复杂微细粒镜铁矿强磁—脱泥—反浮选试验研究

复杂微细粒镜铁矿强磁—脱泥—反浮选试验研究
复杂微细粒镜铁矿强磁—脱泥—反浮选试验研究

钛铁矿选矿方法

郑州山川重工有限公司 刘国华 钛铁矿和金红石精矿 钛铁矿、金红石砂矿:这是我国目前生产钛铁矿和金红石精矿的主要矿石类型。根据海南中兴精细陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜(铺前)、乌场(保定)4个国有钛(砂)矿的生产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技术指标如图3.5.10。采矿的回采率>95%,贫化率<5%,选矿的总回收率达80%~85%。 为了提高资源的利用率和经济效益,减少中矿、尾矿的积压和对环境的污染,广州有色金属研究院曾专题研究了“海南岛海滨砂矿难选中矿钛元素赋存状态及综合回收途径”(第三届全国矿产资源综合利用学术会议论文集,1990年)。该研究、试验表明:①钛元素主要赋存在以Ti4+与Fe2+呈类质同象置换而形成的钛-铁矿系列中;其中钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的比例达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿物,矿物粒度0.2~0.08mm(属可选粒度);采用二碘甲烷介质作“沉浮”选矿,比重<3.3的非有用矿物的上浮排除率达19.76%,比重>3.3的有用重矿物下沉产率达73.5%。③在下沉的重矿物中,除主收钛铁矿外,可综合回收锆石、独居石、富钛钛铁矿和金红石;其一是有用重矿物经电磁选场强6000Oe分选出占钛铁矿矿物比例88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最后经场强650 Oe弱磁选,在磁选产品中可获得TiO250%~51%的钛铁矿精矿产品;其二是有用重矿物(钛铁矿粗精矿,含TiO243%~46%)经电选(2.1kV,120r/min),在导体产品中可获得TiO2 51%~53%的钛铁矿精矿产品。④在经场强8000—12000 Oe磁选的尾矿中,再采用浮选,可获得合格的独居石精矿;再对其经场强>20000 Oe磁选的非电磁性重矿物尾矿中,采用电选,可在非导体性产品中获得合格的锆石精矿,在导体性产品中获得合格的金红石精矿。

铝土矿反浮选脱硅研究综述

?轻金属原料矿山? 铝土矿反浮选脱硅研究综述 黄传兵 (中南大学,湖南长沙410083) 摘要:介绍了铝土矿反浮选脱硅的基本原理,技术关键以及国内外铝土矿反浮选脱硅的研究现状,并分析了发展趋 势。 关键词:铝土矿;反浮选;脱硅 中图分类号:TD456 文献标识码:A 文章编号:10021752(2005)05000704 Current status and development trends of desilication of bauxite by reverse flotation HUAN G Chuan-bing (Cent ral South U niversity,Changsha,Chi na) Abstract:The basic principle and key techniques on reverse flotation for desilication of bauxite were discussed in details,then the current situation of de2 velopment and research have been introduced.Finally the development trends of the desilication were discussed. K ey w ords:Bauxite;Reverse flotation;Desilication 浮选脱硅是依据矿物表面性质的不同,实现矿物分离的有效和经济的方法之一,其可分为正浮选和反浮选两类。铝土矿中一般硅矿物的含量远低于铝矿物的含量,依据浮少抑多的原则,反浮选是具有发展前途的方法。 与正浮选脱硅相比,铝土矿反浮选脱硅具有以下一些主要特点〔1~2〕:含硅矿物的捕收剂为脂肪胺类;上浮产品产率小,药剂用量低,精矿表面附着的药剂少,易于过滤,水分含量低;对于一水硬铝石型铝土矿,由于一水硬铝石与铝硅酸盐矿物可磨性差别大,易于实现粗磨矿,即在磨矿过程中当硬度较小的硅酸盐矿物满足浮选的粒度要求时,硬度较大的一水硬铝石仍保持较粗粒度,有利于降低磨矿能耗和精矿含水量。 1 反浮选基本原理 铝土矿反浮选根据捕收剂的不同可分为阴离子捕收剂反浮选和阳离子捕收剂反浮选两种。 阴离子捕收剂可通过静电力、氢键力、化学吸附和表面化学作用同矿物表面发生作用。铝土矿中的铝硅酸盐矿物表面等电点值较低,在广泛的p H范围内表面带负电,这样就与阴离子捕收剂之间存在静电斥力作用,氢键作用也较弱。只有通过化学吸附或化学反应,捕收剂才能在矿物表面形成较强的吸附。但铝硅酸盐矿物破碎解理时,表面断裂键分别以氢键(高岭石)、分子键(叶蜡石)和离子键(伊利石)为主,使阴离子捕收剂不易与矿物作用,并且几种矿物的可浮性差异较大,不利于反浮选。为了增加铝硅酸盐矿物表面的阳离子活性中心,需要加入活化剂一金属离子。由于这三种铝硅酸盐矿物表面均能吸附阳离子,活化浮选可使它们容易与阴离子捕收剂作用,并且减小了这些铝硅酸盐矿物可浮性的差异。这方面的工作还未见报道,但已有人对几种多价金属阳离子的活化作用进行了探索,结果表明,阳离子活化剂确实可以活化高岭石的浮选,在同样条件下,一水硬铝石的回收率降低了。 阳离子捕收剂反浮选利用的是铝矿物和铝硅酸盐矿物表面动电位的差异。当矿物表面带负电时,阳离捕子收剂可以通过静电作用吸附于矿物表面。显然,用阳离子捕收剂浮选需要两方面的协调:一方面,矿物表面带负电,要求浮选矿浆的p H大于矿物表面的零电位点;另一方面,捕收剂的阳离子组份占 收稿日期:2005-01-21

铁矿石反浮选知识要点

1、浮选即泡沫浮选,是根据矿物表面物理化学性质的不同来分选矿物的选矿方法。 2、浮选法发展经历三个阶段,全油浮选、表层浮选和泡沫浮选。 3、浮选的过程在浮选机中完成。 具体可以分以下四个阶段:原料准备、充气搅拌、气泡的矿化、矿化泡沫的刮出。 4、浮选前原料准备包括磨细、调浆、加药、搅拌等。 5、磨矿其目的主要是使绝大部分矿物从镶嵌状态中单体解离出来。 6、调浆是指把原料配成适宜浓度的矿浆。 7、搅拌的作用是使浮选药剂与矿粒表面充分作用。 8、充气搅拌其目的是使矿粒呈悬浮状态,同时产生大量尺寸适宜且较稳定的气泡,造成矿粒和气泡接触碰撞的机会。 9、经与浮选剂作用后,表面疏水性矿粒能附着在气泡上,逐渐升至矿浆表面形成矿化泡沫。表面亲水性矿粒不能附着与气泡而存留在矿浆中。这是浮选分离矿物的基本的行为。 10、浮选作业中浮起的矿物如果是有用矿物,这样的浮选过程称为正浮选,反之,浮起的矿物是脉石矿物,则称之为逆浮选(或称反浮选)。 11、疏水性强的矿物,其可浮性好;亲水性矿物,其天然可浮性差。 12、用浮选药剂处理矿物的表面是调节矿物可浮性的主要手段。 13、玻璃易被水润湿,是亲水性物质,石蜡不易被水润湿,是疏水性物质。 14、表面润湿性大,亲水性强的矿物,其可浮性则差;表面润湿性小,疏水性强的矿物,其可浮性则好。

15、药剂在矿物表面的吸附大体分为物理吸附与化学吸附两大类。 16、浮选药剂在矿物表面的吸附,改变了矿物表面的疏水性。 17、浮选药剂的作用,是调节各种矿物的可浮性,加强空气在矿浆中的分散,增加泡沫的稳定性,还用以改善浮选矿浆的性质,以利于浮选的进行。 18、捕收剂的作用主要是能选择性地吸附固着在矿物表面,使目的矿物表面疏水,提高矿物的可浮性,使之容易向气泡附着。 19、起泡剂:主要是促进空气在矿浆中弥散,增加分选气——液界面,并能提高气泡在矿化和上升过程中的机械强度,在一定的程度上还能与捕收剂联合作用,加速矿粒在气泡上的附着。 20、抑制剂:是指能削弱或消除捕收剂与矿物的相互作用,从而降低或恶化目的矿物的可浮性的一类浮选剂。 21、活化剂:是指能促进捕收剂与矿物发生作用或消除抑制剂作用,从而提高矿物可浮性的一类浮选剂。 22、调整剂:主要是用来调整(促进或阻碍)捕收剂与矿物表面的相互作用,以及调节矿浆的浮选性质(如矿浆的酸碱度、离子组成、矿泥的分散与絮凝),以利造成各种矿物选择性浮选分离的一大类浮选剂。根据调整剂的作用不同尚可分为如下几小类: 23、PH调整剂:用于调节矿浆酸碱度的浮选剂。 24、絮凝剂:通常是调整微细粒矿物,使之絮凝的药剂。 25、氧化铁矿物主要有赤铁矿、假象赤铁矿、菱铁矿和褐铁矿。 26、浮选铁的氧化物和氢氧化物的典型捕收剂是脂肪酸及其皂。以赤铁矿、假象赤铁矿的可浮性最好,菱铁矿居中,含水的氧化矿的可浮性最差。 27、介质的PH值对铁矿物可浮性的影响比较明显。

(整理)钛铁矿浮选药剂研究概况

钛铁矿浮选药剂研究概况 王勇 摘要:本文系统地综述了我国钛铁矿的浮选研究概况,对捕收剂和调整剂类型及其混合用药、作用机理等作了详细介绍,提出了研究新药剂的必要性,并对浮选药剂的研究进行了展望。 关键词: 钛铁矿浮选药剂捕收剂抑制剂作用机理 前言 攀钢选钛厂从攀钢矿业公司选矿厂选铁后的磁选尾矿中综合回收钛铁矿及硫钴矿。经过20余年的发展,已形成年产钛精矿25万t的生产能力,2009年选钛扩能改造后,将达到年产钛精矿38万t的生产能力,其基本工艺流程为:粗细粒级均采用强磁-浮选流程。目前随着攀钢对铁精矿品位提高的要求,选矿厂采用降低入选量,增加磨矿细度的措施来达到提高铁精矿品位的目的,因此进入选钛厂的原料粒度偏细,微细粒钛铁矿含量增加,据检测,选钛厂浮选入选原料中,-0.074mm粒级含量超过60%,其中-19μm粒级含量占35%左右,Ti02分布率超过30%[1]。由于-19μm粒级进入浮选系统中会严重恶化浮选过程,使精矿质量严重降低,药剂消耗大量增加,目前生产上采取预先脱泥除去。该粒级一直作为细泥丢弃是导致选钛厂总回收率偏低的

主要原因之一。为了更有效的利用攀枝花钛资源,加强细粒钛资源回收显得尤为重要。在浮选回收细粒钛铁矿过程浮选药剂是中关键因素之一。因此对细粒钛铁矿浮选药剂的研究,具有重要意义。 对于微细粒钛铁矿的浮选药剂,国内外在这方面的研究也比较多。钛铁矿浮选常用捕收剂为脂肪酸类,近年来也有人研究使用异羟肟酸、苯乙烯膦酸和水杨羟肟酸等作为钛铁矿浮选捕收剂。目前组合药剂浮选钛铁矿已成为一个主要的方向,如MOS、F968、ROB、RST 等钛铁矿组合捕收剂。这些药剂用于细粒原生钛铁的浮选取得了部分效果,但从工业实践的情况来看,微细粒原生钛铁矿的回收率仍较低,并且存在药剂成本高,流程复杂,生产费用高等问题。因此开展细粒原生钛铁矿新型高效低成本浮选药剂的研究,具有重要的经济价值和学术价值。 对钛铁矿的浮选,药剂的研究比较多,但其主要研究内容方面是捕收剂的选择。钛铁矿常用的捕收剂为脂肪酸类,国外多用油酸及其盐类,如塔尔油皂或使用捕收剂与煤油混合。近年来对烃基膦酸类捕收剂及羟肟酸类捕收剂开展了大量的研究工作。尤其是两种或多种药剂组合起来其选别效果往往优于其中任何一种药剂,这就是药剂的协同效应,近年来采用混合药剂浮选钛铁矿已经越来越成为研究的最主要方向。常用到的捕收剂有:脂肪酸类捕收剂,含膦、砷类捕收剂,羟肟酸类捕收剂等。目前主要应用于实践中的是组合捕收剂,极少用单一捕收剂来浮选。在研究钛铁矿浮选中经常用到的活化剂主要是硝酸铅,pH调整剂一般用H2S04,抑制剂主要有水玻璃、草酸、六偏磷

一些常用的选矿抑制剂---有机抑制剂

一些常用的选矿抑制剂---有机抑制剂 许多有机化合物可作为选矿抑制剂,选其重要者分述如下: 1).小分子量有机抑制剂类 按照分子结构特点,可以分为: a.各种有机羧酸,羟基酸类 ○1、草酸:草酸常用做各种硅酸盐的抑制剂,常在稀有金属矿的分离,如稀土矿、钽铌矿、独居石、锡石等浮选时应用。据报导,草酸钠抑制高岭石。 ○2、琥珀酸:应用与草酸大致相同。 ○3、乳酸:在选矿中,乳酸用做各种硅酸盐矿物的抑制剂,如云母、石英等。 ○4、柠檬酸:浮选用柠檬酸抑制硅酸盐矿物,如云母、长石、石英以及碳酸盐矿物、重晶石、高岭石和一水硬铝石等矿物。 ○5、焦性没食子酸:在用油酸作捕收剂浮选分离萤石和方解石时,用它抑制方解石而浮出萤石。使用焦性末食子酸作抑制剂,据称能有效地抑制赤铁矿而不影响锡石浮选。 ○6、巯基乙酸(HSCH2COOH):巯基乙酸作抑制剂,在pH l0.5可以有效地实现黄铜矿和闪锌矿浮选分离。 b. 氨基酸类及苯胺类 比较著名的有乙二胺四乙酸盐,及其它胺羧络合剂,用做浮选过程的抑制剂,提高硫化矿及非硫化矿浮选时的选择性,消除矿浆中难免离子对浮选的干扰。 苯胺类有机物质用做抑制剂,做脉石、矿泥及碳质矿物的抑制剂。

二乙烯三胺(DETA)和三乙烯四胺(TETA)是一种很强的螯合剂,这种多胺能在矿浆中控制金属离子的浓度。当进行镍黄铁矿和磁黄铁矿浮选分离时,如有这种多胺存在,黄药对磁黄铁矿的吸附大量减少,使磁黄铁矿受到抑制。将这种多胺与具有协同效应的抑制剂SO2 +SMBS(Na2S2O5)配合使用,镍黄铁矿与磁黄铁矿浮选分离效果更好。 c. 各种含硫有机抑制剂 二硫代碳酸乙酸二钠盐(NaSSCOCH2COONa),用于抑制硫化铅,铜矿。 二甲基二硫代氨基甲酸酯(DMDC):具有双重作用的药剂,在某种程度上可抑制闪锌矿和硫化铁矿,还是方铅矿和银矿物的活化剂,与氰化物在实验室和工业试验中比较都具有较高的银回收率,并减少了污染,提供了安全的环境。 羟基烷基二硫代氨基甲酸盐,用于铜钼混合精矿的分离浮选,在碱性矿浆中抑制黄铜矿和黄铁矿浮选辉钼矿。据报导,多羟基黄原酸根可以与黄铁矿、白铁矿以及有机硫化物等脉石表面发生反应,生成表面亲水膜,使脉石受到抑制。 e. 典型络合抑制剂 上面许多多极性基的有机抑制剂,实际上属于络合剂,其中胺羧络合剂是典型螯合剂,其它类型的络合剂用做抑制剂的也有报导,例如水杨酸(盐)、磺基水杨酸(盐)、及茜素红。水杨酸铵可用做油酸浮选钽铌铁矿时长石的抑制剂;当用阳离子胺类捕收剂浮选含锂辉石和钽铌铁矿时,可用磺基水杨酸及茜素红抑制有用矿物,实现长石的反浮选。 DV一4抑制剂是用乙二胺与等摩尔数的烧碱和二硫化碳作用而成(如下),使用这种抑制剂浮选多金属硫化矿,能增加选择性。 H2N-CH2CH2NH2 + NaOH + CS2 → H2N-CH2CH2NHCSSNa + H2O

钛铁矿选矿工艺简介

钛铁矿选矿工艺简介 一钛铁矿矿石概述 1、钛铁矿化学分子式为:FeTiO3,矿物中理论成份FeO47.36%,TiO2为 52.64%,如果矿物中以MgO为主称为镁钛矿,以MnO为主的称红钛 锰矿。矿石中一般还有磁铁矿、硫化物等矿物。 2、钛精矿通常都指的是钛铁矿,一般钛精矿中含TiO2为46%以上。 3、钛精矿深加工多为生产钛白粉,是现代工业广泛使用的白色颜料。它 在涂料、造纸和塑料中作浅色颜料及高级填料,约占钛总消费量的85%以上,另外钛白还作为化学纤维的消光剂,橡胶制品的填料,石油化工的催化剂,以及油墨、陶瓷、玻璃、电焊条、冶金、电工、人造宝石和新兴材料等工业部门。 另外还生产钛金属,做为钛合金的添加剂。钛和钛合金是制造现代超音速飞机、火箭、导弹和航天飞机不可缺少的材料。 4、我国钛铁矿的主要生产基地目前有四川攀枝花、河北承德等。 5、目前钛金属售价为52元/Kg,钛精矿售价为700元/吨。 6、原生矿中的钛铁矿常与磁铁矿、钒钛磁铁矿共生。砂矿中的钛铁矿常 与金红石、锆石、独居石、磷钇矿等共同产出。 7、钛铁矿的一般工业要求为边界品位10Kg/m3,工业品位15Kg/m3, 8、钛铁矿晶体为菱面体,但完整晶形极少见,常呈不规则粒状、鳞片状、 厚板状。多呈自形至它形晶粒散布于其他矿物颗粒间,或呈定向片晶存在于钛磁铁矿、钛赤铁矿、钛普通辉石、钛角闪石等矿物中,为固溶分离产物。颜色铁黑色至钢灰色。条痕钢灰色或黑色,含赤铁矿包

裹体时呈褐色或褐红色。半金属光泽至金属光泽。不透明、无解理。 性脆、贝状至来贝状断口。硬度5-6.5,相对密度4.79,具弱磁性。二钛铁矿选矿工艺 钛铁矿主要的选矿工艺有“重选—强磁选---浮选”和“重选---强磁选---电选(选别前除硫)”两种,选矿过程中要严格按照分粒级入选,采取不同工艺流程。 采用的选矿设备有:斜板浓缩分级箱(按粒度分级)、耐磨螺旋溜槽(抛弃尾矿)、弱磁选机(除强磁矿物)、强磁选机(选钛铁矿)、浮选机(浮硫化物、浮细粒级钛铁矿)、电选机(精选钛铁矿)等。 [选矿用设备简介: 1、GL和BLX耐磨螺旋溜槽:广州有色研究院和长沙矿冶研究院合作研制开发; 2、电选机:长沙矿冶研究院新一代YD31200-23型; 3、选钛厂生产应用过的强磁设备:抚顺隆基立环脉冲高梯度强磁选机、长沙矿冶院研制的SHP仿琼斯强磁机、江西赣州冶金研究所研制的Slon 立环脉动高梯度强磁机等。 4、浮硫药剂制度:以丁基黄药为捕收剂、2#油为起泡剂、硫酸为调整剂的选钛的主流程。目前选钛工艺只能有效回收+0.074 mm粒级,对-0.074 mm 粒级基本上成为尾矿抛掉。 5、细粒级物料回收流程概况:经过国家“七五”、“八五”、“九五”科技攻关,确立了回收微细粒级钛铁矿的工艺流程(强磁一浮选)。在“九五”期间,通过钛业公司与长沙矿冶研究院等单位3年多的共同努力,形成了微细粒级钛铁矿回收的成套技术,开发了具有自主知识产权的ROB、R-2、HO等高效钛铁矿浮选捕收剂,其技术处于国际先进、国内领先水平。] 三主要的选矿工艺流程以下几种:

铝土矿选矿工艺,铝土矿选矿方法,如何提取氧化铝

金属铝是世界上仅次于钢铁的第二重要金属,1995年世界人均消费量达到3.29kg。由于铝具有比重小、导电导热性好、易于机械加工及其他许多优良性能,因而广泛应用于国民经济各部门。全世界用铝量最大的是建筑、交通运输和包装部门,占铝总消费量的60%以上。铝是电器工业、飞机制造工业、机械工业和民用器具不可缺少的原材料。 一、种类分布 中国铝土矿除了分布集中外,以大、中型矿床居多。储量大于2000万t的大型矿床共有31个,其拥有的储量占全国总储量的49%;储量在2000~500万吨之间的中型矿床共有83个,其拥有的储量占全国总储量的37%,大、中型矿床合计占到了86%。 基本类型亚类型主要分布地区 一水型铝土矿1)水铝石-高岭石型(D-K型) 山西、山东、河北、河南、 贵州 一水型铝土 矿 2)水铝石-叶蜡石型(D-P型)河南 一水型铝土 矿 3)勃姆石-高岭石型(B-K型)山东、山西一水型铝土 矿 4)水铝石-伊利石型(D-I型)河南 一水型铝土矿5)水铝石-高岭石-金红石(D-K- R型) 四川 三水型铝土 矿 三水铝石型(G型)福建、广西 二、消费前景 国际氧化铝市场:2005年全球氧化铝产量6064万吨,消费量6153.5万吨,略有缺口。2006年底投产的在建氧化铝项目总规模为1482万吨,至今拟建的氧化铝项目总规模已达到3952万吨。 国内氧化铝市场:2006年-2010年,全国电解铝需求量按照平均7.8%的增长速度, 2010年国内原铝需求量达到880万吨左右。2011-2020年,电解铝需求量以5%的速度增长,预计2020年需求量将达到1430万吨左右。 截止目前,中国平均每月铝土矿进口量为161.3 万吨,这反映了中国氧化铝生产商对进口矿的依赖程度大大增加。进口铝土矿中,从印尼进口的铝土矿为103.5 万吨,占进口总量的近64%。我们认为铝土矿进口过度集中,加大了国内

钛精矿浮选工艺

钛精矿浮选工艺 原创邹建新等 浮选一般包括以下几个过程: ①矿浆准备与调浆:即可以通过添加药剂,可人为改变矿物的可浮性,增加矿物的疏水性与非目的矿物的亲水性。一般通过添加目的矿物捕收剂或非目的矿物抑制剂来实现。有时还需要调节矿浆的pH值和温度等其它性质,为后续的分选提供对象和有利条件。 ②形成气泡:气泡的产生往往通过向添加有适量起泡剂的矿浆中充气来实现,形成颗粒分选所需的气液界面和分离载体。 ③气泡的矿化:矿浆中的疏水性颗粒与气泡发生碰撞、附着,形成矿化气泡。 ④形成矿化泡末层、分离:矿化气泡上升到矿浆的表面,形成矿化泡末层,并通过适当的方式刮出后即为泡沫精矿,而亲水性的颗粒则保留在矿浆中成为尾矿。见图 4.1.14和4.1.15所示。 矿石 水 破碎颗粒悬浮 药剂作用 精矿(水) 泡沫层 矿化气泡浮升 矿化气泡作用 分散成气泡 浮选药剂 搅拌槽 空气 尾矿(水) 浮选槽图4.1.14 泡沫浮选过程工艺示意图

图4.1.15 浮选机内各作用区的分布 1-刮泡区;2-浮选区;3-浆气混合区;4-充气 路线;5-矿浆循环路线 图4.1.16 某厂浮选机生产现场 浮选法是回收细粒钛铁矿的有效方法,如我国的承钢双塔山选矿厂,重钢的太和铁矿,以及攀钢选钛厂等。进行钛铁矿浮选之前,先要用浮选法分选出硫化矿物,然后再浮选钛铁矿。硫化物浮选采用常规浮选药剂制度,即用黄药为捕收剂,2号油为起泡剂,硫酸为pH 调整剂,有的选厂还采用硫酸铜作为硫化矿物浮选的活化剂。图4.1.16是攀西某厂浮选机生产现场实景图。 ——《钒钛产品生产工艺与设备》,北京:化工出版社,2014.01 【钒钛资源综合利用四川省重点实验室(攀枝花学院) 邹建新等】

铝土矿选矿技术

书山有路勤为径,学海无涯苦作舟 铝土矿选矿技术 铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研 究总院等单位联合开发的。因为受研究手段的限制,当时大家只是把目光放到了 矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研究总院等单位联合开发的。因为受研究手段的限制,当时大家 只是把目光放到了矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩,但所得精矿粒度较细,-200#在97% 左右,这样细的精矿粒度使磨矿成本较高,更使选矿后的精矿脱水工作变得难 以进行,因此无法真正地应用于工业生产。 直到上世纪90 年代中期,随着矿物结构研究的深入,铝土矿中富铝连生体 的概念提出后,才使选矿工作真正从研究室走了出来。基于北京矿冶研究总 院、中南工业大学的研究成果,现中铝河南分公司于1999 年在小关铝矿进行 了正浮选工业试验,a64%(a/s 为6.4)的矿石经过正浮选后,其选精矿达到 a70%(a/s 为14),氧化铝回收率为87%,尾矿a/s 稳定在1.5,精矿粒度有了大的突破,达到-200#小于75%的水平,选后经过的精矿水分在10%。 2001 年,中国长城铝业公司中州铝厂与北京矿冶研究总院、中南大学等单位 再次用河南铝土矿做了进一步的正浮选工业试验,在采用与1999 年原矿成分 相似的矿石时,取得了与1999 年同样的效果;在采用原矿a54%(a/s 为3.5)的原矿时,精矿达到了a65%(a/s 为8)、尾矿石a/s 为1.2 的效果,精矿细度、水分保持在原来的水平。此次试验不但验证了1999 年的结论,而且在工艺流程等 方面有了新的突破。 我国铝土矿具有氧化铝含量高的特点,如果采用拜耳法工艺,在矿石a/s 相

铁矿石的浮选方法

https://www.360docs.net/doc/a32955053.html, 铁矿石的浮选方法 应用浮选选别铁矿石时,有以下几种方法: (1)用阴离子捕收剂正浮选。该法常用脂肪酸或烃基硫酸脂作捕收剂,其用量一般为0.5~1.0Kg/t。目前普遍采用的是塔尔油和磺化石油作捕收剂,两者可以单独或混合使用,但一般认为混合使用较好。用碳酸钠调整调整碱性矿浆PH值及分散矿泥和沉淀多价有害金属离子。用硫酸调整酸性矿浆PH值,浮选时一般在弱酸性和弱碱性介质中进行。近来有的研究结果指出,在中性PH范围内浮选效果最好,超过这个范围,油酸的用量增大。另外用油酸浮选赤铁矿所控制的PH范围与矿石的粒度有关,即细粒(小于0.037 mm)赤铁矿在PH 为7.4时对油酸的吸附量最大;一般的浮选粒度(小于150mm~+0.037mm)在PH为3~9可浮性最好,当PH大于9时,可浮性显著下降。在强酸(PH小于3)介质中赤铁矿的浮出量不超过30%。 用脂肪酸及其衍生物直接浮选铁矿时,有时要预先脱泥,以防止矿泥对浮选过程的影响。 铁矿石正浮选在我国目前还是主要的方法,它的优点是药方简单,成本较低;但其缺点是只适合于处理脉石较简单的矿石,有时精矿需要进行多次精选才能得到合格精矿,而且精矿泡沫发粘,不易浓缩过滤,致使精矿所含水分较高。 使用脂肪类捕收剂浮选铁矿石时,矿浆的温度对其有明显的影响,为了改善浮选指标,可以提高矿浆的温度后再进行浮选,它的好处是药剂的选择性大为提高,精选时不需再加脂肪酸,再磨后也不需要脱泥。 (2)用阴离子捕收剂反浮选。对于脉石为石英类的矿物,首先用钙离子活化石英,然后用脂肪酸类捕收剂进行反浮选,这样得到的泡沫产品为石英,而留在槽中的产物则是铁精矿。反浮选时铁矿石的抑制剂可用淀粉、磺化木素和糊精等。用氢氧化钠或氢氧化钠与碳酸钠混合使用,调整矿浆PH值到11以上。石英只有用多价金属阳离子活化以后,才能用脂肪酸类捕收。常用的活化离子是Ca2+,用的最多的钙盐是氯化钙,其次是氢氧化钠。 必须说明的是此法适用于铁品位较高,而且脉石又较易浮起的铁矿石的浮选,但是应用该法时要注意处理或循环使用尾矿水,因为尾矿水的PH值高达11,如果直接放入公共用水区域,会造成严重的公害。 (3)用阳离子捕收剂反浮选。这时使用的浮选药剂是胺类捕收剂,用它来浮选石英脉石,胺类捕收剂以醚胺为最好,脂肪胺次之。铁矿的抑制剂采用水玻璃、单宁和磺化木素在PH值为8~9时,抑制效果最好。同样还可以采用各类淀粉抑制铁矿物。阳离子反浮选的优点是: 1)可以粗磨矿:用阴离子捕收剂浮选铁矿时,用阴离子捕收剂浮选,磁铁矿则易损失于尾矿中,而用阳离子反浮选时,磁铁矿则可以一并回收。 2)回收率较高:尤其是当铁矿中含有磁铁矿时,用阴离子捕收剂浮选,磁铁矿则易损失于尾矿中,而用阳离子反浮选时,磁铁矿则可以一并回收。 3)可以提高精矿质量:用阴离子浮选时,含铁硅酸盐会大量进入泡沫,阳离子反浮选时含铁硅酸盐与石英一起进入尾矿,故精矿品位较高。 4)作业简化:用阳离子反浮选可免去脱泥作业,故也可减少铁矿物的损失。该法适用于含铁品位高,且成分较为复杂的含铁矿石的浮选。

铝土矿预脱硅分选新工艺及工业应用前景

铝土矿预脱硅分选新工艺及工业应用前景 刘丕旺1,裴昱1,张伦和2,李开公3,刘惠中3 (1.郑州轻金属研究院,河南郑州450041;2.中国长城铝业公司, 河南郑州450041;3.北京矿冶研究总院,北京100044) 摘要:我国铝土矿资源的中低品位特点是发展我国氧化铝工业的瓶颈,“九五”期间开展的科技攻关课题对铝土矿物理方法和化学方法选矿进行了研究,本文着重介绍了铝土矿预脱硅分选新工艺的研究开发以及预脱硅分选拜耳法和预脱硅分选并联法的工业应用前景。 关键词:铝土矿;预脱硅选矿;拜耳法;并联法 中图分类号:TF046 文献标识码:B 文章编号:10021752(2001)09001805 我国铝土矿资源丰富〔1〕,储量占世界第四位, 资源总量约40亿吨,具备大力发展氧化铝工业的资源条件。但是世界铝土矿的分布极不均匀,赤道附近国家拥有占世界储量的90%以上的新生代三水铝石和一水软铝石,品位高,单体储量大,适宜于用拜耳法生产氧化铝。其他国家只有少量的中生代的一水软铝石和古生代的一水硬铝石,我国属于一水硬铝石-高岭石型铝土矿,有高铝高硅低铁难溶的特点,A/S低于7的矿石占总量的70%,全国六大氧化铝厂,除平果铝厂外,都是采用混联法或烧结法生产氧化铝,该工艺投资大、工艺复杂、能耗高、成本高,难以与国外的拜耳法相比,我国加入WTO在即,随着世界经济全球化进程,国际氧化铝市场竞争更趋激烈,我国氧化铝工业将面临严峻的挑战。 铝土矿资源特点成为我国发展氧化铝工业的瓶颈,为此,“七五”、 “八五”期间,氧化铝行业对我国一水硬铝石型铝土矿强化溶出等一系列新技术进行了科技攻关,取得了一批重要的科技成果,“九五”期间,组织的科技攻关“处理中低品位一水硬铝石型铝土矿新工艺研究”列为重点攻关课题(1996-122-01),旨在通过物理方法或化学方法对铝土矿进行脱硅选矿,选出高品位精矿,进行拜耳法生产。该课题下设四个专题,它们分别是“铝土矿湿法化学处理提高铝硅比”、 “铝土矿焙烧预脱硅”、 “铝土矿浮选拜耳法新工艺”、 “铝土矿预脱硅分选拜耳法新工艺”,通过各攻关单位共同努力,各专题都有不同程度的进展,取得了几项重要的科技成果。1 铝土矿脱硅选矿新工艺研究的进展 1.1 铝土矿湿法化学处理提高铝硅比 中南工大等单位开展了这项研究,用苛性碱溶液在常压下处理铝土矿,其中的高岭石发生反应,生成铝酸根和硅酸根。一水硬铝石不发生反应,矿浆进行液固分离,可以选出铝土矿精矿,液相用石灰处理,分别将其中氧化铝和氧化硅沉淀分离,再生的碱液返回重复用于浸出铝土矿,该专题进行了试验室研究,取得了阶段性成果。 1.2 铝土矿焙烧预脱硅 中南工大、郑州轻金属研究院等单位开展了这项研究,将铝土矿经1000℃左右预焙烧,焙烧过程中,其中的高岭石发生相变,生成莫来石和游离SiO2。其反应式为3(Al2O3?2SiO2)=3Al2O3?2SiO2 +4SiO2,焙烧矿用苛性碱溶液常压浸出,游离SiO2进入溶液,借此,可将原矿A/S4~5提高至精矿A/ S10以上,溶液中的SiO2用石灰沉淀分离碱液再生后重复使用,该项专题进行了试验室研究(或扩大试验),取得了阶段性成果。 1.3 铝土矿浮选脱硅新工艺研究〔2〕 20世纪50年代开始,国外就开始了铝土矿浮选试验,我国从70年代以来,开展了这项研究,进行过小型试验,小型连续试验和半工业试验,原矿A/S 收稿日期:2001-04-18

承德某钛铁矿选矿探索试验研究

承德某钛铁矿选矿探索试验研究 发表时间:2015-12-18T13:57:43.823Z 来源:《基层建设》2015年16期供稿作者:夏德林[导读] 青岛晟佰冶金窑炉长寿材料有限公司山东青岛从直接采用电选选别的结果可以知道,只单独采用电选工艺,难以大幅度提高钛精矿的品位。 夏德林 青岛晟佰冶金窑炉长寿材料有限公司山东青岛 266000 摘要:矿样采自承德某地钛铁矿,矿样含TiO2达37.25%,其中钛铁矿部分则占了92.43%。根据工艺矿物学的研究结果,结合国内外分选钛矿物选矿成熟的工艺,制定了不磨矿直接选钛矿的工艺流程和磨矿后再选钛的两种原则探索试验流程,其中分别包括:直接电选流程、扫铁—强磁选—电选流程、扫铁—强磁选—摇床流程、隔粗—扫铁—隔粗—电选—中磁选流程、磨矿—扫铁—强磁—电选选钛流程、 磨矿—扫铁—强磁—摇床选钛流程和磨矿—扫铁—强磁—浮选选钛流程,通过对比试验,探索最优的选钛工艺流程。关键词:不磨直选;磨矿再选;摇床选钛;磁电选钛1 矿石成份分析和化学物相分析 1.1 矿石化学成分 矿石的多元素化学成分分析结果列于表2—1。 表1—1 矿石的主要化学成分% 由表1—2可以看出:矿石中可供选矿回收的主要组分钛,其中钛铁矿占全钛的92.43%,而其他形式的钛矿物仅占7.57%,理论上全部回收矿样中的钛铁矿矿物,则选矿回收率应该达到92.43%。 1.3 主要矿物组成及粒度 对矿样进行了磨光片镜下检查,发现该矿物粒度主要介于0.03~0.25mm之间,脉石矿物的粒度和钛矿物的粒度接近,样品中钛矿物单体解离度在80%左右,为了得到较高品位的精矿产品需要进行再磨矿作业。样品中主要的矿物是钛铁矿、角闪石,其次为长石、云母、榍石,还含有一定量的黄铁矿和磁黄铁矿,脉石也基本以单体状态出现。 2 选矿探索试验 2.1 原矿粒度筛析及金属分布率测定 为了考察样品中不同粒级中钛矿物的分布情况,对原矿进行了粒度筛析和金属分布率测定,在不同的粒级中钛品位没有很大幅度的变化,粗粒级中品位没有明显的降低,因此进行粗粒抛尾不合适,只能为了不增加磨矿而进行隔粗处理,粗粒单独作为产品进行开发利用。该矿样较集中分布在-0.154~+0.045mm之间,占全粒级的70%左右,可见该矿的粒度比较均匀。 2.2 直接电选流程探索试验 为了探索该矿样采用何种工艺能够得到合格的精矿产品,首先直接进行电选工艺的探索,即原矿烘干加温到100摄氏度的条件下,给入电选机在3.0万伏的电压条件下,分别在160转/分、120转/分和80转/分的电机转速条件下经过三次电选作业,最终得到钛精矿产品。对于该矿采用直接电选选钛工艺,得到的钛精矿产品品位才40.81%,没有达到合格精矿产品的要求,因此采用该工艺不适合该矿中钛矿物的分选。 2.3隔粗—弱磁扫铁—强磁选—电选流程探索试验从直接采用电选选别的结果可以知道,只单独采用电选工艺,难以大幅度提高钛精矿的品位。采用隔粗—弱磁扫选—强磁选—电选工艺也只能够得到41.55%品位的钛精矿,此时精矿产率为77.52%,因此可见该流程同样不适合该矿中钛矿物的选别。 2.4 隔粗—弱磁扫选—强磁选—摇床流程探索试验从采用电选工艺选别的结果可以知道,采用单独电选工艺时,都难以得到较高品位的钛精矿,采用事粗—弱磁扫铁—强磁选—摇床工艺能够得到46.90%品位的最终钛精矿,此时精矿产率为15.29%,即处理100吨37.08%品位的矿样能够得到15.29吨的46.90%品位的高品位钛精矿,因此该流程适合该矿中钛矿物的选别。 2.5 隔粗—弱磁扫铁—隔粗—电选—中磁选流程探索试验为了探索干式选别流程暂高精矿品位的可能性,对原矿样进行了隔粗—弱磁扫铁—隔粗—电选—中磁选流程探索试验。原矿术采用隔粗—弱磁扫铁—隔粗—电选—中磁选流程,得到的精矿产率为51.50%、此时钛精矿的品位才44.09%,未能够达到合格高钛精矿品位的要求,因此该流程也不能适应该矿中钛矿物的分选。2.6 磨矿强磁选磨矿细度条件试验 从工艺矿物学的结果可以知道,为了进一步提高目的矿物(钛铁矿)的富集品位和回收率指标,需要进行磨矿,为此进行了一组不同细度条件下弱磁扫铁—强磁选的条件试验。在不同的细度条件下,采用强磁选工艺选钛时,粒度越细得到的粗钛精矿品位越高,相应的产率和回收率则降低,综合考滤磨矿成本和精矿数质量指标,这次试验选择的磨矿细度为-200目57%作为后续试验磨矿流程的粒度条件。 2.7 磨矿—弱磁扫铁—强磁选—电选流程探索试验

国内钛铁矿浮选研究的现状与进展

国内钛铁矿浮选研究的现状与进展 陈名洁 文书明 胡天喜 (昆明理工大学 昆明 650093) 摘 要 介绍了近年来国内在钛铁矿浮选研究方面的进展,主要包括钛铁矿浮选药剂的研究状况及钛铁矿浮选工艺研究状况。 结果表明,钛铁矿浮选以组合捕收剂的研究为主,联合流程选别钛铁矿将是钛铁矿选矿技术的发展方向。 关键词 钛铁矿 浮选工艺流程 浮选药剂 组合捕收剂 1 钛铁矿的资源分布 钛铁矿(Fe TiO3)的TiO2理论含量为52.63%,是提取钛和二氧化钛的主要矿物。钛铁矿为三方晶系,晶体常呈板状,集合体呈块状或粒状,钢灰色或铁黑色,金属光泽,莫氏硬度5~6,比重417~4178,具弱磁性〔1〕。 在自然界中,钛铁矿作为伴生矿物见于火成岩和变质岩中,也可形成砂矿〔2〕。主要分布于加拿大、挪威、南非、澳大利亚、美国、印度、中国、原苏联、斯里兰卡、巴西、芬兰等国〔3〕。著名矿山有加拿大魁北克的埃拉德湖,挪威的Telles矿。海滨砂矿著名产地有印度特兰万科尔,美国纽约州Maclntyre 矿,澳大利亚东海岸及芬兰Otanmaki矿〔4〕。 有关世界钛资源储量的统计和报道是多种多样的,不同来源的数据相差悬殊,造成差别的原因主要是统计时包括的矿物种类的不同。因此,有关世界钛资源的统计数据只具有参考价值,不是十分准确的完全统计。根据USGS等权威机构发表的资料,世界钛矿地质储量总计为5?108t~12?108t(以TiO2计)〔5〕,其中钛铁矿约占80%,金红石(包括锐钛矿)约占20%。所统计的资源储量主要是砂矿资源,岩矿仅包括加拿大、挪威的品位特别高的钛铁矿富矿。钛磁铁矿未统计在内,因为其中的钛铁矿与磁铁矿紧密结合,无法选出含钛较高的钛矿物。 我国的钛铁矿资源十分丰富〔6〕,遍布20个省区,既有岩矿,也有砂矿,其中,岩矿占大部分。岩矿主要分布在四川攀西地区和河北承德地区,如中国四川攀枝花铁矿中,钛铁矿分布于磁铁矿颗粒之间或裂理中,并形成了大型矿床。砂矿主要分布在广东、广西和海南沿海一带。此外,还有一种介于上述两者之间的内陆砂矿,分布在云南富民地区。2 钛铁矿浮选研究的进展 211 钛铁矿浮选药剂研究状况 在钛铁矿浮选之前,先要用浮选法分选出硫化矿物,然后再浮选钛铁矿。硫化物浮选采用常规浮选药剂制度,即用黄药为捕收剂,2号油为起泡剂,硫酸为p H调整剂,有的选厂还采用硫酸铜作为硫化矿物浮选的活化剂〔7〕。 对钛铁矿浮选药剂的研究比较多,但其主要研究内容方面是捕收剂的选择。钛铁矿常用的捕收剂为脂肪酸类,国外多用油酸及其盐类,如塔尔油皂或使用捕收剂与煤油混合。近年来对烃基膦酸类捕收剂及羟肟酸类捕收剂开展了大量的研究工作〔8〕。然而,两种或多种药剂组合起来其选别效果往往优于其中任何一种药剂,这就是药剂的协同效应,近年来采用混合药剂浮选钛铁矿已经越来越成为研究的最主要方向。 21111 组合捕收剂的研究 中南大学朱建光〔9〕采用A、B、C三种捕收剂混合成MOS新捕收剂,它可产生协同效应,1997年5月MOS浮选攀枝花细粒钛铁矿工业试验成功后, 1997年6月份起,该厂微细粒回收工艺流程投入生产,从近一年的生产情况看,生产指标已超过工业试验指标(精矿品位47101%),微细粒级钛精矿品位达到48%~49%,回收率61%。现在已由一个生产系列扩建成两个生产系列,这两个系列生产的微细粒钛精矿质量稳定,TiO2≥47150%,S≤0118%,经小型浮选试验、工业试验和四年多的工业生产实践证明,MOS是微细粒钛铁矿的良好捕收剂〔10〕。 针对回收微细粒级钛铁矿这一选矿难题,攀钢矿业公司设计研究院〔11〕和攀钢钛业公司经过三年的实验室研究工作,研制开发了新型R-2捕收剂,并在攀钢选钛厂微细粒级钛精矿试验生产线上进行

通过浮选试验钛铁矿找到捕收剂最佳配比

世上无难事,只要肯攀登 通过浮选试验钛铁矿找到捕收剂最佳配比 湖北荆江选矿药剂有限公司有关负责人周善表示,该公司在对四川攀枝花 市某矿业有限公司提供的浮钛原矿进行钛铁矿浮选试验时,通过使用不同的捕 收剂进行反复试验,最终找到了最佳的捕收剂,并取得了很好的选别指标。 据周善介绍,从试验原矿的筛析结果来看,+0.154mm 以上的占10.05%,粒级较粗。试验所用的捕收剂为MOH 和MOH-2,药剂配制浓度均为10%。试验中添加硫酸作调整剂,配制为5%(w/v)的溶液进行添加。因试验原矿中含少量的 硫化矿,所以试验中添加MB 进行浮硫,配制浓度5%。浮硫作业段添加2#油作起泡剂,添加浓度100%。试验中分别对MOH、MOH-2 及MOH 与MOH-2 按1∶1 的比例混合(以下简称混合捕收剂)使用进行对比试验。开路试验的粗选段按照条件试验得出的药剂制度添加,精选作业段逐级控制硫酸用量,控制 精矿在精二作业段达到47%以上,并通过各产物的分析化验数值计算出精矿回收率指标。试验中浮硫作业段的药剂条件固定为硫酸1200g/t、MB300g/t、2# 油80g/t,初步固定捕收剂添加量为1800g/t。当硫酸添加量从1200g/t 增加到1300g/t 时,精矿回收率略有下降,但精矿品位有较大幅度的提高;当硫酸用量 为1400g/t 时,尾矿品位高,精矿回收率低,因此粗选硫酸用量确定为 1300g/t。当硫酸添加量为1000g/t 时,精矿回收率高,但精矿品位较硫酸用量为1100g/t 时低,考虑到浮选流程只有两次精选,在保证有较高精矿回收率的 前提下,宜选用精矿品位较高的药剂制度;当硫酸用量为1200g/t 时,尾矿品位高,精矿回收率低,因此粗选硫酸用量确定为1100g/t。当硫酸添加量从1000g/t 增加到1100g/t 时,精矿回收率略有下降,尾矿品位相近,后者精矿品位较前者高;当硫酸用量为1200g/t 时,尾矿品位较高,精矿回收率较低,因此粗选硫酸用量确定为1100g/t。当硫酸用量固定在1300g/t 时,添加MOH 捕收

选矿实验流程

选矿试验的要求 选矿试验资料是选矿工艺设计的主要依据。选矿试验成果不仅对选矿设计的工艺流程、设备选型、产品方案、技术经济指标等的合理确定有着直接影响,而且也是选矿厂投产后能否顺利达到设计指标和获得经济效益的基础。因此,为设计提供依据的选矿试验,必须由专门的试验研究单位承担。选矿试验报告应按有关规定审查批准后才能作为设计依据。在选矿试验进行之前,选矿工艺设计者应对矿床资源特征、矿石类型和品级、矿石特征和工艺性质、以及可选性试验等资料充分了解,结合开采方案,向试验单位提出试验要求,在“要求中,一般不必详述试验单位通常都应做到的内容,而应着重提出需要试验单位解决的特殊内容和主要问题。 一、选矿试验类型的划分选矿试验按研究的目的可分为可选性试验、工艺流程试验和选矿单项技术试验三种,按试验规模可分为试验室试验、半工业试验和工业试验三种。为便于明确选矿试验要求和叙述的方便,概括上述两种分类,将选矿试验类型划分为可选性试验、试验室小型流程试验、试验室扩大连续试验、半工业试验、工业试验和选矿单项技术试验六种。 (1)可选性试验。一般由地质勘探部门完成。在地质普查、初勘和详勘阶段,应循序渐进地提高和加深可选性试验研究深度。可选性试验着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。可选性试验是在试验室装置或小型试验设备上进行的,一般只作矿床评价用。 (2)试验室小型流程试验。试验室小型流程试验是在矿床地质勘探完成之后,可行性研究或初步设计之前进行。它着重对矿石矿物特征和选矿工艺特性、选矿方法、工艺流程结构、选矿指标、工艺条件及产品(包括某些中间产品)等进行试验研究和分析,并应进行两 个以上方案的试验对比。试验研究的内容和深度。一般应能满足设计工作中初步制订工艺流程和产品方案、选择主要工艺设备及进行设计方案比较的要求。由于试验室小型流程试验规模小、试料少、灵活性大、入力物力花费较少,因此允许在较大范围内进行广泛的探索,又 因它的试料容易混匀,分批操作条件易于控制,因此是各项试验的最基本试验。但是,它是在试验室小型非连续(或局部连续)试验设备上进行的,其模拟程度和试验结果的可靠性虽优于可选性试验,但不及试验室扩大连续试验。 (3)试验室扩大连续试验。试验室扩大连续试验是在小型流程试验完成之后,根据小型流程试验确定的流程,用试验室设备模拟工业生产过程的磨矿、选别乃至脱水作业的连续试验。它着重考察流程动态平衡条件下(包括中矿返回)的选矿指标和工艺条件。各试验研究单位连续试验设备的能力很不一致,一般为40 一200kg/h 。试验室扩大连续试验比小型流程 试验的模拟性较好,可靠性较小型流程试验高些。 (4)半工业试验。半工业试验是在专门建立的半工业试验厂或车间进行的,试验可以是全流程的连续,也可以是局部作业的连续或单机的半工业试验。试验的目的主要是验证试验室试验的工艺流程方案,并取得近似于生产的技术经济指标,为选矿厂设计提供可靠的依据或为进一步做工业试验打下基础。半工业试验所用的设备为小型工业设备,试验厂的规模尚无明确的规定,一般为1~5t/h 。 (5)工业试验。工业试验是在专门建立的工业试验厂或利用生产选矿厂的一个系列甚至全厂进行的局部或全流程的试验,由于其设备、流程、技术条件与生产或今后的设计基本相同,故技术经济指标和技术参数比半工业试验更为可靠。

相关文档
最新文档