竖曲线计算公式加强版

竖曲线计算公式加强版
竖曲线计算公式加强版

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l

②圆曲线的半径:R

③缓和曲线的长度:l0

④转向角系数:K(1或-1)

⑤过ZH点的切线方位角:α

⑥点ZH的坐标:xZ,yZ

计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,

公式中n的取值如下:

当计算第二缓和曲线上的点坐标时,则:

l为到点HZ的长度

α为过点HZ的切线方位角再加上180°

K值与计算第一缓和曲线时相反

xZ,yZ为点HZ的坐标

切线角计算公式:

二、圆曲线上的点坐标计算

已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R

③缓和曲线的长度:l0

④转向角系数:K(1或-1)

⑤过ZH点的切线方位角:α

⑥点ZH的坐标:xZ,yZ

计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:

当只知道HZ点的坐标时,则:

l为到点HZ的长度

α为过点HZ的切线方位角再加上180°

K值与知道ZH点坐标时相反

xZ,yZ为点HZ的坐标

三、曲线要素计算公式

公式中各符号说明:

l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度

l2——第二缓和曲线长度

l0——对应的缓和曲线长度

R——圆曲线半径

R1——曲线起点处的半径

R2——曲线终点处的半径

P1——曲线起点处的曲率

P2——曲线终点处的曲率

α——曲线转角值

四、竖曲线上高程计算

已知:①第一坡度:i1(上坡为“+”,下坡为“-”)

②第二坡度:i2(上坡为“+”,下坡为“-”)

③变坡点桩号:SZ

④变坡点高程:HZ

⑤竖曲线的切线长度:T

⑥待求点桩号:S

计算过程:

S、SZ为里程数据,往往有些人计算时误入,用等实际计算的距离计算!!

五、超高缓和过渡段的横坡计算

已知:如图,

第一横坡:i1

第二横坡:i2

过渡段长度:L

待求处离第二横坡点(过渡段终点)的距离:x

求:待求处的横坡:i

解:d=x/L

i=(i2-i1)(1-3d2+2d3)+i1

三、匝道坐标计算

已知:①待求点桩号:K

②曲线起点桩号:K0

③曲线终点桩号:K1

④曲线起点坐标:x0,y0

⑤曲线起点切线方位角:α0

⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)

⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy

②待求点的切线方位角:αT

计算过程:

注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。在计算器中若无此函数可编一个小子程序代替

第三节竖曲线

纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或圆曲线。

一、竖曲线要素的计算公式

相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。

1.二次抛物线基本方程:

ω:坡度差(%);

L:竖曲线长度;

R:竖曲线半径

2.竖曲线诸要素计算公式

竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω

竖曲线切线长:T=L/2=Rω/2

竖曲线上任一点竖距h:

竖曲线外距:

二、竖曲线最小半径(三个因素)

1.缓和冲击对离心加速度加以控制。

ν(m/s)

根据经验,a=0.5~0.7m/s2比较合适。我国取a=0.278,则Rmin=V2/3.6 或 Lmin=V2ω/3.6

2.行驶时间不过短 3s的行程

Lmin=V.t/3.6=V/1.2

3.满足视距的要求

分别对凸凹曲线计算。

(一)凸形竖曲线最小半径和最小长度

按视距满足要求计算

1.当L

Lmin = 2ST - 4/ω

2.当L≥ST时,

ST为停车视距。

以上两个公式,第二个公式计算值大,作为有效控制。

按缓和冲击、时间行程和视距要求(视距为最不利情况)计算各行车速度时的最小半径和最小长度,见表4-13。

表中:(1)一般最小半径为极限最小半径的1.5~2倍;

(2)竖曲线最小长度为3s行程的长度。

(二)凹曲线最小半径和长度

1.夜间行车前灯照射距离要求:

1)L

2) L≥ST

L

L≥STω /26.92 (4-15)

3s时间行程为有效控制。

例:

设ω=2%=0.02;则L=ωR

竖曲线最小长度L=V/1.2

例题4-3

ω=-0.09 凸形;

L=Rω=2000*0.09=180m

T=L/2=90m

E=T2/2R=2.03m

起点桩号=k5+030 - T =K4+940

起始高程=427.68 - 5%*90=423.18m 桩号k5+000处:

x1=k5+000-k4+940=60m

切线高程=423.18+60*0.05=426.18m

h1=x21/2R=602/2*2000=0.90m

设计高程=426.18 - 0.90=425.28m 桩号k5+100处:

x2=k5+100-k4+940=160m

切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=6.40m

设计高程=431.18 - 6.40=424.78m

竖曲线任意点标高计算方法

竖曲线任意点标高计算 方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

竖曲线任意点标高计算方法一、曲线要素的计算 1、转坡角ω=(i 1-i 2 )(上坡取正、下坡取负) 2、竖曲线曲线长L = ω× R ( R为曲线半径) 3、切线长T = L ÷ 2 4、外矢距 E = T2÷ 2R 二、任意点起始桩号、切线标高、改正值的计算 1、竖曲线起点桩号 = 变坡点里程-切线长 竖曲线终点桩号 = 变坡点里程+切线长 2、切线标高 = 变坡点标高(不考虑竖曲线标高)-(变坡点里程- 待求点里程)× i 1(所求点位于变坡点后乘i 2 ) 3、改正值 = (待求点里程-起点里程)2÷(2R)(所求点位于变 坡点前) = (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后) 4、待求点设计标高 = (切线点标高-改正值) 三、例: 某高速公路变坡点里程为DK555+550,高程为,前为上坡i 1 =‰,后为上 坡i 2 =‰,设计曲线半径R=30000m,试算竖曲线曲线要素及桩号为DK555+450及DK555+680处的设计标高? 1、计算曲线要素 转坡角ω=(i 1-i 2 )=(-)‰= 竖曲线曲线长 L = ω× R = ×30000 =(m)

切线长 T = L ÷ 2 = ÷2 =(m) 外矢距 E = T2÷ 2R = ÷(2×30000)=(m) 2、竖曲线起、始桩号计算 起点桩号:(DK555+550)- = DK555+ 终点桩号:(DK555+550)+ = DK555+ 3、DK555+450、DK555+680的切线标高和改正值计算 DK555+450切线标高 = (DK555+550-DK555+450)׉=(m) DK555+450改正值 =(DK555+450-DK555+2÷(30000×2)=(m) DK555+680切线标高 = (DK555+680-DK555+550)׉=(m) DK555+680改正值 =(DK555+680-DK555+2÷(30000×2)=(m) 4、DK555+450、DK555+680设计标高计算 DK555+450设计标高 = - =(m) DK555+680设计标高 = =(m)

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

竖曲线计算方法

竖曲线计算书 一、 变坡点桩号为220k28+,变坡点标高为m 135.873,两相邻路段的纵坡为 %303.0%0.39921-=+=i i 和,m R 15000=凸。 1. 计算竖曲线的基本要素 竖曲线长度 )(105.3)00303.000399.0(15000m R L =+?==ω 切线长度 )(7.522 3.1052m L T === 外距 )(09.015000 27 .52*7..5222m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:3.167287.522202822028+=-+=-+K K T K 竖曲线起点高程:135.873-52.7 ?0.00399=135.663 (2) 竖曲线终点桩号:7.272287.522202822028+=++=++K K T K 竖曲线终点高程:135.873-52.7?0.00303=135.713 3. 求各桩号标高和竖曲线高程

二、 变坡点桩号为23029+K ,变坡点标高为m 809.132,两相邻路段的纵坡为 %401.0%303.021+=-=i i 和,m R 9000=凹。 1. 计算竖曲线的基本要素 竖曲线长度 )(36.63)]00303.0(00401.0[9000m R L =--?==ω 切线长度 )(68.312 36.632m L T === 外距 )(06.09000 268 .31*68.3122m R T E =?== 2. 求竖曲线的起点和终点桩号 (1) 竖曲线起点桩号:32.1982968.312302923029+=-+=-+K K T K 竖曲线起点高程:132.809+31.68?0.00303=132.905 (2) 竖曲线终点桩号:68.2612968.312302923029+=++=++K K T K 竖曲线终点高程:132.809+31.68?0.00401=132.936 3. 求各桩号标高和竖曲线高程

竖曲线自动计算表格

竖曲线自动计算表格 篇一:Excel竖曲线计算 利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进<0 = J=0; M-P=0 = J=1 B: K<=D =B=-M ; KD = B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段;

3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型);(4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用);如图1所示: 图1 2、进行计算准备: (1)、根据输入里程判断该里程所处的曲线编号: 需要使用lookup函数,函数公式为“LOOKUP(A2,参数库!H3:H25,参数库!A3:A25)”。如图2所示: 里程为K15+631的桩号位于第11个编号的竖曲线处,可以参照图1 进行对照 (2)、在工作表“程序计算”中对应“参数库”相应的格式建立表格

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

Excel竖曲线计算

利用Excel表格进行全线线路竖曲线的统一计算 高速公路纵断面线型比较复杂,竖曲线数量比较多。由于相当多的竖曲线分段造成了设计高程计算的相对困难,为了方便直接根据里程桩号计算设计高程,遂编制此计算程序。 程序原理: 1、根据设计图建立竖曲线参数库; 2、根据输入里程智能判断该里程位于何段竖曲线上; 3、根据得到的竖曲线分段标志调取该分段的曲线参数到计算表格中; 4、把各曲线参数带入公式进行竖曲线高程的计算; 5、对程序进行优化和简化,去掉中间环节,进行直接计算; 6、防止计算过程中的误操作,对计算表进行相应的保护。 竖曲线的高程计算原理公式: H=G+B*A+(-1)^J*X2÷(2R) H: 计算里程的设计高程 K: 计算点里程 D: 竖曲线交点里程 G: 竖曲线交点的高程 R: 竖曲线半径 T: 切线长 M: 前坡度I1 P: 后坡度I2 A: A=Abs(K-D) X: A>T => X=0; A X=T-A J: M-P<0 => J=0; M-P>=0 => J=1 B: K<=D =>B=-M ; K>D => B=P 程序特色: 1、可以无限添加竖曲线,竖曲线数据库不限制竖曲线条数; 2、直接输入里程就可以计算设计高程,不需考虑该里程所处的竖曲线分段; 3、对计算公式进行保护,表格中不显示公式,不会导致公式被错误修改或恶意编辑。 程序的具体编制步骤: 1、新建Excel工作薄,对第一第二工作表重新命名为“参数库”和“计算程序”,根据设计图建立本标段线路竖曲线的参数库,需要以下条目: (1)、竖曲线编号; (2)、竖曲线的前后坡度(I1、I2)不需要把坡度转换为小数; (3)、竖曲线半径、切线长(不需要考虑是凸型或凹型); (4)、竖曲线交点里程、交点高程; (5)、竖曲线起点里程、终点里程(终点里程不是必要参数,只作为复核检测用); 如图1所示:

竖曲线任意点标高计算方法

竖曲线任意点标高计算方法 一、曲线要素的计算 1、转坡角ω=(i1-i2)(上坡取正、下坡取负) 2、竖曲线曲线长L = ω×R (R为曲线半径) 3、切线长T = L ÷2 4、外矢距 E = T2÷2R 二、任意点起始桩号、切线标高、改正值的计算 1、竖曲线起点桩号= 变坡点里程-切线长 竖曲线终点桩号= 变坡点里程+切线长 2、切线标高= 变坡点标高(不考虑竖曲线标高)-(变坡点里程- 待求点里程)×i1(所求点位于变坡点后乘i2) 3、改正值= (待求点里程-起点里程)2÷(2R)(所求点位于变坡点前)= (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后) 4、待求点设计标高= (切线点标高-改正值) 三、例: 某高速公路变坡点里程为DK555+550,高程为,前为上坡i1=‰,后为上坡i2=‰,设计曲线半径R=30000m,试算竖曲线曲线要素及桩号为DK555+450及DK555+680处的设计标高 1、计算曲线要素 转坡角ω=(i1-i2)=(-)‰= 竖曲线曲线长L = ω×R = ×30000 =(m) 切线长T = L ÷2= ÷2 =(m) 外矢距 E = T2÷2R =÷(2×30000)=(m) 2、竖曲线起、始桩号计算 起点桩号:(DK555+550)-= DK555+

终点桩号:(DK555+550)+= DK555+ 3、DK555+450、DK555+680的切线标高和改正值计算 DK555+450切线标高= (DK555+550-DK555+450)׉=(m) DK555+450改正值=(DK555+450-DK555+2÷(30000×2)=(m) DK555+680切线标高= (DK555+680-DK555+550)׉=(m) DK555+680改正值=(DK555+680-DK555+2÷(30000×2)=(m) 4、DK555+450、DK555+680设计标高计算 DK555+450设计标高= - =(m) DK555+680设计标高= =(m)

竖曲线计算实例

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导及计算流程 1. 竖曲线介绍 竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的 冲击力,而设计的一段曲线。一般可以用圆曲线和抛物线来充当竖曲线。由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。 2. 竖曲线高程计算流程 竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距E b. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-T c. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)?i 改正值:2 21x R y = d. 计算竖曲线上任意点设计标高 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y 3. 竖曲线高程计算公式推导 已知条件: 第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R

竖曲线特点: 抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。 抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。 竖曲线高程改正数计算公式推导 设抛物线方程为: ()021≠++=a c bx ax y 设直线方程为: ()02≠+=k b kx y 由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得: 00==b c ; 分别对21y y 、求导可得: b ax y +=2'1 k y ='2 当0=x 时,由图可得: b i y ==1'1 k i y ==1'2 当L x =时,由图可得:

线路坐标、高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式:

二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标

三、曲线要素计算公式 公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值

四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程:

竖曲线的计算方法

竖曲线 铁路线路的纵断面最理想的当然是平道,然而事实上是不可能的,为了适应地形的起伏,以减少工程量,纵断面必须用各种不同的坡面连接而成。两相邻坡段的连续点谓之变坡点。相邻坡段的坡度差是两相邻坡段的坡度代数差。当相邻坡段的坡度差超过允许值时,为了保证行车平顺和安全,应在变坡点处用竖曲线连接起来。允许不设竖曲线的坡度差允许值是根据车轮不脱轨、车钩不脱钩、列车不撞车和行车平稳等要求进行分析确定的。一般情况下,竖曲线采用圆曲线,也可以采用抛物线,个别情况下,还可以采用连续短坡曲线。 竖曲线的计算 一、圆曲线形竖曲线 圆曲线形竖曲线的几何要素和各点设计标高,可按下列公式计算,如图。 R α  x T T y R C α/2  B A i1 i2 1、竖曲线的切线长度T T=R·tan(α/2)=R/2·tanα=R/2·△i‰ =R/2000·△i(m) (5-1) 式中 R-竖曲线半径(m); α-竖曲线转角(度); △i-相邻坡段的坡度代数差(‰)。 R=5000m时, T=2.5△i(m)

R=10000m时,T=5.0△i(m) R=15000m时,T=7.5△i(m) R=20000m时,T=10.0△i(m) R=25000m时,T=12.5△i(m) 2、竖曲线长度C C≈2T=R/1000·△i(m) (5-2) 3、竖曲线纵距y y=x2/2R (m) (5-3) 式中 x-竖曲线上计算点至竖曲线起(终)点的横距(m)。 当x=T时,变坡点的纵距Y即为竖曲线的外矢距E。 Y=E=T2/2R=1/2R(C/2)2=C2/8R (5-3.1) 4、竖曲线上各点的设计标高H 设h为计算点的坡度标高,则 H=h±y (5-4) 式中的y值,凹形取“+”,凸形取“-”。 【算例一】一凹形竖曲线i1=-4‰,i2=+2‰,△i=6‰,变坡点的里程为K235+165,标高为54.60m,R=15000m,计算竖曲线上各20m点的设计标高。 由(5-1)式 T=7.5△i=45m 由(5-2)式 C=2T=90m 竖曲线起点里程A=K235+165-45=K235+120 竖曲线终点里程B=K235+165+45=K235+210 各20m点坡度标高的计算: 起点A K235+120 h=54.60+45×4‰=54.78m +140 h=54.60+25×4‰=54.70m

竖曲线计算公式

第三节竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或圆曲线。 一、竖曲线要素的计算公式 相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距:

例题4-3 ω=-0.09 凸形; L=Rω=2000*0.09=180m T=L/2=90m E=T2/2R=2.03m 起点桩号=k5+030 - T =K4+940 起始高程=427.68 - 5%*90=423.18m 桩号k5+000处: x1=k5+000-k4+940=60m 切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m 设计高程=426.18 - 0.90=425.28m 桩号k5+100处: x2=k5+100-k4+940=160m 切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=40米m 设计高程=431.18 - 6.40=424.78m

1、在桩号k1+575处,引黄渠提水站一级动力电缆埋设电缆一趟。其工程做法为: 采用3*16加1加k电缆,长70米;外套2寸塑料管70米;现浇C20砼包封30*30cm。两端接头设1000mm砖砌检查井,井壁厚240mm,钢筋砼圈盖两套。 2、根据运城市规划设计院《关于振西大街设计变更申请的答复意见》第4条,经与建设单 位,当地村委会协商,分别在k0+150,k0+320,k0+930四处增设灌渠倒虹吸管,工程做法为:DN600钢筋砼承插口管,橡胶胶圈接口,长54米,四周C20砼封包,厚度30cm,进出水口井为1000cm,深4.1米,收口70cm圆形井,加盖钢筋砼圈盖各一套,内外1:2水泥砂浆抹面,四周3:7灰土夯填,引渠长40米,(梯形(45+30)*40/2cm,现浇砼厚5cm);C20现浇砼澄泥池70*70*70cm,壁厚20cm。 3、在两条路的交汇口处W37#检查井,不在清单以内,我项目部已施做,其内径为1250mm, 井高6.5 米(其中井室高为5.9米,井筒高0.6米),1650mm钢筋砼井口盖板1块,钢筋砼圈盖1套。

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导及计算流程 1. 竖曲线介绍 竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的 冲击力,而设计的一段曲线。一般可以用圆曲线和抛物线来充当竖曲线。由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。 2. 竖曲线高程计算流程 竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距E b. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-T c. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)?i 改正值:2 21x R y = d. 计算竖曲线上任意点设计标高 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y 3. 竖曲线高程计算公式推导 已知条件: 第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R

竖曲线特点: 抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。 抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。 竖曲线高程改正数计算公式推导 设抛物线方程为: ()021≠++=a c bx ax y 设直线方程为: ()02≠+=k b kx y 由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得: 00==b c ; 分别对21y y 、求导可得: b ax y +=2'1 k y ='2 当0=x 时,由图可得: b i y ==1'1 k i y ==1'2 O O 2 Y 1 X 1 Y 2 X 2 P Q BPD L T A T B x i 1 i 2 ω

竖曲线计算公式加强版

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算

已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标

三、曲线要素计算公式 公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率

P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ ④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: S、SZ为里程数据,往往有些人计算时误入,用等实际计算的距离计算!! 五、超高缓和过渡段的横坡计算

竖曲线的严密计算公式

本文从竖曲线的严密计算公式入手,推导竖曲线上点的设计高程和里程的精确计算方法。分析和比较了近似公式和严密公式的差别及对设计高程和里程的影响。在道路勘测设计中用本方法可取得精确、方便、迅速的效果,建议取代传统的近似方法。 一、引言 在传统的道路纵断面设计中,竖曲线元素及对应桩号里程和设计高程均采用近似公式计算,在低等级道路及计算工具很落后的时代曾起到过很大的作用。但是随着高级道路的快速发展,道路竖曲线半径的不断加大,设计和施工的精度要求越来越高,因此,对勘测设计工作提出了很高的要求。采用近似的方法进行勘测设计已难以满足高精度、高效灵活的要求。为此本文给出了实用、精确的竖曲线计算公式,以解决实际工作中存在的问题。 二、计算原理 1. 近似计算公式 如图1所示,设道路纵坡的变坡点为I,其设计高程为H I ,里程为D I ,两侧 的纵坡度分别为i 1、i 2 ,竖曲线设计半径为R,竖曲线各元素的近似计算公式如 下:

图 1 2. 精确计算公式 如图2所示,在图中建立以水平距离为横坐标轴d,铅垂线为纵坐标轴H′的 dOH′直角坐标系,A点的坐标为(d A ,0),Z点的坐标为(0,H Z ′),竖曲线各元素的 精确计算公式如下: α 1=arctani 1 (1) α 2=arctani 2 (2) ω=α 1-α 2 (3) T=Rtan(4) E=R(sec-1) (5) d I =Tcosα 1 (6) d A =Rsinα 1 (7) H Z ′=Rcosα 1 (8) 竖曲线在直角坐标系中的方程为: (d-d A )2+H′2=R2 (9) 图 2 由式(9)可推算出竖曲线上任一与Z点的里程差为d的点的纵坐标值H′,则 0≤d≤d Y (10) 并可立即推算点的设计高程和里程: H=H′-ΔH (11)

道路竖曲线计算

第二节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω

3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。 (3)满足视距的要求 汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。 2.凹形竖曲线极限最小半径确定考虑因素 (1)缓和冲击: 在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。 (2)前灯照射距离要求 对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安 全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。 (3)跨线桥下视距要求 为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

公路测量曲线和竖曲线要素计算方法

1.某山岭区一般二级公路,变坡点桩号为K5+030,高程为427.68m ,%51=i ,%42-=i ,竖曲线半径R =2000m 。试计算竖曲线各要素以及桩号为k5+000和K5+100处的设计高程。 解:⑴计算竖曲线要素 09.005.004.012-=--=-=i i ω,为凸形竖曲线。 曲线长20000.09180L R m ω==?= 切线长m L T 902 1802=== 外距22 90 2.03222000 T E m R ===? ⑵计算设计高程 竖曲线起点桩号=(K5+30)-90=K4+940 竖曲线起点高程=427.68-90×0.05=423.18m 桩号K5+000处: 横距m K K x 60)9404()0005(1=+-+= 竖距m R x h 9.04000 6022 211=== 切线高程=423.18+60×0.5=426.18m 设计高程=426.18-0.9=425.28m 桩号K5+100处: 横距m K K x 160)9404()1005(2=+-+= 竖距m R x h 4.64000 16022 222=== 切线高程=423.18+160×0.05=431.18m 设计高程=431.18-6.4=424.78m 2.某山岭区二级公路,已知JD1、JD2、JD3的坐标分别为(40961.914,91066.103)、(40433.528,91250.097)、(40547.416,91810.392),并设JD2的R=150m ,Ls=40m ,求JD2的曲线要素。 解:⑴计算出JD2、JD3形成的方位角fwj2, ?=--=48966.11528 .40433416.40547097.91250392.91810arctan 2fwj 计算出JD1、JD2形成的方位角fwj1, ?=--=19908.289914 .40961528.40433103.91066097.91250arctan 1fwj 曲线的转角为α=360+fwj2-fwj1=82.29058° ⑵由曲线的转角,计算出曲线的切线长T ,曲线长L 及超距J

竖曲线高程计算公式

1 竖曲线上点的高程计算公式 1. 字母所代表的意义: R :曲线半径 i 1:ZY ~JD 方向的坡度 i 2:JD ~YZ 方向的坡度 T :曲线的切线长 E :外失距 x :竖曲线上的点到直圆或圆直的距离 y :竖曲线上点的高程修正值 2. 计算公式: 2 12i i R T -= R T E 22 = R x y 22 = 超高计算公式 1. 字母所代表的意义: i 0:路拱坡度 i b :超高坡度 L s :缓和曲线长

2 b 1:所求点~路中线距离 x 0:从直缓开始,到路左右坡度一致的距离,即图中C---C x :所求点~直缓或缓直的距离 h b :超高值 A---A B---B ×i b b 1HY(YH) ZH(HZ) C---C D---D 超高计算公式1相对于路中线超高值行车道外侧边缘行车道内侧边缘 X0=2×i0/(i0+ib)×Ls X≤x0 hb=b1×(i0+ib)×X/Ls-b1×i0 hb=-(b1+bx)×i0 X≥x0hb=-(b1+bx)×X/LS×ib 行车道外侧边缘 行车道内侧边缘 hb=(-i0+(i0+ib)×X/Ls)×b hb=(-i0-(ib-i0)×X/Ls)×b i0:路拱坡度ib:超高坡度L s :缓和曲线长b:到路中线距离X:所求点到ZH(HZ)距离 超高计算公式2 2. 计算公式(公式1):(绕中线旋转) () b s i i L i x +=0002 1)当x ≤x 0 时 行车道外侧边缘:()0 101i b L x i i b h s b b -+= 行车道内侧边缘:()01i b b h x b +-=

相关文档
最新文档