性黏度:

[]c

In r ηη=特性黏数 式中 ηr 为T/To

c 为供试品溶液的浓度,g/ml

4.5.2.注意事项

4.5.2.1.测定T (或To )时,应再将黏度计内壁清洗洁净,并用待测溶液(溶剂)分次淋洗;

其它同第一法项下。

4.6.黏度计常数测定

4.6.1.用平氏黏度计或旋转式黏度计测定供试品时,均需应用该支(台)黏度计的常数K

或K',故事先应送计量检定单位检定。黏度计常数检定周期为2年。每支(台)黏度计应标有检定时间、温度及实测黏度计常数值。

4.6.2.供测定黏度计常数用的标准液共有15个牌号(即2、5、10、20、50、100、200、500、

1000、2000、5000、10000、20000、50000、100000等)可根据需要选用,标准液及其运动黏度定值由法定计量单位提供。

4.6.3.为使检验人员了解黏度计常数测定方法,现根据国家计量检定规程摘录如下:

4.6.3.1.平氏黏度计常数测定

4.6.3.1.1.根据毛细管内径选用适宜牌号的标准液。

之差未超过平均值的0.2%(K ≤1mm 2/s 2者)或0.3%(K >1mm 2/s 2者)时,取平均值;若有一个数超差,弃去可疑数,求其余3个数的平均值,得t 1。取另一牌号标准液同样操作,得t 2。两次测定的t 值(t 1和t 2)分别按下式计算黏度计常数K 1和K 2,二者之差未超过平均值的0.3%(K ≤1mm 2/s 2者)或0.4%(K >1mm 2/s 2者)时,取平均值K ,即为该黏度计的常数。

4.6.3.1.3.计算式

t K η

=

式中 η为标准液的动力黏度,mm 2/s

t 为流出时间,s

K 为黏度计常数

4.6.3.2.旋转式黏度计常数测定

4.6.3.2.1.根据仪器型号、转筒及转速,选用适当牌号的标准液。

4.6.3.2.2.取标准液,照第二法项下规定,依法测定,得a 1。取另一牌号标准液同法操作,

得a 2。两次测定的a 值(a 1和a 2)分别按下式计算黏度计常数K′1和K′2,二者之间差未超过平均值的±5%时,取K′,即为该黏度计的常数。

4.6.3.2.3.计算式

a K η

='

式中 η为标准液的动力黏度,Pa·s

α为偏转角

K′为黏度计常数

旋转粘度计NDJ-5S使用标准操作规程

旋转粘度计NDJ-5S使用标准操作规程 1.目的 制定旋转粘度计NDJ-5S使用标准操作规程,使操作达到规范化、标准化,确保数据的准确性。 2.范围 本规程适用于上海地学仪器研究所NDJ-5S旋转粘度计的操作。本仪器具有测量灵敏度高。测定结果可靠,使用操作方便,是用来测量牛顿型液体的绝对粘度和非牛顿型液体的表观粘度的仪器。 3.内容 仪器的操作的使用 开机:开机前,将黄色保护盖帽取下,显示屏亮。但电机不工作,预热20min. 准备被测液体,将被测液体置于直径不小于60mm,高度不低于120mm的烧杯或直筒形容器中。 准确地控制被测液体的温度,恒度至25℃±1℃。 仔细调整仪器的水平,检查仪器的水准器气泡是否居中,保证仪器处于水平的工作状态。 参照量程表(表1),选择适配的转子连接头(向右旋装上,向左旋卸下)。估算样品的粘度范围,根据合适的粘度范围选择相应的转子和转速,当估计不出被测液体的大致粘度时,应视为较高粘度,试用由小到大的转子(转子号由高到低)和由慢到快的转速。原则上高粘度的液体选用小转子(转子号高),则转速,低粘度的液体选用大转子(转子号低),快转速。 (表1)NDJ-5S量程表

缓慢调节升降旋钮,调整转子在被被测液体中的高度,直至转子的液体标志(凹槽中部)与液面相平。 参数设定及测定 打开仪器背面的电源开关,进入等待状态,仪器采用中英文显示。 按“▲”或“▼”键选择所需语言模式,按“1#”处, 按“?”或“?”键选择所需转子号,转子号为5种,即“1#、2#、3#、4#及0#“转子。 按“▲”或“▼”键可切换到转速位置。例台光标停在“60转/分”处,按“?”或“?”键可旋转所需的转速。NDJ-5S转速分为9档,分别为转/分、转/分、转/分、3转/分、6转/分、12转/分、30转/分、60转/分及自动档。 当选择好转子和转转速档位后,按“ok/确定“键,转子开始旋转,仪器开始测量,当右边坚条方块显示光标由下向上升至落刻度时,屏幕显示的粘度值即为测量什。测量 时按”开始/停始“键,仪器将会停止测量;如按” 转子号和转速进行测量。 每个试样应测量两次,测量结果取两次测量的算术平均什。两次测量结果之差小于或等于两次测量结果平均什的10%,否则测量第三次。 仪器具有超称报警功能,若测量值大于100%,测量值显示over。为保证测量精度,测量时量程百分比读数应控制在20%-90%之间,能控制在35%-75%之间为较理想值。 在任何状态下,按“开始/停始”键,程序将从起状态开始运行,操作界面回到用户选择工作状态。 每次使用后应旋出转子,及时清洁转子和保护架,转子擦干净后放回到转子架中。即忌用硬物刮、擦转子,以免破坏转子结构。不可把转子留在仪器上进行清洁。 当测不同样品时,应首先清洁(擦干净)转子和转子保护框架,防止由于被测液体相混淆而引起的测量误差。 注意事项 做到下列各点才能测得较精确的粘度:

涂料粘度及其测定知识

涂料粘度及其测定知识 0 前言 粘度是涂料性能中的一个重要指标,对于涂料的储存稳定性,施工性能和成膜性能有很大影响。 例如对于乳胶漆,在贮存过程中涂料的剪切应力ъ>lO dyn/cm2有利于防止沉降,粘度15-30 Pa·s能保证适当的沾漆量;粘度在2.5~5.0 Pa·s保证刷涂性和最佳漆膜性能。在刷涂后如果粘度能够>250 Pa·s 则能很好地控制流挂,因此测定涂料的粘度成为涂料生产和检验中的常规项目。 1 粘度的定义 粘度可以认为是液体对于流动所具有的内部阻力。 动力粘度是指对液体所施加的剪切应力与速度梯度的比值,其国际单位为帕斯卡·秒(Pa·s),习用单位为厘泊(cP)。l cP=1 mPa·s。通过比较在不同剪切速率下粘度的变化。我们可以把流体分为牛顿型流体和非牛顿型流体。在国家标准GB/T 6753.4._l998中将流体的流动类型分为牛顿型流动和不规则流动。 牛顿型流动,当剪切应力与速度梯度比值既不随时间也不随速度梯度方式而改变时,这种材料所呈现的流动类型称为牛顿型流动,当这一比值变化很小时。机械扰动(如搅拌)对粘度的影响可忽略不计,这种材料被称为具有近似牛顿型的流动。一般清漆和低粘度色漆属于这种液体。 不规则流动,当剪切应力与速度梯度比值随时间或随剪切速率而改变

时。这种材料所呈现的流动类型称为不规则流动。 2 涂料粘度的测定方法 涂料粘度的测定方法很多,包括流出杯、斯托默粘度计、落球粘度计、旋转粘度计、毛细管粘度计,锥板粘度计等等。 2.1 涂料粘度测定的国家标准 2.1.1 流出杯法 流出杯是在实验室,生产车间和施工场所最容易获得的涂料粘度测量仪器。由于流量杯容积大,流出孔粗短,因此操作、清洗均较方便,且可以用于不透明的色漆。流量杯粘度计所测定的粘度为运动粘度,即为一定量的试样。在一定温度下从规定直径的孔所流出的时间,以秒表示。这是最常用的涂料粘度测定方法。因为可以在很多场合方便地使用,因此在世界各地得以广泛的应用。 在国家标准中,关于流出杯测涂料粘度的方法标准有GB/T 1723-1993涂料粘度测定法和GB/T6753.4_l988色漆和清漆用流出杯测定流出时间。 在GB/T 1723-1993中使用涂一l杯和涂-4杯。涂一l杯用于测定流出时间不低于20 s的涂料产品。涂一4杯适用于测定流出时间在150 s 以下的涂料。比较两次测定值之差不大于平均值的3%,取两次测定值的平均值作为测定结果。 在GB/T 6753.4一l988中,使用尺寸相似而流出孔径分别为3 mm,4 mm,5 mm,6 mm的4种流出杯,用于测定能准确地判定自流出杯流出孔流出的液流断点的实验物料。对于流出时间超过100 s的实验物

门尼粘度计安全操作规程通用范本

内部编号:AN-QP-HT982 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 门尼粘度计安全操作规程通用范本

门尼粘度计安全操作规程通用范本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1 操作规范: - 打开电源,开启气源; - 开机。打开仪器开关,进入待机界面; - 准备试样; - 根据胶料选择试验方法; - 联机; - 待机器升到指定温度,选择当前实验界面,放入胶料,合模,准备开始试验; - 试验完成,开模; - 记录数据; - 每完成一次试验,要将转子上残余胶料清理干净。检查模腔内是否有残余胶料,并及

SNB-2-J 数显旋转粘度计操作规程

SNB-2-J 数显旋转粘度计操作规程 一、目的 规范SNB-2-J数显旋转粘度计的使用和操作。 二、适用范围 适用于SNB-2-J数显旋转粘度计的使用和操作标准。 三、职责 检验员对本标准的实施负责、保养。主管负责设备操作、保养监督检查。 四、工作原理: 本仪器为数显粘度计,由电机经变速带动转子作恒速旋转。当转子在液体中旋转时,液矩也越小。该作用在转子上的粘性力矩由传感器检测出来,经计算机处理后得出被测液体的粘度。 五、主要技术指标: 测量范围:100mPa.s~200000mPa.s 转子规格:21、27、28、29号转子 转子转速:5、10、20、50 转/分 测量方式:手动、自动 测量精度:±2%(牛顿液体) 控温范围:室温+20℃~200℃ 内胆测量容积:10cc 使用环境条件: (1)环境温度:5℃~35℃; (2)相对湿度:不大于80%; (3)供电电源:电压220V±10V,频率50HZ±10HZ; (4)产品附近无强的电磁场干扰,无剧烈震动,无腐蚀性气体。 六、操作步骤: 1、准备被测样品,称量10g样品放入恒温槽中,设置被测样品的试验温度。 2、仔细调整仪器的水平,检查仪器的水准器气泡是否居中,保证仪器处于水平的工作状态(装上保护架)。 3、参照量程表,选择适配的转子旋入转子连接头(向右旋装上,向左旋卸下)。装卸

转子时,必须用手将连接螺杆微微向上抬起。 4、缓慢调节升降旋钮,调整转子在被测液体中的高度,直至转子的液体标志(凹槽中部)与液面相平。 5、试样在测试温度下充分恒温,以保持示值稳定准确。 6、选择合适测量方式和转速,按“确认”键测量。 七、操作说明 1、首先大约估计被测体液的粘度范围,然后根据下列量程表选择合适的转子和转速。 2、当估计不出被测液体的大致粘度时,应视为较高粘度,试用由小到大的转子(转子号由高到低)和由慢到快的转速。原则上高粘度的液体选用小转子(转子号高),慢转速,低粘度的液体选用大转子(转子号低),快转速。 3、本产品具有自动测量方式。当测量粘度范围不明的样品时,可以先不设置转速,只要选定转子,按“确认”键,仪器会自动开始测量,逐步搜索到合适的转速。测量第二遍及以后各遍时,如果继续在自动方式下测量,则按“复位”键复位,再按“确认”键测量。 4、为保证测量精度,测试时扭矩百分比读数应在10~100%的范围内。 5、如果选择的转速使扭矩值低于10%或高于100%时,就会在粘度值下方出现一个闪烁的问号,此时你需要改变转速或者转子使扭矩值在10~100%之间。 八、注意事项 1、本仪器在出厂前严格调校检验,开机后即可正常工作,请操作者在操作前认真仔细地阅读本仪器说明书,严格按要求操作。 2、仪器电源必须在指定的电压和频率误差范围内测定,否则会影响测量精度。 3、装卸转子时应小心操作,要将仪器下部的连接头轻轻地向上托起后进行拆装,不要用力过大,不要使转子横向受力,以免转子弯曲。连接头和转子连接端面及螺纹处应保持清洁,否则将影响转子的正确连接及转动时的稳定性。 4、装上转子后不得在无液体的状况下“旋转”,以免损坏轴尖和轴承。

粘度计操作规程

此标准操作程序适用于8546570数显粘度计。 2.职责: 实验室人员按此文件正确的使用和维护粘度计。 3.操作规程: 4.1.操作前准备 4.1.1.安装黏度计,调整仪器水平,使气泡位于圆圈中间。 4.1.2.拧下黏度计的保护帽,插上电源,开机。 4.2操作程序 4.2.1.使用程序 A. 将被测物放在容量为250ml的高型烧杯中,使物体表面成水平状态。 B. 根据测试要求选择适当的转子、转速来测定。 C. 将转子拧上,然后放入被测物的正中心,调节升降旋钮,使其与周围距离相等, 且转子的刻度线应与被测物的水平面平齐。 D. 按下指针控制杆,打开电机开关,转动变速旋转,调至试样规定转速数向上。 当数显表上指针超过满程时,关机,换上大一号转子测试。 E. 放松指针控制杆,使转子在试样中旋转,约待1分钟指针基本稳定某一数值时, 如转速慢时可不利用指针控制杆直接读数即可。如转速太快看不清时,按下指 针控制杆,再关闭电机开关读数。 F. 查阅粘度计上系数表即可得相应的粘度。 粘度计算方法:η=k.α 式中:η=绝对黏度 k=系数α=指针所指读数 D. 重复三次,取平均值。取下转子,清洗干净,拧上保护帽。关机。 4.2.2.校正程序 A.每月校正一次,根据被测样品的粘度范围,选择标准样品的黏度值。 B.将标准样品恒温到25度,选折合适的转子和转速。选择原则:标准样品的粘度 值/最大量程=10%∽100%。 C.测量标准样品的粘度值,并记录扭矩是否在10%∽100%之内,如不在,重新选择 转子和转速。 D.校正的成功标准:标准粘度样品测量值合格范围=标准值±(标准值/100 + 最 大量程/100),完成校正后在黏度计的校正记录表上作好记录。 E.如不符合要求,及时报修。 4.2.3.清洁频率:每周用棉布擦拭仪器表面,保持仪器干净整洁。 4.3. 安全操作注意事项 5.3.1.装卸转子时必须将接头处往上抬一下,避免仪器的枢轴针受到损害。

橡胶制品常用测试方法及标准

橡胶制品常用测试方法 及标准 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T —2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定

ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

NDJ-8S旋转粘度计操作规程.docx

NDJ-8S旋转粘度计标准操作规程 1、目的: 通过制定旋转粘度计标准操作规程,掌握粘度计操作方法,确保测试准确无误。 2、适应范围: 适用于NDJ-8S旋转粘度计。 3、依据:NDJ-8S旋转粘度计说明书。 4、责任人员:实验室操作人员。 5、工作原理: 本仪器为数显粘度计,由电机经变速带动转子作恒速旋转。当转子在液体中旋转时液体会产生作用在转子上的粘度力矩。液体的粘度越大,该粘性力矩也越大;反之液体的粘度越小,该粘性力矩也越小。该作用在转子上的粘性力矩由传感器检测出来,经计算机处理后得出被测液体的粘度。 6、面板操作: 6.1 开启仪器背面电源开关,进入等待选择状态。 6.2 按▲或▼键,来进行当前项的数据修改,按?键进行参数项选择,再按“确定”键即可进入测量界面。 6.3 进入测试界面后按▲或▼键进行调速;在测量状态下按?键,可进行显示温度和显示百分比的转换;在测量状态下按?键,把测量的当前数据传送到电脑,或打印机等是否要进行数据切换;按确定键,即可打印当前所测量的各项数据。 6.4如仪器显示温度的值和实际的温度值有出入,可通过修改TC的值来进行温度的修正,修改后按“复位”即可退出初始状态。

6.5 对于未知样品的粘度测量,首先应估算样品的粘度值。再选择相对应的几组转速、转子组合来进行测量。当估计不出被测流体的大致粘度时,应假定被测样品为较高的粘度;试用由小到大的转子(表面积小)和由慢到快的转速。粘度测量的原则是高粘度的流体选用小的转子(表面积小)、慢转速;低粘度的流体选用大(表面积大)的转子和快的转速进行测试。 6.6转子与转速的组合所对应的粘度范围,可参考下表: NDJ-8S量程表 转子 满量程值mPa.s 1 2 3 4 转速r/min 60 100 500 2000 10000 30 200 1000 4000 20000 12 500 2500 10000 50000 6 1000 5000 20000 100000 3 2000 10000 40000 200000 1.5 4000 20000 80000 400000 0.6 10000 50000 200000 1000000 0.3 20000 100000 400000 2000000 7、操作步骤 7.1 开机:开机前,将黄色保护盖帽取下,显示屏亮,但电机不工作,预热 20min。

布氏旋转粘度计操作规程

布氏旋转粘度计操作规程 1、按JTG E20-2011《公路工程沥青及沥青混合料试验规程》T 0602的方法准备沥青试样,分装在盛样容器中,在烘箱中加热至软化点以上100℃左右保温30~60min备用,对改性沥青尤应注意去除气泡。 2、根据估计的沥青黏度,按仪器说明书规定的不同型号的转子所适用的速率和黏度范围,选择适宜的转子。 3、取出沥青盛样容器,适当搅拌,按转子型号所要求的体积向黏度计的盛样筒中添加沥青试样,根据试样的密度换算成质量。加入沥青试样后的液面应符合不同型号转子的规定要求,试样体积应与系统标定时的标准体积一致。 4、将转子与盛样筒一起置于已控温至试验温度的烘箱中保温,维持1.5h。当试验温度较低时,可将盛样筒试样适当放冷至稍低于试验温度后再放人烘箱中保温。 5、取出转子和盛样筒安装在黏度计上,降低黏度计,使转子插进盛样筒的沥青液面中,至规定的高度。 6、使沥青试样在恒温容器中保温,达到试验所需的平衡温度(不少于 15min)。 7、观测黏度变化,当小数点后面2位读数稳定后,在每个试验温度下,每隔60s读数一次,连续读数3次,以3次读数的平均值作为测定值。 8、对每个要求的试验温度,重复以上过程进行试验。试验温度宜从低到高进行,盛样筒和转子的恒温时间应不小于1. 5h。

9、如果在试验温度下的扭矩读数不在10%~98%的范围内,必须更换转子或降低转子转速后重新试验。 10、重复性试验的允许误差为平均值的3. 5%,再现性试验的允许误差为平均值的14.5% 11、同一种试样至少平行试验两次,两次测定结果符合重复性试验允许误差要求时,以平均值作为测定值。.

NDJ-1旋转粘度计操作规程

SOP/QC(07)016-01 旋转粘度计操作及预防性维护 操作规程 文件类别:操作规程 审批表 江西中兴汉方药业有限公司

目的:制定旋转粘度计操作规程,规范旋转粘度计操作,保证旋转粘度计正常运行。依据:厂家说明书 范围:适用于旋转粘度计操作。 责任:质量控制科QC主任及QC检验员 正文: 1 程序 1.1 仪器与用具 1.1.1 旋转式粘度计 1.1.2 恒温水浴 1.1.3 温度计,分度0.2 ℃ 1.2 操作方法 1.2.1 仪器安装及操作按仪器使用说明进行,并根据供试品的粘度范围和药典在该品种正文 项下的规定,选用是适宜转子和转速。 1.2.2 按各该药品项下的测定温度调整恒温水浴温度。 1.2.3 取供试品置仪器规定的容器中,恒温30 分钟后,依法测定偏转角(α)。关闭马达。 1.2.4 另取供试品同法操作,取二份供试品测定平均值 1.2.5 取2 次测定的平均值按公式计算,即得供试品的动力粘度。 1.2.6 测定时当指针稳定后即应读数,经一定时间旋转后粘度值会逐渐下降。 1.3 记录记录旋转式粘度剂型号,所用转子号数及转速,测定温度等。 1.4 NDJ-1 型旋转式粘度计的标准操作规程 1.4.1 准备被测液体,置于直径不小于70mm的烧杯或直筒形容器中,准确地控制被液体 的温度。 1.4.2 将保护框架装在仪器上(向右旋入装上,向左旋出卸下)。 1.4.3 将选配好的转子旋入连接螺杆(向左旋入装上,向右旋出卸下)。旋转升降钮,使仪 器缓慢地下降,转子逐渐浸入被测液体中,直至转子液面标志与液面平行为止。调整仪器水平,开启电机开关,转动变速旋钮,使所需转速数向上,对准速度指示点,转子在液体中旋转。经过多次旋转,一般为(20~30)s,或按规定时间,待指针趋于稳定可进行读数。按下指针控制杆,使读数回定下来,待指针转至读数窗口时关闭电机(注意:1、不得用力

博勒飞粘度计安全操作规程

博勒飞粘度计安全操作规程 1. 仪器原理 DV-II+型粘度计测定相当广范围的液体粘度,粘度范围与转子的大小和形状以及转速的有关。因为对应于一个特定的转子,在流体中转动而产生的扭转力一定的情况下,流体的实际粘度于转子的转速成反比,而剪切应力与转子的形状和大小均有关系。 对于一个粘度已知的液体,弹簧的扭转角会随着转子转动的速度和转子几何尺寸的增加而增加,所以在测定低粘度液体时,使用大体积的转子和高转速组合,相反,测定高粘度的液体时,则用细小转子和低转速组合。 2. 控制面板介绍 UP ARROW:上箭头,用于选择转速,转子,以及其他选项。 DOWN ARROW:下箭头,用于选择转速,转子,以及其他选项。 MOTOR ON/OFF ESCAPE:开关电机,或退出选项菜单。 SET SPEED:转速设定。 SELECT DISPLAY:选择所需显示的参数:粘度cP,剪应力SS,剪切率SR。 ENTER /AUTO RANGE :确认选中的选项,或显示当前转子/转速组合下,可 测量的粘度最大值。 SELECT SPINDLE:按第一下进入转子设定模式,通过上下箭头键选择合适的 转子编号,再按第二下确定。 PRINT:进入或退出打印模式。 OPTION/TAB OPTION:开启选项菜单。 TAB:在可选参数之间切换。 3. 仪器操作说明

自动校零,读数之前,粘度计必须先进行自动校零。每当电源开关关掉以后, 重新使用仪器时都要进行这一步骤。 3.1.1 打开粘度计主机后面的电源开关,然后显示屏出现图1 的信息。 图 1 3.1.2 几秒钟以后,屏幕会显示: 图 2 3.1.3 这时不需要按任何键。一会之后,荧屏显示为: 图 3 3.1.4 取下转子以后,按任意键,DV-II+开始自动校零。屏幕会闪烁 “ Autozeroing ”。过了大约15 秒钟,屏幕显示如图4 的信息: 图 4 3.1.5然后按任意键, 屏幕会出现默认信息:

NDJ-8S旋转粘度计操作规程.docx演示教学

N D J-8S旋转粘度计操作规程.d o c x

NDJ-8S旋转粘度计标准操作规程 1、目的: 通过制定旋转粘度计标准操作规程,掌握粘度计操作方法,确保测试准确无误。 2、适应范围: 适用于NDJ-8S旋转粘度计。 3、依据:NDJ-8S旋转粘度计说明书。 4、责任人员:实验室操作人员。 5、工作原理: 本仪器为数显粘度计,由电机经变速带动转子作恒速旋转。当转子在液体中旋转时液体会产生作用在转子上的粘度力矩。液体的粘度越大,该粘性力矩也越大;反之液体的粘度越小,该粘性力矩也越小。该作用在转子上的粘性力矩由传感器检测出来,经计算机处理后得出被测液体的粘度。 6、面板操作: 6.1 开启仪器背面电源开关,进入等待选择状态。 6.2 按键,来进行当前项的数据修改,按键进行参数项选择,再按“确定”键即可进入测量界面。 6.3 进入测试界面后按 键,把测量的当前数据传送到 电脑,或打印机等是否要进行数据切换;按键,即可打印当前所测量的各项数据。 6.4如仪器显示温度的值和实际的温度值有出入,可通过修改TC的值来进行温度的修正,修改后按“复位”即可退出初始状态。

6.5 对于未知样品的粘度测量,首先应估算样品的粘度值。再选择相对应的几组转速、转子组合来进行测量。当估计不出被测流体的大致粘度时,应假定被测样品为较高的粘度;试用由小到大的转子(表面积小)和由慢到快的转速。粘度测量的原则是高粘度的流体选用小的转子(表面积小)、慢转速;低粘度的流体选用大(表面积大)的转子和快的转速进行测试。 6.6转子与转速的组合所对应的粘度范围,可参考下表: 7、操作步骤 7.1 开机:开机前,将黄色保护盖帽取下,显示屏亮,但电机不工作,预热 20min。

橡胶基础知识

橡胶基础知识 张殿荣《现代橡胶配方设计(第二版)》出版日期: 2001 丁苯橡胶、顺丁橡胶等非结晶性橡胶,不配合补强剂时,硫化胶的强度很低,根本无法使用。因此长期以来,人们为提高橡胶性能、改善加工工艺、降低材料成本等进行了大量的实践。 硫化体系(包括交联剂、助交联剂、促进剂、活性剂)可使线型的橡胶大分子通过化学交联,形成一个立体空间网络结构,从而使可塑的粘弹性胶料,转变成高弹性的硫化胶;补强填充剂则能保证胶料具有要求的力学性能,改善加工工艺性能和降低成本;软化剂等加工助剂可使胶料具有必要的工艺性能,改善耐寒性,也可降低成本;防老剂能提高硫化胶的耐老化性能,并对各种类型的老化起防护作用。 综上可见,橡胶材料是生胶与多种配合剂构成的多相体系,橡胶材料中各个组分之间存在着复杂的化学作用相物理作用。目前虽然可借助微机算出配方和某些物理性能之间的定量关系,但尚不能完全用理论计算的方法确定各种原材料的配比,在一定程度上仍依赖于长期积累的经验。 在配方设计方法方面,橡胶制品工业长期以来使用单因素的均匀变量为基础的传统方法。1951年,英国的鲍克斯和威尔逊创立3三因素以上的试验设计法。近年来随着计算机的发展与普及,把科学的数理方法如正交试验设计法、回归分析法应用到橡胶配方优化设计上,可使橡胶配方设计由单因素的多次试验改为多因素的一次试验,应用计算机进行配方试验的数据处理,优选配方,通过少量的试验,即可获取大量的有用信息,从而简化了实验程序,加快了研究进程,节约了大量的人力、物力和时间,同时能发现配方中各组分与硫化胶性能的相关性与规律性。 正交试验: 因子——影响胶料性能指标的因素的通称,如原材料,工艺条件等;水平——指每个因子可能处于的状态,它可以是原材料的品种、用量,也可以是工艺参数等。 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下基本原则: ①在不降低质量的情况下,降低胶科的成本;②在不提高胶构成本的情况下,提高产品质量。要使橡胶制品的性能、成本和工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原村科配合的内存规律,设计出实用配方。 基础配方 基础配方又称标准配方,一般是以生胶和配合剂的鉴定为目的。当某种橡胶和配合剂首次面世时,以此检验其基本的加工性能和物理性能。其设计的原则是采用传统的配合量,以便对比,配方应尽可能的简化,重现性较好。基础配方仅包括最基本的组分,由这些基本的组分组成的胶料,既可反映出胶料的基本工艺性能,又可反映硫化胶的基本物理性能。可以说,这些基本组分是缺一不可的。在基础配方的基础上,再逐步完善、优化,以获得具有某些特性要求的性能配方。不同部门的基础配方往往不同,但同一胶种的基础配方基本上大同小异。 天然橡胶(NR)、异戊橡胶(IR)和氯丁橡胶(CR)可用不加补强剂的纯胶配合,而一般合成橡胶的纯胶配合,其物理—机械性能太低而无实用性,所以要添加补强剂。

USP34-NF29 911 粘度 中文翻译

<911> VISCOSITY Viscosity is a property of liquids that is closely related to the resistance to flow. It is defined in terms of the force required to move one plane surface continuously past another under specified steady-state conditions when the space between is filled by the liquid in question. It is defined as the shear stress divided by the rate of shear strain. The basic unit is the poise; however, viscosities commonly encountered represent fractions of the poise, so that the centipoise (1 poise = 100 centipoises) proves to be the more convenient unit. The specifying of temperature is important because viscosity changes with temperature; in general, viscosity decreases as temperature is raised. While on the absolute scale viscosity is measured in poises or centipoises, for convenience the kinematic scale, in which the units are stokes and centistokes (1 stoke = 100 centistokes) commonly is used. To obtain the kinematic viscosity from the absolute viscosity, the latter is divided by the density of the liquid at the same temperature, i.e., kinematic viscosity = (absolute viscosity)/(density). The sizes of the units are such that viscosities in the ordinary ranges are conveniently expressed in centistokes. The approximate viscosity in centistokes at room temperature of ether is 0.2; of water, 1; of kerosene, 2.5; of mineral oil, 20 to 70; and of honey, 10,000. 粘度是液体的属性之一,它与流动阻力紧密相关。在规定的条件下,待测液体充满平面间的空隙,在不断转动过程中,所产生的力定义为粘度。该粘度等于剪切应力除以剪切应变率。基本单位是泊;但是经常遇到泊的分数表示的粘度,因此厘泊(1泊=100厘泊)是更常用的单位。由于粘度随温度变化明显,需指明温度。通常情况下,粘度随温度的升高而减小。尽管粘度的测量是以绝对粘度形式表示,其常用单位是泊或厘泊,但为方便期间常常得到的是运动粘度,常用单位是司和厘司(1司=100厘司)。为了从绝对粘度得到运动粘度,绝对粘度需要除以同温度下的液体密度。如,运动粘度=绝对粘度/密度。单位的大小便于表示常规范围内的粘度为厘司。在室温情况下,以厘司估计的粘度,醚为0.2;水为1;煤油为2.5;矿物油为20~70;蜂蜜为10,000。 Absolute viscosity can be measured directly if accurate dimensions of the measuring instruments are known, but it is more common practice to calibrate the instrument with a liquid of known viscosity and to determine the viscosity of the unknown fluid by comparison with that of the known. 如果已知测量仪器的准确尺寸,可以直接测得绝对粘度。但是更常用的做法是使用已知粘度的液体校准仪器,通过与已知粘度的液体相对比,测定未知粘度的液体。 Many substances, such as the gums employed in pharmacy, have variable viscosity, and most of them are less resistant to flow at higher flow rates. In such cases, a given set of conditions is selected for measurement, and the measurement obtained is considered to be an apparent viscosity. Since a change in the conditions of measurement would yield a different value for the apparent viscosity of such substances, the instrument dimensions and conditions for measurement must be closely adhered to by the operator. 许多物质,如制药中用到的胶,具有可变粘度。它们中的大多数在高流速的情况下,流动阻力较低。在这种情况下,为了测量粘度选定一个特定条件,得到的测量值被认为是表观粘度。因此测量条件的改变会造成这类物质的表观粘度值的不同。操作者必须严格遵守测量时的仪器尺寸和条件。 Measurement of Viscosity— The usual method for measurement of viscosity involves the determination of the time required for a given volume of liquid to flow through a capillary. Many capillary-tube viscosimeters have been devised, but Ostwald and Ubbelohde viscosimeters are among the most frequently used. Several types are described, with directions for their use, by the American Society for Testing and Materials (ASTM, D-445). The viscosity of oils is expressed on arbitrary scales that vary from one country to another, there being several

石油产品运动粘度测定仪操作规程精选文档

石油产品运动粘度测定 仪操作规程精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

石油产品运动粘度测定仪操作规程 一、准备工作: 1、试样含有水或机械杂质时,在试验前必须经过脱水处理,用滤纸过滤除去机械杂质。对于粘度大的试样,可以用瓷漏斗,利用水流泵或其他真空泵进行吸滤,也可以在加热至50~100℃的温度下进行脱水过滤。 2、在测定试样的粘度之前,必须将粘度计用溶剂油或石油醚洗涤,如果粘度计沾有污垢,就用铬酸洗液、水、蒸馏水或95%乙醇依次洗涤。然后放入烘箱中烘干或用通过棉花滤过的热空气吹干。 3、测定粘度时,在内径符合要求且清洁、干燥的毛细管粘度计内装入试样。在装试样之前,将橡皮管套在支管上,并用手指堵住管身的管口,同时倒置粘度计,然后将管插入装着试样的容器中,这是利用橡皮球将液体吸到标线b处,同时注意不要使试样产生气泡和裂隙。当液面达到标线b时,就从容器里提起粘度计,并迅速恢复其正常状态,同时将管身外壁所沾试样擦去。 4、将装有试样的粘度计浸入事先准备妥当的恒温浴中,并用夹子将粘度计固定在支架上,在固定位置时,必须把毛细管粘度计的扩张部分浸入一半。 二、试验步骤: 1、将粘度计调整为垂直状态,要利用铅垂线从两个相互垂直的方向去检查毛细管的垂直情况。将恒温浴调整到规定的温度,把装好试样的粘度计浸在恒温浴内,80,100℃必须恒温20min。40,50℃必须恒温15min.20℃必须恒温~-50℃必须恒温15min.

2、利用毛细管粘度计管身1口所套着的橡皮管将试样吸入扩张部分3,使试样液面稍高于标线a,并且注意不要让毛细管和扩张部分3的液体产生气泡或裂隙。 3、此时观察试样在管身中的流动情况,液面正好到达标线a时,开动秒表,液面正好流到标线b时,停止秒表。试样的液面在扩张部分流动时,注意恒温浴中正在搅拌的液体要保持恒定温度(试验的温度必须保持恒定到+℃),而且扩张部分中不应出现气泡。 4、用秒表记录下来的流动时,应重复测定至少四次,其中各次流动时间与其算术平均值的差数应符合如下的要求:在温度100~15℃测定粘度时,这个差数不应超过算术平均值的+%;在低于15~-30℃测定粘度时,这个差数不应超过算术平均值的+%;低于-30℃测定粘度时,这个差数不应超过算术平均值的+%。然后,取不少于三次的流动时间所得的算术平均值,作为试样的平均流动时间。

门尼焦烧的测试规定

门尼焦烧的测试规定 This model paper was revised by the Standardization Office on December 10, 2020

门尼焦烧的测试规定 门尼焦烧的测试规定 根据国标GB1233规定;当用大转子转动的门尼粘度值下降到最低点后再转入上升5个门尼粘度值所对应的时间,即为焦烧时间(t5)。从最低门尼粘度值上升35个门尼粘度值的时间为T35。 硫化指数⊿t30=t35---t5(用大转子实验时) 硫化指数可以表征硫化速度;硫化速度小,表示硫化速度快,硫化速度大,表示硫化速度慢。 可塑度试验方法及计算方法 计算公式:P=h0-h2/h0+h1 h0—试样原高度。 h1—压缩3分钟后高度。 h2—恢复3分钟后高度。 !试验方法:温度:70±1℃。预热3分钟,压缩3分钟,常温下恢复3分钟,量取试样高度按上边公式计算. 氯化锌母液的制备方法

在水中溶解50g浓盐酸,加入氯化锌使之饱合,(用量可达9Kg)然后加水调整相对密度,使久至为止。每间隔即制备成一种,盖紧封闭,放置数天后使溶液澄清,如果还有氯化锌沉淀,则可加入少量盐酸使之溶解。 焦烧 混炼胶的焦烧多见于梅雨季节开始。 由于有了门尼粘度计及硫化仪,不论是新炼的混炼胶还是返炼胶料都能随时进行测定,这样就能防止胶料焦烧。在大批量生产混炼胶的工厂里,没有必要进行全面测定,仅对规定要注意的胶料可采用一种测定方法。以下介绍防止焦烧的方法。 首先要减少硫化促进剂的配合量,但这样会导致橡胶制品的物理性能下降,了解这一点是非常重要的,硫化促进剂单独使用的情况很少,多半是采用二种、三种促进剂并用的方式。一旦配合出了问题,就不能防止胶料焦烧,一般来说,通用橡胶用的主促进剂为曝p ill类或次磺酞胺类促进剂。主促进剂DM是万能型促进剂;促进剂M的焦烧性高,次磺酞胺类促进剂虽然有耐焦烧性,但由于硫化的起步速度慢,所以要根据胶料使用要求进行选择。肌类、秋兰姆类系辅助促进剂。在盛夏高温季节,辅助促进剂要减量使用,而主促进剂则尽量不减少其配合量。 将10- 20质量份的再生胶加入通用橡胶中,经共混后制成的胶料,具有防止焦烧的作用。另外,对共混胶料,要考虑设计加成性配方,在研究焦烧性与硫化胶物理性能的基础上作一些必要的修正。 在配合白炭黑胶料中,要添加二甘醇、聚乙二醇、有机胺助促进剂SL等。但添加以上配合剂过量的话也会导致焦烧,因此必须加以注意。标准的配合量应该是(与白炭黑相比)二甘醇与聚乙二醇(分子量为400) 60%,有机胺促进剂SL为%。

旋转粘度计实用标准操作规程

实用文案 旋转粘度计使用说明书

一、概述 NDJ-1型旋转粘度计是根据上海市企业标准Q/YXYY 20-2000《NDJ-1型旋转式粘度计》规定的技术要求设计和制造的,它可广泛应用于对油脂、油漆、塑料、食品、药物、胶粘剂等各种流体粘度的测量。 二、主要技术指标及参数 1、测量范围:(10~100000)mPa·s;

2、测量误差:±5%(F·S); 3、测量转子:1号、2号、3号、4号转子; 4、转子转速:6转/分、12转/分、30转/分、60转/分 5、供电电源:AC220V±10% 50Hz±10%; 6、外形尺寸:300㎜×300㎜×450mm; 7、净重: 1.5kg(不包括支架)。 三、仪器结构和安装 (一)仪器结构 1、结构原理 结构原理图见图1所示。 图1 ⑴同步电机以稳定的转速旋转,连接刻度圆盘,再通过游丝和转轴带动转子旋转。如果转子未受到液体的阻力,则游丝、指针与刻度盘同速旋转,指针在刻度圆盘上指出的读数为“0”。而当转子受到液体的粘滞阻力,则游丝产生扭矩,与粘滞阻力抗衡,最后达到平衡,这时与游丝连接的指针在刻度圆盘上指示一定的读数(即游丝的扭转角)。 将读数乘上特定的系数即得到液体的粘度(mpa·s)。

⑵利用齿轮系统及离合器进行变速,由专用旋转旋钮操作,分四档转速,可以根据测定需要选择。 ⑶按仪器不同规格附有1至4号四种转子,可根据被测液体粘度的高低随同转速配合使用。 ⑷为使读数精确,仪器装有指针固定控制装置(指针控制杆)。当转速较快时(30转/分,60 转/分),无法在旋转时读数,这时可以按下指针控制杆,使指针固定下来,便于读取准确的读数。 ⑸保护架是为了稳定测量和保护转子而专门设计的。使用保护架进行测量能取得较稳定的测量结果。 ⑹整套仪器配有固定支架和升降机构,一般在实验室中进行小量和定温测定时应固定使用。另外,仪器也可以脱离固定支架和升降机构手提使用。 2、整体结构 ⑴机头的结构示意图见图2所示。

门尼粘度

门尼粘度 门尼粘度(Mooney viscosity)又称转动(门尼) 粘度,是用门尼粘度计测定的数值,基本上可以反映合成橡胶的聚合度与分子量。门尼粘度计是一个标准的转子,以恒定的转速(一般2转/分),在密闭室的试样中转动。转子转动所受到的剪切阻力大小与试样在硫化过程中的粘度变化有关,可通过测力装置显示在以门尼为单位的刻度盘上,以相同时间间隔读取数值可作出门尼硫化曲线,当门尼数先降后升,从最低点起上升5个单位时的时间称门尼焦烧时间,从门尼焦烧点再上升30个单位的时间称门尼硫化时间。 门尼粘度反映橡胶加工性能的好坏和分子量高低及分布范围宽窄。门尼粘度高胶料不易混炼均匀及挤出加工,其分子量高、分布范围宽。门尼粘度低胶料易粘辊,其分子量低、分布范围窄。门尼粘度过低则硫化后制品抗拉强度低。门尼粘度-时间曲线还能看出胶料硫化工艺性能。 按照GB 1232标准规定,转动(门尼)粘度以符号Z100℃ 1+4 表示。其中Z——转动粘度值;1——预热时间为1min;4——转动时间为4min;100℃——试验温度为100℃。 习惯上常以ML100℃ 1+4 表示门尼粘度。 用途: 1.用于测定生胶或混炼胶的粘度、焦烧及硫化指数等 2.微机控制、数据显示、自动校准,是橡胶工业及科研单位理想的试验仪器.. 3.采用进口智能数字式温控仪表,调整设定简便,控温范围宽. 4.使用最新原理采用“主机+计算机+打印机”结构. 5.采用计算机控制和接口板进行数据的采集、保存、处理和打印试验结果及曲线. 6.软件平台可为Window 98/me/NT/XP等版本,可视化的图形软件窗口操作界面,使数字处理更加准确操作更简单、灵活、方便. 7.可靠性高全面体现高度自动化特点.

相关文档
最新文档