函数图像与变换对称

函数图像与变换对称
函数图像与变换对称

函数图像与变换、对称

◆知识点梳理

一、常见函数图像

⑴幂函数:α

x y = ()R ∈α ; ⑵指数函数:)1,0(≠>=a a a y x

; ⑶对数函数:)1,0(log ≠>=a a x y a ; ⑷正弦函数:x y sin =; ⑸余弦函数:x y cos = ; ⑹正切函数:x y tan =; ⑺一次函数:y kx b =+ ⑻二次函数:c bx ax y ++=2

; ⑼其它常用函数:

①正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x

k

y ; ③绝对值函数:||y x = ④函数1y x x

=+

二、函数图象作法 :①描点法(注意三角函数的五点作图)②图象变换法

三、函数图象变换:

① 平移变换:左“+”右“-”;上“+”下“-”; ② 伸缩变换:

ⅰ)()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标变为原来的

ω

1

倍; ⅱ)()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标变为原来的A 倍; ③ 对称变换:以一个具体点来判断。

ⅰ)(x f y =??

→?)0,0()(x f y --=;ⅱ)(x f y =?→?=0

y )(x f y -=; ⅲ )(x f y =?→?=0

x )(x f y -=; ⅳ)(x f y =??→

?=x

y ()x f y =(反函数) ④ 翻转变换:

ⅰ|)(|)(x f y x f y =→=———留正去负,正左翻(关于y 轴对称); ⅱ|)(|)(x f y x f y =→=———留正去负,负上翻;

◆考点剖析

(一)考查函数作图

例1 作出下列函数的图象. (1)y=

1

1

2--x x

; (2)y=)

2

1(|x|

.

变式训练

1、作出下列各个函数的图象:

(1)y=|log 2

1(1-x )|; (2)y=

1

1

2+-x x . 2、(2008山东)函数ln cos 2

2y x x π

π??=-

<< ???的图象是( )

(二)考查函数图像的应用

例2. (2007广东)客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶

1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )

变式训练 3.(2007江西)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,

h 2,h 3,h 4,则它们的大小关系正确的是( )

A .h 2>h 1>h 4

B .h 1>h 2>h 3

C .h 3>h 2>h 4

D .h 2>h 4>h 1

4.(2008全国Ⅰ) 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

x

x

(三)考查函数图像的变换

例3、(2008天津)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3

π

个单位长度,再把所得图象上所有点的横坐标缩短到原来的1

2

倍(纵坐标不变),得到的图象所表示的函数是( )

A .sin 23y x x π?

?=-∈ ???R , B .sin 26x y x π??

=+∈

??

?R , C .sin 23y x x π?

?=+∈ ??

?R ,

D .sin 23y x x 2π?

?=+∈ ???

R ,

5.(2009山东)将函数sin 2y x =的图象向左平移4

π

个单位, 再向上平移1个单位,所得图象的函数解析式是( ).

A.cos 2y x =

B.2

2cos y x = C.)4

2sin(1π

++=x y D.22sin y x =

(四)考查函数图像的对称 例4、(2008安徽)函数sin(2)3

y x π

=+

图像的对称轴方程可能是( )

A .6

x π

=-

B .12

x π

=-

C .6

x π

=

D .12

x π

=

6.(2009全国Ⅰ)如果函数3cos(2)y x φ=+的图像关于点4(,0)3

π

中心对称,那么φ的最小值为 (A)6π (B) 4π (C) 3π (D) 2

π

◆方法总结

1.作函数图象的基本方法是:

① 讨论函数的定义域及函数的奇偶性和单调性;

② 考虑是否可由基本初等函数的图象变换作出图象; ③ 准确描出关键的点线(如图象与x 、y 轴的交点,极值点(顶点),对称轴,渐近线,等等). 2.注意分清是一个函数自身是对称图形,还是两个不同的函数图象对称.

◆课后强化

1.(2009北京)为了得到函数3

lg

10

x y +=的图像,只需把函数lg y x =的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度

A .

B .

C .

D .

B .向右平移3个单位长度,再向上平移1个单位长度

C .向左平移3个单位长度,再向下平移1个单位长度

D .向右平移3个单位长度,再向下平移1个单位长度

2.(2009山东)函数x x

x x

e e y e e

--+=-的图像大致为( ).

3.(2009全国)函数2

2log 2x

y x

-=+的图像( ) (A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称 4.(2009安徽)设

,函数

的图像可能是( )

5.(2009福建)定义在R 上的偶函数()f x 的部分图像如右图所示,则在()2,0-上,下列函数中与()f x 的单调性不同的是( ) A .2

1y x =+ B. ||1y x =+

C. 321,01,0x x y x x +≥?=?+

x x e x o

y e x -?≥?=?

6.(2009湖南)将函数y=sinx 的图象向左平移?(0 ≤?<2π)的单位后,得到函数

A

D

y=sin ()6

x π-的图象,则?等于 ( )

A .

6

π

B .56π C. 76π D.116π

7.(2009天津)已知函数()sin()(,0)4

f x x x R π

??=+∈>的最小正周期为π,为了得到

函数()cos g x x ?=的图象,只要将()y f x =的图象( )

A 向左平移

8π个单位长度 B 向右平移8π

个单位长度 C 向左平移4π个单位长度 D 向右平移4

π

个单位长度

◆详细解析

例1、(1)由y=

11

2--x x ,得y=1

1-x +2.作出y=

x 1的图象,将y=x

1

的图象向右平移一个单位,再向上平移2个单位得 y=

1

1

-x +2的图象.

(2)作出y=(2

1

)x

的图象,保留y=(21)x

图象中x ≥0的部分,加上y=(2

1)x

的图象中x >0的部分关于y 轴的对称部分,即得y=(2

1)

|x|

.其图象依次如上:

1、解:(1)由y=log 2

1x 的图象关于y 轴对称,可得y=log 2

1(-x )的图象,再将图象向右平移1个单位,即得到y=log 2

1

(1-x).然后把x 轴下方的部分翻折到x 轴上方,可得到y=|log

2

1(1-x )|的图象.如图乙. (2)y=

1

3

2112+-=+-x x x .先作出y=-

x

3

的图象,如图丙中的虚线部分,然后将图象向左平移1个单位,向上平移2个单位,即得到所求图象.如图丙所示的实线部分.

2、A 例2、C

3、A

4、A

例3、C

5、答案:B 【解析】:将函数sin 2y x =的图象向左平移

4

π

个单位,得到函数 sin 2()4y x π=+即sin(2)cos 22

y x x π

=+=的图象,再向上平移1个单位,所得图象的函数

解析式为2

1cos 22cos y x x =+=,故选B.

例4、D 6、解:

函数()cos 2y x φ=3+的图像关于点43π??

???

,0中心对称 4232k ππφπ∴?

+=+13()6k k Z πφπ∴=-∈由此易得min ||6

π

φ=.故选A 1、【答案】C

2、【解析】:函数有意义,需使0x

x

e e

--≠,其定义域为{}0|≠x x ,排除C,D,又因为

22212111

x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A.

3、解析:本题考查对数函数及对称知识,由于定义域为(-2,2)关于原点对称,又f(-x)=-f(x),故函数为奇函数,图像关于原点对称,选A 。

4、【解析】可得2

,()()0x a x b y x a x b ===--=为的两个零解.

当x a <时,则()0x b f x <∴<

当a x b <<时,则()0,f x <当x b >时,则()0.f x >选C 。

5、解析 解析 根据偶函数在关于原点对称的区间上单调性相反,故可知求在()2,0-上单调递减,注意到要与()f x 的单调性不同,故所求的函数在()2,0-上应单调递增。而函数

21y x =+在(],1-∞上递减;函数1y x =+在(],0-∞时单调递减;函数

???++=0

,10,123 x x x x y 在(]0,∞-上单调递减,理由如下y ’=3x 2>0(x<0),故函数单调递增,显

然符合题意;而函数?????≥=-0,0

, x e x e y x x ,有y ’=-x

e

-<0(x<0),故其在

(]0,∞-上单调递减,不符合题意,综上选C 。

6、【解析】解析由函数sin y x =向左平移?的单位得到sin()y x ?=+的图象,由条件知函数sin()y x ?=+可化为函数sin()6

y x π

=-

,易知比较各答案,只有

11sin()6y x π=+

sin()6

x π

=-,所以选D 项。 7、解析:由题知2=ω,所以

)8(2cos )42cos()]42(2cos[)42sin()(π

ππππ-=-=+-=+=x x x x x f ,故选择A 。

4

π

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求二次函数 1.能根据实际情境了解二次函数 的意义; 2.会利用描点法画出二次函数的 图像; 1.能通过对实际问题中的情境分 析确定二次函数的表达式; 2.能从函数图像上认识函数的性 质; 3.会确定图像的顶点、对称轴和 开口方向; 4.会利用二次函数的图像求出二 次方程的近似解; 1.能用二次函数 解决简单的实际 问题; 2.能解决二次函 数与其他知识结 合的有关问题; (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数 2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x轴对称 2 y ax bx c =++关于x轴对称后,得到的解析式是2 y ax bx c =---; ()2 y a x h k =-+关于x轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y轴对称 2 y ax bx c =++关于y轴对称后,得到的解析式是2 y ax bx c =-+; ()2 y a x h k =-+关于y轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y ax bx c =++关于原点对称后,得到的解析式是2 y ax bx c =-+-; ()2 y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-;

函数图象的对称变换

课题:函数图像的对称变换(2课时) 学情分析:相对于函数图象的平移变换,对称变换是学生的难点,对于具体函数,学生还有一定的思路,但结论性的结果,学生掌握的不是很好。 教学目标: (1) 通过具体实例的探讨与分析,得到一些对称变换的结论。 (2) 通过一定的应用,加强学生对对称变换结论的理解。 (3) 能数形结合解决想过题目。 教学过程: 欣赏图片,感受对称 一、师生共同分析讨论完成下列结论的形成。 1、(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于 对称; (3)函数()y f x =--与()y f x =的图像关于 对称. 2、奇函数的图像关于 对称,偶函数图像关于 对称. 3、(1)若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则 ()y f x =的图像关于直线 对称.

(2)若对于函数()y f x =定义域内的任意x 都有()2()f a x b f a x +=--,则()y f x =的图像关于点 对称. 4、对0a >且1a ≠,函数x y a =和函数log a y x =的图象关于直线 对 称. 5、要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以 为轴翻折到x 轴上方,其余部分不变. 6、要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于 的对称性,作出(),0x ∈-∞时的图像. 二、学生先独立完成,再分析点评 2 3、函数x y e =-的图象与函数 的图象关于坐标原点对称. 4、将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 . 5、设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6、若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、典例教学 【例1】填空题: (1 (2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为 . ①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 授课教师: 北京市第十九中学 檀晋轩 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2π= x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图).

2.复习对称概念 初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象 (见右图),仔细观察正弦曲线是否是对称图形? 是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对 称图形也是中心对称图形,并能够猜想出一部分对 称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线 2π=x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行 探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π=x 的图象,选择恰当窗口并充分利用画图功能对问题进行探索研究(见右图),在直线2 π=x 两侧正弦函数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

函数的对称性完美

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。 特别地,当,a b 都为0时,就是偶函数的特征了。

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

一次函数图象的变换对称.doc

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

函数对称性

函数对称性 一 知识点 I 函数图象本身的对称性(自身对称) 若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。 1、图象关于直线对称 推论1:的图象关于直线对称 推论2、的图象关于直线对称 推论3、的图象关于直线对称 2、的图象关于点对称 推论1、的图象关于点对称 推论2、的图象关于点对称 推论3、的图象关于点对称 II 两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、与图象关于Y轴对称 2、与图象关于原点对称函数 3、函数与图象关于X轴对称 4、函数与其反函数图象关于直线对称 5.函数与图象关于直线对称 推论1:函数与图象关于直线对称 推论2:函数与图象关于直线对称 推论3:函数与图象关于直线对称 二典例解析: 1、定义在实数集上的奇函数恒满足,且时, ,则________。 2、已知函数满足,则图象关于__________对称。 3、函数与函数的图象关于关于__________对称。 4、设函数的定义域为R,且满足,则的图象关于__________对称。 5、设函数的定义域为R,且满足,则的图象关于__________对称。 6、设的定义域为R,且对任意,有,则关于__________对称,图象关于

__________对称,。 7、已知函数对一切实数x满足,且方程有5个实根,则这5个实根之和为() A、5 B、10 C、15 D、18 8、设函数的定义域为R,则下列命题中,①若是偶函数,则图象关于y 轴对称;②若是偶函数,则图象关于直线对称;③若,则函数图象关于直线对称;④与图象关于直线对称,其中正确命题序号为_______。

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

(完整版)高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1 a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1x y -= (2)x y )2 1(-= (3)x y 2log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

函数图象的三种变换(可编辑修改word版)

函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下 3 种: 一、平移变换 例1 设f(x)=x2,在同一坐标系中画出: (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1 和y=f(x)-1 的图象,并观察三个函数图象的关 系.解(1)如图 (2)如图 点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移 1 个单位长度得到; y=f(x-1)的图象可由y=f(x)的图象向右平移1 个单位长度得到; y=f(x)+1 的图象可由y=f(x)的图象向上平移1 个单位长度得到; y=f(x)-1 的图象可由y=f(x)的图象向下平移1 个单位长度得到. 小结: 二、对称变换 例2 设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系. 解画出y=f(x)=x+1 与y=f(-x)=-x+1 的图象如图所示. 由图象可得函数y=x+1 与y=-x+1 的图象关于y 轴对 称.点评函数y=f(x)的图象与y=f(-x)的图象关于y 轴 对称;函数y=f(x)的图象与y=-f(x)的图象关于x 轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例 3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数

将x 轴下方图象翻折上去 并作其关于y 轴对称的图象 图象的关系. 解 y =f (x )的图象如图 1 所示,y =|f (x )|的图象如图 2 所示. 点评 要得到 y =|f (x )|的图象,把 y =f (x )的图象中 x 轴下方图象翻折到 x 轴上方,其余部分不变. 例 4 设 f (x )=x +1,在不同的坐标系中画出 y =f (x )和 y =f (|x |)的图象,并观察两个函数图象的关系. 解 如下图所示. 点评 要得到 y =f (|x |)的图象,先把 y =f (x )图象在 y 轴左方的部分去掉,然后把 y 轴右边的对称图象补到左方即可. 小结: y = f (x ) ??保?留x ?轴上?方图?象?→ y =|f (x )|. y = f (x ) ???保留?y 轴右?侧?图象??→ y =f (|x |). 如图: 四 函数图象自身的对称性 1. 函数 y = f (x ) 的图象关于直 x = a + b 对称? f (a + x ) = f (b - x ) ? f (a + b - x ) = f (x ) 2 2. 函数 y = f (x ) 的图象关于点(a , b ) 对称? 2b - f (x ) = f (2a - x ) ? f (x ) = 2b - f (2a - x ) ? f (a + x ) + f (a - x ) = 2b 3.若 f (x ) = - f (-x ) ,则 f (x ) 的图象关于原点对称,若 f (x ) = f (-x ) ,则 f (x ) 的图象 关于 y 轴对称。 基础训练 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)当 x ∈(0,+∞)时,函数 y =|f (x )|与 y =f (|x |)的图象相同. ( × ) y y=f(|x|) a o b c x y y=|f(x)| a o b c x y y=f(x) a o b c x

相关文档
最新文档