自由基共聚合练习题

自由基共聚合练习题
自由基共聚合练习题

自由基共聚合练习题

一、填空题:

二、选择题:

1.下列单体中,与丁二烯(e=1.05)共聚时,交替倾向最大的是()

A.PS(e=-1.08)

B.马来酸酐(e=2.25)

C.醋酸乙烯(e=-0.22)

D.丙烯腈(e=1.2)

2.一对单体工具和的竞聚率r1和r2的值将随()

A.局和时间而变化 B.局和温度而变化 C.单体配比不同而变化 D.单体的总浓度而变化

3.已知一对单体在进行共聚合反应时获得了恒比共聚物,其条件必定是()

A、r1=1.5,r2=1.5

B、r1=0.1,r2=1.0

C、r1=0.5,r2=0.5

D、r1=1.5,r2=0.7

4.在自由基聚合中,竞聚率为()时,可得到交替共聚物。

A

5.下列共聚中,理想共聚是(),理想恒比共聚是(),交替共聚是()

A.r1r=1

B.r1=r2=1

C.r1=r2

D.r1=r2=0

6.当r1>1 r2<1时,若提高聚合反应温度,反应将趋向于()

A 交替共聚

B 理想共聚 C嵌段共聚 D恒比共聚

7.当两种单体的Q.e值越接近则越()

A.越难共聚 B。趋于理想共聚 C.趋于交替共聚 D.趋于恒比共聚

8.两种单体的Q和e值越接近,就( )

A.难以共聚

B.倾向于交替共聚

C.倾向于理想共聚

D.倾向于嵌段共聚

9.有机玻璃板材是采用( )

A、本体聚合

B、溶液聚合

C、悬浮聚合

D、乳液聚合

三、概念题:

1、共聚物

2、自由基共聚合反应

3、竞聚率

4、理想恒比共聚

5、Q,e概念

四、论述题:

1.按照大分子链的微观结构分类,共聚物分几类?它们在结构上有何区别?各如何制备?

2.用动力学法推导共聚物组成方程所需作的假设?

3.共聚物平均组成的控制?

4.竞聚率的定义?说明其物理意义?如何根据竞聚率值判断两单体的相对活性?如何根据竞聚率值判断两单体是否为理想恒比共聚?

5.简述几种典型竞聚率数值的意义,以r1 = k11 / k12为例

r1 = 0, r1 = 1 ,r1 = ,r1 < 1, r1 > 1,

6.在自由基共聚反应中,苯乙烯单体的相对活性远大于醋酸乙烯酯,若在醋酸乙烯酯均聚时加入少量苯乙

烯将会如何?为什么?

7.如何用Q,e概念判断两种聚合物的共聚倾向?

8.Q-e概念?

五、计算题:

1.苯乙烯(M1)与丁二烯(M2)在5℃下进行自由基乳液共聚时,其r1=0.64,r2=1.38。已知苯乙烯和丁二烯的

均聚链增长速率常数分别为49和251l/(mol*s)。要求

(1)计算共聚时的反应速率常数

(2)比较两种单体和两种链自由基的反应活性的大小

(3)做出此共聚反应的F1-f1曲线

(4)要制备组成均一的共聚物需要采取什么措施?

2.甲基丙烯酸甲酯的浓度为7mol·dm-3 ,5-乙基-2乙烯基吡啶浓度为2mol·dm-3,竞聚率

r1=0.40 ,r2=0.6。(1)计算聚合共聚物起始物组成;(2)求共聚物组成与单体组成相同时两单体摩尔配比。

3、苯乙烯的浓度为6mol/L, 竞聚率r1 =0.80,异戊二烯的浓度为2mol/L,r2=1.68,求聚合共聚物的起始

组成(以摩尔分数表示),并写出共聚物瞬时组成与单体组成的定量关系。

4.氯乙烯(r1=1.67)与醋酸乙烯酯(r2=0.23)共聚,希望获得初始共聚物瞬时组成和85%转化率时共聚物

平均组成为5%(摩尔分数)醋酸乙烯酯,分别求两单体的初始配比。

5.苯乙烯(M1)与丁二烯(M2)在进行自由基共聚合,其r1= 0.64, r2= 1.38。已知两单体的均聚链增长速率常

数分别49和25.1 L/mol.s。

a)计算共聚时的交叉增长反应速度常数;

b)比较两单体及两链自由基的反应活性的大小。

6.苯乙烯(M1)和丙烯酸甲酯(M2)在苯中共聚,已知r1=0.75,r2=0.20,[M1]=1.5mol/L, [M2]=3.0mol

/L。作共聚物组成F1--f1曲线,并求起始共聚物的组成。

高分子化学 自由基聚合练习题

1、自由基向()转移,导致诱导分解,使引发剂效率降低,同时也使聚合度降低。 A、引发剂 B、单体 C、高分子链 D、溶剂 2、下列反应过程能使自由基聚合物聚合度增加的是() A、链增长反应 B、链引发反应 C、链转移反应 D、链终止反应 3、自由基聚合体系中出现自动加速现象的原因是。 A、单体浓度降低 B、引发剂浓度降低 C、体系温度升高 D、体系粘度增大 4、对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分子量将。 A、减小 B、说不准 C、不变 D、增大 5、生产聚氯乙烯时,决定产物分子量的因素是。 A、聚合温度 B、引发剂种类 C、引发剂浓度 D、单体浓度 6、在高压聚乙烯(LDPE)中存在长支链,其形成原因是。 A、向引发剂链转移 B、分子内链转移 C、向聚合物的链转移 D、向单体的链转移 7、α-甲基苯乙烯的Tc=25℃,则在下列()条件下可能形成高聚物。 A、聚合温度≥25℃ B、聚合温度=25℃ C、聚合温度<25℃ 8、苯乙烯在60℃进行自由基聚合时的链终止方式为。 A、偶合终止 B、歧化终止 C、既有偶合终止也有歧化终止,但以歧化终止为主 D、既有偶合终止也有歧化终止,但以偶合终止为主 9、甲基丙烯酸甲酯在贮运过程中,为了防止聚合,可以考虑加入。 A、甲苯 B、AIBN C、对苯二酚 D、甲基乙烯基酮 10、本体聚合至一定转化率时会出现自动加速效应,这时体系中的自由基浓度和寿命τ的变化规律为。 A、[M*]增加,τ缩短 B、[M*]增加,τ延长 C、[M*]减少,τ延长 11、对于自由基聚合,聚合温度升高,歧化终止的比例将。 A、增大 B、说不准 C、减小 D、不变

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。

自由基聚合习题

4. 下列单体适于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合,并说明理由。CH2=CHCl CH2=CHCl2CH2=CHCN CH2=C(CN)2CH2=CHCH3CH2=C(CH3)2 CH2=CHC6H5CF2=CF2CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 CH2=CHCl 只能进行自由基聚合。Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CHCl2能进行自由基和阴离子聚合,因为两个氯原子使诱导效应增强。 CH2=CHCN 适合自由基聚合和阴离子聚合。-CN是较强的吸电子取代基,并有共轭效应。 CH2=C(CN)2 CH2=CHCH3不能进行自由基、阳离子、阴离子聚合,只能进行配位聚合,因为一个甲基供电性弱,不足以使丙烯进行阳离子聚合。 CH2=C(CH3)2只能进行阳离子聚合。-CH3为推电子取代基,-CH3与双键有超共轭效应,两个甲基都是推电子取代基,其协同作用相当于强的推电子取代基,有利于双键电子云密度增加和阳离子进攻。 CH2=CHC6H5可进行自由基、阳离子、阴离子聚合。因为共轭体系中电子流动性大,容易诱导极化。 CF2=CF2适合自由基聚合。F原子体积小。 CH2=C(CN)COOR适合阴离子聚合,两个吸电子取代基其协同作用相当含有强的吸电子取代基,并兼有共轭效应,只能进行阴离子聚合。 CH2=C(CH3)-CH=CH2 5. 判断下列烯类单体能否进行自由基聚合,并说明理由。 CH2=C(C6H5)2ClCH=CHCl CH2=C(CH3)C2H5CH3CH=CHCH3 CH2=C(CH3)COOCH3CH2=CHOCOCH3CH3CH=CHCOOCH3 CH2=CHCH3 CH2=C(C6H5)2不能通过自由基聚合形成高相对分子质量聚合物。因为C6H5-取代基空间位阻大,只能形成二聚体。 ClCH=CHCl不能通过自由基聚合形成高相对分子质量聚合物。因为单体结构对称,对1,2-二取代造成较大的空间位阻。 CH2=CHCH3与CH2=C(CH3)C2H5均不能通过自由基聚合形成高相对分子质量聚合物。由于双键的电荷密度大,不利于自由基的进攻,且易转移生成较稳定的烯丙基型自由基,难于再与丙烯等加成转变成较活泼的自由基,故得不到高聚物,前者只能进行配位阴离子聚合,后者只能进行阳离子聚合。 CH3CH=CHCH3不能通过自由基聚合形成高相对分子质量聚合物。因为结构结称、位阻大,且易发生单体转移生成烯丙基稳定结构。 CH2=C(CH3)COOCH3能通过自由基聚合形成高相对分子质量聚合物。因为是1,1-二元取代基,甲基体积较小,-COOCH3为吸电子取代基,-CH3为推电子取代基,均有共轭效应。 CH2=CHOCOCH3能通过自由基聚合形成高相对分子质量聚合物。 CH3CH=CHCOOCH3不能通过自由基聚合形成高相对分子质量聚合物。由于是1,2-二元取代基,结构结称,空间阻碍大。 CF2=CFCl能通过自由基聚合形成高相对分子质量聚合物。这是因为F原子体积很小,

第二章_自由基聚合-习题

第二章自由基聚合-习题 1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。 2.什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80℃自由基聚合时的平衡单体浓度。 3.什么是自由基聚合、阳离子聚合和阴离子聚合? 4.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。 CH 2=CHCl,CH 2 =CCl 2 ,CH 2 =CHCN,CH 2 =C(CN) 2 ,CH 2 =CHCH 3 ,CH 2 =C(CH 3 ) 2 , CH 2=CHC 6 H 5 ,CF 2 =CF 2 ,CH 2 =C(CN)COOR, CH 2=C(CH 3 )-CH=CH 2 。 5.判断下列烯类单体能否进行自由基聚合,并说明理由。 CH 2=C(C 6 H 5 ) 2 ,ClCH=CHCl,CH 2 =C(CH 3 )C 2 H 5 ,CH 3 CH=CHCH 3 , CH 2=C(CH 3 )CO℃H 3 ,CH 2 =CH℃℃H 3 ,CH 3 CH=CHCO℃H 3 。 6.对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 7.以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由基聚合历程中各基元反应。 8.对于双基终止的自由基聚合反应,每一大分子含有1.30个引发剂残基。假定无链转移反应,试计算歧化终止与偶合终止的相对量。 9.在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接? 10.自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系? 11.自由基聚合常用的引发方式有几种?举例说明其特点。 12.写出下列常用引发剂的分子式和分解反应式。其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同? (1)偶氮二异丁腈,偶氮二异庚腈。 (2)过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。 (3)过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N二甲基苯胺。 13.60℃下用碘量法测定过氧化二碳酸二环己酯(DCPD)的分解速率,数据列于下 表,求分解速率常数k d (s -1 )和半衰期t 1/2 (hr)。

自由基聚合习题参考答案

2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。 CH 2=CHOCOCH 3:醋酸乙烯酯,能,吸电子基团。 CH 2=C(CH 3)COOCH 3:甲基丙烯酸甲酯,能。 CH 3CH=CHCOOCH 3 :不能,1,2双取代,位阻效应。 CF 2=CFCl :能,结构不对称,F 原子小。 计算题 1. 甲基丙烯酸甲酯进行聚合,试由H ?和S ?来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。 解:由教材P75上表3-3中查得:甲基丙烯酸甲酯H ?=-56.5kJ/mol ,S ?=-117.2J/mol K 平衡单体浓度:)(1]ln[ΘΘ?-?= S T H R M e T=77℃=350.15K ,=e M ]ln[ 4.94*10-3mol/L T=127℃=400.15K ,=e M ]ln[0.0558mol/L T=177℃=450.15K ,=e M ]ln[0.368mol/L T=227℃=500.15K ,=e M ]ln[ 1.664mol/L

第三章 自由基聚合_习题

第三章自由基聚合_习题 1、下列烯类单体能否进行自由基聚合?并解释原因。 CH2=C(C6H5)2CH2=C(CH3)C2H5 CH3CH=CHCH3C l CH=CHC l CF2=CF2 CH2=C(CH3)COOCH3CH2=CHCOOCH3 CH2=CHCN CH2=C(CH3)CH=CH 2、以偶氮二异丁腈为引发剂,写出醋酸乙烯酯聚合历程中各基元反应式。 3、PVA的单体是什么?写出其聚合反应式。 4、试写出氯乙烯以偶氮二异庚腈为引发剂聚合时的各个基元反应。 5、甲基丙烯酸甲酯聚合时,歧化终止的百分比与温度的依赖性如下表所示: 计算: (a)歧化终止与偶合终止的活化能差值; (b)偶合终止为90%时的温度。 6、如果某引发剂的半衰期为4 hr,那么反应12 hr后,引发剂还剩余多少(百分比)没有分解? 7、写出下列常用引发剂的分子式和分解反应式。 偶氮二异丁腈,偶氮二异庚腈,过氧化二苯甲酰,过氧化二碳酸二(2-乙基己酯), 异丙苯过氧化氢,过氧化羧酸叔丁酯,过硫酸钾-亚硫酸盐体系,过氧化氢-亚铁盐体系

8、苯乙烯在苯中以过氧化二苯甲酰为引发剂、80℃下进行聚合反应。已知: k d=2.5×10-4S-1,E d=124.3kJ·mol-1,试求60℃的k d值和引发剂的半衰期。 9、直接光引发和加光引发剂的光引发有什么不同? 10、据报道,过氧化二乙基的一级分解速率常数为1.0×1014e-35000cal/RT s-1,试预测这种引发剂的使用温度范围。 11、在稳态状态下,如果[M×]=1×10-11mol/L,那么在30、60、90分钟后,[M×]分别等于多少? 12、何为自动加速作用?其出现的根本原因是什么? 13、阻聚作用与缓聚作用的定义,常见阻聚剂有哪几种类型?它们的阻聚机理有什么不同? 14、单体溶液浓度为0.20 mol/L,过氧化物引发剂浓度为4.0×10-3 mol/L,在60℃下加热聚合,问需多长时间能达到50%的转化率?计算时采用如下数据:k p=145 L/mol×s,k t=7.0×107 L/mol×s,f=1,引发剂半衰期为44 hr。 15、用引发剂W在60℃下热引发单体Z(单体浓度8.3 mol/L)进行本体聚合,得到下列数据: 若试验证明R p=4.0×10-4[I]1/2,请计算C M,k p/k t1/2和fk d的值。在聚合中,向引发剂链转移重要吗?如果重要,请简述怎样计算C I。 16、氧化还原体系Ce4+-醇可以引发自由基聚合: 链增长反应为:

自由基共聚合练习题

自由基共聚合练习题 一、填空题: 1、根据共聚物大分子链中单体单元的排列顺序,共聚物分为一、 _、 _ _和丄 2、共聚中控制聚合物平均组成的方法______ 、_____ 。 3、竞聚率的物理意义是,对于r i=r 2=1的情况,称为,r i=r 2=0,称而门<1和r2<1时,共聚 组成曲线存在恒比点,恒比点原料组成公式为—。_ 4、从竞聚率看,理想共聚的典型特征为_______ 。 5、M i-M 2两单体共聚,门=0.75 ,「2=0.20。其共聚曲线与对角线的交点称为_________ 。若f i°=0.80,随共聚进 行到某一时刻,共聚物组成为F i,单体组成为f i,则f i ____________ 汕,F i ______ F i°(大于或小于)。 6、单体的相对活性习惯上用_____ V定,自由基的相对活性习惯上用______ V定。在Q —e值判断共聚行为时,Q代表______ , e代表_____ 。 二、选择题: I ?下列单体中,与丁二烯(e = I.05 )共聚时,交替倾向最大的是( ) A. PS (e = -I.08 ) B.马来酸酐(e = 2.25 ) C.醋酸乙烯(e = -0.22 ) D.丙烯腈(e = i.2) 2. 一对单体工具和的竞聚率r i和「2的值将随( ) A.局和时间而变化 B.局和温度而变化 C.单体配比不同而变化 D.单体的总浓度而变化 3. 已知一对单体在进行共聚合反应时获得了恒比共聚物,其条件必定是( ) A、r i=i.5,r 2=i.5 B、r i =0.i,r 2=i.0 C、r i=0.5,r 2=0.5 D、r i=i.5,r 2=0.7 4. 在自由基聚合中,竞聚率为( )时,可得到交替共聚物。 r l=n=l B 丁丹D 巧§ ryq A

自由基聚合习题

1、目前悬浮聚合法主要用于生产(C) A、PVC、PVDC B、PS C、PE D、PP 2、苯醌是常用的分子型阻聚剂,一般用单体的(D)就能达到阻聚效果 A、0.5%~1.0% B、1.0%~2.0% C、2.0%~5.0% D、0.1%~0.001% 3、(C)的自由基是引发聚和反应常见的自由基 A、高活性 B、低活性 C、中等活性 D、无活性 4、有机玻璃板材是采用(A) A、本体聚合 B、溶液聚合 C、悬浮聚合 D、乳液聚合 5、(A)不是高效阻聚剂 A、硝基苯 B、苯醌 C、三氯化铁 D、氧气 6、某工厂用PVC为原料生产塑制品时,从经济效果和环境方面考虑,他们决定用(C)聚合方法生产 A、本体聚合法 B、悬浮聚合法 C、乳液聚合法 D、溶液聚合法 7、对于自由集聚和,在其他条件保持不变的前提下提升聚合温度,得到的聚合物分子量将(B) A、减小 B、增大 C、不变 D、不一定 二、判断题 8、苯乙烯通常选用本体法和悬浮法聚合较少采用乳液法(√) 9、扩散控制不一定导致聚合速率的自动加速(√) 10、苯乙烯不可进行热聚合(×)

11、引发效率不是10%的主要原因是(笼闭效应)、(诱导分解) 12、列举四种常见的可进行分解的聚合反应的单体(乙烯)(氯乙烯)(醋酸乙烯)(甲基丙烯酸甲酯) 13、(偶氮类引发剂)分解时有氮气逸出,工业上可用作泡沫塑料的发泡剂 四、问答题 14.写出下列常用引发剂的分子式和分解反应式。其中哪些是水溶性引发剂,哪些是油溶性引发剂,使用场所有何不同? (1)偶氮二异丁腈,偶氮二异庚腈。 (2)过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。 (3)过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N 二甲基苯胺。 解: (1) 偶氮二异丁腈: 偶氮二异庚腈: CH 2C CN CH 3N N C CN CH 3 CH 2CH 2C CN CH 3 + N 2H C CH 3 CH 3 H C CH 3H 3C H C CH 3CH 3 2 (2) 过氧化二苯甲酰: C O O O C O C O O 2 无单体 2 + 2CO 过氧化二碳酸二乙基己酯:

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1、判断下列单体能否进行自由基聚合并说明理由 H2C CHCl H2C CH H2C CCl2H2C CH2H2C C H2C CHCN H2C C(CN)2H2C CHCH3F2C CF2ClHC CHCl H2C C CH3 COOCH3H2C C CN COOCH3 HC CH OC CO O 答: (1)可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2)可以。为具有共轭体系的取代基。 (3)可以。结构不对称,极化程度高,能自由基聚合。 (4)可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5)不能。1,1—二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不能进一步反应。 (6)可以。吸电子单取代基。 (7)不可以。1,1双强吸电子能力取代基。 (8)不可以。甲基为弱供电子取代基。 (9)可以。氟原子半径较小,位阻效应可以忽略不计。 (10)不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11)可以。1,1-双取代。 (12)可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。

答: 自由基聚合:(1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应:(1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。 偶合终止:两链自由基的独电子相互结合成共价键的终止反应。 引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

第二章 自由基聚合-课堂练习题及答案

第二章 自 由 基 聚 合 课 堂 练 习 题 1. 对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π-π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。 解: (1) 对单取代乙烯,空间位阻小,可以聚合;对于1,1-二取代乙烯,一般情况下,取代基体积不大,空间位阻小,同时不对称结构使之更易极化,故1,1-二取代乙烯也可聚合;1,2-二取代乙烯,主要是结构对称的两端取代基的空间位阻要比单端二取代的位阻大得多,使之难以聚合。 (2) 对烯类单体来说,其参加聚合的官能团部分绝大多数情况下是碳碳双键或叁键,碳碳双键或叁键的两个碳电负性相同,不会使电子云密度大变化。大多数烯类单体的取代基的给电子或吸电子效应不是很强;自由基是电中性的,对其稳定作用没有太严格的要求,几乎所有取代基对自由基都有一定的稳定作用,因此发生自由基聚合的单体多。少数带有强电子效应取代基的单体,使碳碳双键或叁键的电子云密度发生较大变化,且取代基对生成的离子活性中心有很好的稳定作用,才能进行离子聚合。 (3) π-π体系单体具有大共轭效应,可在诱导极化下产生电子云的流动,从而产生利于在相应反应条件下的电子云密度分布,使反应容易进行,因此这类单体可发生自由基、阴离子、阳离子聚合。 2. 推导自由基聚合动力学方程时,作了哪些基本假定? 解:在不考虑链转移反应的前提下,作了三个基本假定:等活性假定,即链自由基的活性与链长无关;稳态假定,即在反应中自由基的浓度保持不变;聚合度很大假定。 3. 聚合反应速率与引发剂浓度平方根成正比,对单体浓度呈一级反应各是哪一机理造成的? 解:R p 与[I]1/2成正比是双基终止造成的,R p 与[M]成正比是初级自由基形成速率远小于单体自由基形成速率的结果。 4. 单体浓度0.2mol/L ,过氧类引发剂浓度为4.2×10-3mol/L, 在60O C 下加热聚合。如引发剂半衰期为44hr ,引发剂引发效率f=0.80,k p =145L/mol·s ,k t =7.0×107 L/mol·s ,欲达5%转化率,需多少时间? 答案:t = 24113s=6.7h 。 解:(1)法:0][][ln M M = kp -21)(t d k fk []21I t )1ln(x - = kp -21)(t d k fk []21I t k d =ln2/t 1/2=ln2/44×3600=4.38×10-6(S -1), k p =145(L/mol .s ), k t =7.0×107(L/mol .s )

自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1判断下列单体能否进行自由基聚合?并说明理由 CN H ?C 二 c COOCH 3 答: (1) 可以。Cl 原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只 能自由基聚合。 ⑵可以。 为具有共轭体系的取代基。 ⑶可以。 结构不对称,极化程度高,能自由基聚合。 ⑷可以。 结构对称,无诱导效应共轭效应,较难自由基聚合。 ⑸不能。 1 , 1 一本基乙烯,一个本基具有很强的共轭稳疋作用,形成的稳疋自由基不 能进一步反应。 (6) 可以。吸电子单取代基。 (7) 不可以。1,1双强吸电子能力取代基。 (8) 不可以。甲基为弱供电子取代基。 (9)可以。 氟原子半径较小,位阻效应可以忽略不计。 (10) 不可以。 由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11) 可以。1,1-双取代。 (12) 可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。 H 2C 二 CHCI H 2C CH H 2C 二 CCI 2 H 2C 二 CH 2 H 2C 二CHCN H 2C 二 C(CN)2 H 2C 二CHCH 3 F 2C 二 CF 2 CIHC 二 CHCI CH 3 H 2C 二 C COOCH 3 HC 二 CH OC CO

答: 自由基聚合: (1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体- 单体,单体-聚合物,聚合物- 聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应: (1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。偶合终止:两链自由基的独电子相互结合成共价键的终止反应。引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,

教材习题参考答案解析_第三章自由基聚合

教材习题参考答案 第三章自由基聚合 思考题 1.烯类单体家具有下列规律: ①单取代和1,1-双取代烯类容易聚合, 而1,2-双取代烯类难聚合;②大部分烯类单体能自由基聚合,而能离子聚合的烯类单体却很少,试说明原因。 2. 下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH2=CHCl CH2=CCl2 CH2=CHCN CH2=C(CN)2 CH2=CHCH3 CH2=C(CH3)2 CH2=CHC6H5 CF2=CF2 CH2=C(CN)COOR CH2=C(CH3)-CH=CH2 答:CH2=CHCl:适合自由基聚合,Cl原子是吸电子基团,也有共轭效应,但均较弱。 CH2=CCl2:自由基及阴离子聚合,两个吸电子基团。 CH2=CHCN:自由基及阴离子聚合,CN为吸电子基团。 CH2=C(CN)2:阴离子聚合,两个吸电子基团(CN)。 CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。 CH2=CHC6H5:三种机理均可,共轭体系。 CF2=CF2:自由基聚合,对称结构,但氟原子半径小。 CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR) CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH2=C(C6H5)2 ClCH=CHCl CH2=C(CH3)C2H5 CH3CH=CHCH3 CH2=CHOCOCH3 CH2=C(CH3)COOCH3 CH3CH=CHCOOCH3 CF2=CFCl 答:CH2=C(C6H5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl:不能,对称结构。 CH2=C(CH3)C2H5:不能,二个推电子基,只能进行阳离子聚合。 CH3CH=CHCH3:不能,结构对称。 CH2=CHOCOCH3:醋酸乙烯酯,能,吸电子基团。 CH2=C(CH3)COOCH3:甲基丙烯酸甲酯,能。 CH3CH=CHCOOCH3:不能,1,2双取代,位阻效应。 CF2=CFCl:能,结构不对称,F原子小。 第三章自由基聚合 计算题

第3章_自由基聚合

第3章自由基聚合(Radical Polymerization) 【课时安排】 3.1 连锁聚合反应 1.5学时 3.2 自由基聚合机理 2.5学时 3.3 聚合反应动力学40分钟 3.4 聚合物的平均聚合度40分钟 3.5 影响自由基聚合反应因素10分钟 3.6 阻聚、缓聚20分钟 3.7 聚合热力学15分钟 习题讲解55学时 总计8 学时 【掌握内容】 1. 自由基基元反应每步反应特征,自由基聚合反应特征、聚合机理; 2. 常用引发剂的种类和符号,引发剂分解反应式,表征方法(四个参数),引发剂效率,诱导效应, 笼蔽效应,引发剂选择原则。 【熟悉内容】 1.热、光、辐射聚合。 2.聚合动力学研究方法。聚合初期:三个假设,四个条件,反应级数的变化,影响速率的四因素(M,I,T,P);聚合中后期的反应速率的研究:自动加速现象,凝胶效应,沉淀效应;聚合反应类型。 3 自由基聚合的相对分子质量分布。动力学链长,聚合度及影响其的四因素(M,I,T,P),链转 移:类型,聚合度,动力学分析,阻聚与缓聚。 4本体,溶液,悬浮,乳液四大聚合方法配方,基本组成,优缺点及主要品种 【了解内容】 1. 通用单体来源。 2. 自由基聚合进展。 3. 自由基聚合热力学(△E, △S,T,P) 【教学难点】 1. 对具体单体聚合热力学与动力学的综合分析 2. 终止方式的相对比例及其与体系状态的关系 3. 笼蔽效应与诱导效应 4. 不同条件下反应速率对单体与引发剂浓度的反应级数的推导与分析 5. 区别聚合反应速率、动力学链长、平均聚合度的影响因素和变化趋势 【教学目标】 1. 掌握自由基聚合相关基本概念。 2. 掌握自由基聚合常见单体、引发剂、阻聚剂、聚合方法。 3. 达到如下技能: (1)单体聚合能力的判断与类型的选择 (2)引发剂的选择及正确书写引发反应式 (3)正确书写任一体系的基元反应式 (4)根据动力学方程计算各参数,选择适当方法控制反应进程 【教学手段】课堂讲授,配以多媒体,辅以学生讨论及学生推导练习 【教学过程】

自由基聚合习题参考答案

自由基聚合习题参考答 案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

2. 下列烯类单体适于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 答:CH 2=CHCl :适合自由基聚合,Cl 原子是吸电子基团,也有共轭效应,但均较弱。 CH 2=CCl 2:自由基及阴离子聚合,两个吸电子基团。 CH 2=CHCN :自由基及阴离子聚合,CN 为吸电子基团。 CH 2=C(CN)2:阴离子聚合,两个吸电子基团(CN )。 CH 2=CHCH 3:配位聚合,甲基(CH 3)供电性弱。 CH 2=CHC 6H 5:三种机理均可,共轭体系。 CF 2=CF 2:自由基聚合,对称结构,但氟原子半径小。 CH 2=C(CN)COOR :阴离子聚合,取代基为两个吸电子基(CN 及COOR ) CH 2=C(CH 3)-CH=CH 2:三种机理均可,共轭体系。 3. 下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 答:CH 2=C(C 6H 5)2:不能,两个苯基取代基位阻大小。 ClCH=CHCl :不能,位阻效应,对称结构,极化程度低。 CH 2=C(CH 3)C 2H 5:不能,二个推电子基,只能进行阳离子聚合。 CH 3CH=CHCH 3:不能,位阻效应,结构对称,极化程度低。

第3章自由基聚合习题参考答案

第3章自由基聚合-习题参考答案 1判断下列单体能否进行自由基聚合?并说明理由 H2C 二CHCN H2C = C(CN) 2H2C二CHCH 3F2C-CF2ClHC 二CHCl CH3 CN I HC 二CH H2C 二C I H2C 二C I OC CO COOCH 3COOCH 3O 答: (1) 可以。Cl原子的诱导效应为吸电性,共轭效应为供电性两者相抵,电子效应微弱,只能自由基聚合。 (2) 可以。为具有共轭体系的取代基。 (3) 可以。结构不对称,极化程度高,能自由基聚合。 (4) 可以。结构对称,无诱导效应共轭效应,较难自由基聚合。 (5) 不能。1,1 —二苯基乙烯,二个苯基具有很强的共轭稳定作用,形成的稳定自由基不 能进一步反应。 (6) 可以。吸电子单取代基。 (7) 不可以。1,1双强吸电子能力取代基。 (8) 不可以。甲基为弱供电子取代基。 (9) 可以。氟原子半径较小,位阻效应可以忽略不计。 (10) 不可以。由于位阻效应,及结构对称,极化程度低,难自由基聚合 (11) 可以。1,1-双取代。 (12) 可以。1,1-双取代吸电子基团。 (13) 不可以。1,2-双取代,空间位阻。但可进行自由基共聚。 2、试比较自由基聚合与缩聚反应的特点。 H2C 二CHCl H2C CH H2^CC l2 H2C二CH2

答: 自由基聚合: (1)由链引发,链增长,链终止等基元反应组成,其速率常数和活化能均不等,链引发最慢是控制步骤。 (2)单体加到少量活性种上,使链迅速增长。单体-单体,单体-聚合物,聚合物-聚合物之间均不能反应。 (3)只有链增长才是聚合度增加,从一聚体增加到高聚物,时间极短,中间不能暂停。聚合一开始就有高聚物产生。 (4)在聚合过程中,单体逐渐减少,转化率相应增加 (5)延长聚合时间,转化率提高,分子量变化较小。 (6)反应产物由单体,聚合物,微量活性种组成。 (7)微量苯酚等阻聚剂可消灭活性种,使聚合终止。 缩聚反应: (1)不能区分出链引发,链增长,链终止,各部分反应速率和活化能基本相同。 (2)单体,低聚物,缩聚物中任何物种之间均能缩聚,使链增长,无所谓活性中心。 (3)任何物种之间都能反应,使分子量逐步增加,反应可以停留在中等聚合度阶段,只在聚合后期才能获得高分子产物。 (4)聚合初期,单体缩聚成低聚物,以后再由低聚物逐步缩聚成高聚物,转化率变化微小,反应程度逐步增加。 (5)延长缩聚时间分子量提高,而转化率变化较小。 (6)任何阶段都由聚合度不等的同系缩聚物组成。 (7)平衡和基团非等当量可使缩聚暂停,这些因素一旦消除,缩聚又可继续进行。 3、解释下列概念: 歧化终止,偶合终止,引发剂效率,笼蔽效应,诱导效应,自动加速现象,诱导期,聚合上限温度,悬浮聚合,乳液聚合,增溶作用,临界胶束浓度,胶束,种子乳液聚合, 答: 歧化终止:链自由基夺取另一自由基的氢原子或其他原子终止反应。偶合终止:两链自由基的独电子相互结合成共价键的终止反应。引发剂效率:引发剂在均裂过程中产生的自由基引发聚合的部份占引发剂分解总量的分率,以f表示。 笼蔽效应:引发剂分解产生的初级自由基,处于周围分子(如溶剂分子)的包围,像处在笼

高分子第三章习题复习课程

第三章自由基聚合 2、60℃过氧化二碳酸二乙基己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,计算分解速率速率常数和半衰期。 解:引发剂分解属于一级反应,故-d[I]/dt=kd[I] 积分得ln[I]/[I]0=-kdt,以ln[I]/[I]0对t作图,所得直线的斜率为-kd。 3、在甲苯中不同浓度下测定偶氮二异丁腈的分解速率常数,数据如下,求分解活化能。再求40℃和80℃下的半衰期,判断在这两温度下聚合是否有效。 解:引发剂分解速率常数与温度的关系遵守Arrhenius 经验式: kd=Ade-Ed/RT ln kd=lnAd-Ed/RT 在不同温度下,测定一引发剂的分解速率常数,作ln kd—1/T图,呈一直线。由截距可求得指前因子Ad,而根据斜率可求出分解活化能Ed。

ln kd=34.175-15191/T 斜率K=-Ed/R 则 Ed=-K×R = -(-15191)×8.314 =126298J lnAd=34.175 当T=313K时, kd=5.8×10-7s-1 t1/2=0.693/kd=1.2×106s =331h 当T=353K时 t1/2=1.35h 4、引发剂半衰期与温度的关系式中的常数A、B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61℃和45℃,试求A、B值和56℃的半衰期。

列方程组容易解此题 5.过氧化二乙基的一级分解速率常数为1.0×1014exp(-14 6.5kJ/RT),在什么温度范围使用才有效? 解:引发剂的半衰期在1-10h内使用时,引发剂较为有效 由于kd=ln2/t1/2,根据题意kd= 1.0×1014exp(-146.5kJ/RT), 6、苯乙烯溶液浓度为0.20mol·L-1,过氧类引发剂浓度为4.0×10-3 mol·L-1,在60℃下聚合,如引发剂半衰期为44h,引发剂效率f=0.80,kp=145L·mol-1·s-1,kt=7.0×107L·mol-1·s-1,欲达到50%转化率,需多长时间? 解:不考虑[I]变化时,引发剂的半衰期为t1/2=44h,则 用引发剂引发时,聚合速率方程为:积分得:(绿色的)

第三章自由基聚合

3 自由基聚合 3.1 课程的知识要点 自由基聚合反应机理、链引发反应、链增长反应、链终止反应和链转移反应,以及每步反应的特征、影响因素。聚合反应速率方程式及影响R P 的因素,自动加速现象原因及应用。X n 、ν及影响X n 的因素。引发剂和阻聚剂的种类、特点及应用。 3.2 本章习题 1、下列烯类单体适于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 CH 2=CHCl CH 2=CCl 2 CH 2=CHCN CH 2=C(CN)2 CH 2=CHCH 3 CH 2=C(CH 3)2 CH 2=CHC 6H 5 CF 2=CF 2 CH 2=C(CN)COOR CH 2=C(CH 3)-CH=CH 2 2、下列单体能否进行自由基聚合,并说明原因。 CH 2=C(C 6H 5)2 ClCH=CHCl CH 2=C(CH 3)C 2H 5 CH 3CH=CHCH 3 CH 2=CHOCOCH 3 CH 2=C(CH 3)COOCH 3 CH 3CH=CHCOOCH 3 CF 2=CFCl 3、甲基丙烯酸甲酯进行聚合,试由H ?和S ?来计算77℃、127℃、177℃、227℃时的平衡单体浓度,从热力学上判断聚合能否正常进行。 4、60℃过氧化二碳酸二环己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,试计算分解速率常数(s -1)和半衰期(h)。 时间 /h 0 0.2 0.7 1.2 1.7 DCPD 浓度 /(mol . L -1) 0.0754 0.0660 0.048 4 0.0334 0.0288 5、在甲苯中不同温度下测定偶氮二异丁腈的分解速率常数,数据如下,求分 6、引发剂半衰期与温度的关系式中的常数A 、B 与指前因子、活化能有什么关系?文献经常报道半衰期为1h 和10h 的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h 和10h 的温度分别为61℃和45℃,试求A 、B 值和56℃的半衰期。 7、过氧化二乙基的一级分解速率常数为1.0×1014exp (-146.5kJ/RT ),在什么温度范围使用才有效? 8、苯乙烯溶液浓度0.20 mol .L -1, 过氧类引发剂浓度为4.0?10-3mol .L -1, 在60℃下聚合,如引发剂半衰期44h, 引发剂效率f =0.80,k p =145 L .(mol .s)-1,k t =7.0?107 L .(mol .s)-1, 欲达到50%转化率,需多长时间?

高分子化学-潘祖仁-习题答案-自由基聚合

第三章自由基聚合习题 1. 举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化 对单体聚合热的影响。 2. 什么是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80°C自由基聚合时的平衡单体浓度。 3?什么是自由基聚合、阳离子聚合和阴离子聚合? 4. 下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。 CH2=CHCI,CH2=CCI2,CH2=CHCN,CH2=C(CN)2,CH2=CHCH3, CH2=C(CH3)2,CH2=CHC6H5,CF2=CF2,CH2=C(CN)COOR, CH2=C(CH3)-CH=CH20 5. 判断下列烯类单体能否进行自由基聚合,并说明理由。 CH2=C(C6H5)2, CICH=CHCI,CH2=C(CH3)C2H5, CH3CH=CHCH3, CH2=C(CH3)COOCH3, CH2=CHOCOCH3, CH3CH=CHCOOCH3O 6. 对下列实验现象进行讨论: (1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。 (2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。 (3)带有π- π共轭体系的单体可以按自由基、阳离子和阴离子机理进行聚合。7. 以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯和甲基丙烯酸甲酯自由基聚合历程中各基兀反应。 8. 对于双基终止的自由基聚合反应,每一大分子含有 1.30个引发剂残基。假定 无链转移反应,试计算歧化终止与偶合终止的相对量。 9. 在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接? 10. 自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系? 11. 自由基聚合常用的引发方式有几种?举例说明其特点。 12. 写出下列常用引发剂的分子式和分解反应式。其中哪些是水溶性引发剂,哪E 些是油溶性引发剂,使用场所有何不同? (1) 偶氮二异丁腈,偶氮二异庚腈。 (2) 过氧化二苯甲酰,过氧化二碳酸二乙基己酯,异丙苯过氧化氢。 (3) 过氧化氢-亚铁盐体系,过硫酸钾-亚硫酸盐体系,过氧化二苯甲酰-N,N 二甲基苯胺。 13.60 O C下用碘量法测定过氧化二碳酸二环己酯(DCPD的分解速率,数据列于下表,求分解速率常数k d(s-1)和半衰期t1∕2(hr)。 14. 解释引发效率、诱导分解和笼蔽效应。

相关文档
最新文档