2011届高考物理第一轮专题教案20(牛顿运动定律的应用)

2011届高考物理第一轮专题教案20(牛顿运动定律的应用)
2011届高考物理第一轮专题教案20(牛顿运动定律的应用)

江苏省2011届高三物理一轮教案

牛顿运动定律的应用

教学目标:

1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤

2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解

3.理解超重、失重的概念,并能解决有关的问题

4

教学重点:

教学难点:

教学方法:

教学过程:

1:

(1

(2

题的答案.

可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。

点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线

运动,故常用的运动学公式为匀变速直线运动公式,如

2/2

,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤

(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型。

(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.

同一题目,根据题意和解题需要也可以先后选取不同的研究对象。

(3)分析研究对象的受力情况和运动情况。

(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边

形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求

合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。

(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据

规定的正方向按正、负值代入公式,按代数和进行运算。

(6)求解方程,检验结果,必要时对结果进行讨论。

3.应用例析

【例1】一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g 取10 m/s 2)

(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.

(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数μ是多少?

解析:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。

(1)以小物块为研究对象进行受力分析,如图所示。物块受重力mg 、斜面支持力N 、摩擦力f ,

垂直斜面方向上受力平衡,由平衡条件得:mg cos30°-N =0

沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma

又f =μN

由以上三式解得a =0.67m/s 2

小物体下滑到斜面底端B 点时的速度:==as v B 2 3.65m/s 运动时间:5.52==a

s t s (2)小物体沿斜面匀速下滑,受力平衡,加速度a =0,有

垂直斜面方向:mg cos30°-N =0

沿斜面方向:mg sin30°-f =0

又f =μN

解得:μ=0.58

【例2】如图所示,一高度为h =0.8m 粗糙的水平面在B 点处与一倾角为θ=30°光滑的斜面BC 连接,一小滑块从水平面上的A 点以v 0=3m/s 的速度在粗糙的水平面上向右运动。运动到B 点时小滑块恰能沿光滑斜面下滑。已知AB 间的距离s =5m ,求:

(1)小滑块与水平面间的动摩擦因数;

(2)小滑块从A 点运动到地面所需的时间;

解析:(1)依题意得v B1=0,设小滑块在水平面上运动的加速度大小为a ,则据牛顿第二

定律可得f =μmg =ma ,所以a =μg ,由运动学公式可得gs v μ220=得09.0=μ,t 1=3.3s

(2)在斜面上运动的时间t 2=s g h 8.0sin 22=θ

,t =t 1+t 2=4.1s 【例3】静止在水平地面上的物体的质量为2 kg ,在水平恒力F 推动下开始运动,4 s 末它的速度达到4m/s ,此时将F 撤去,又经6 s 物体停下来,如果物体与地面的动摩擦因数不变,求F 的大小。

解析:物体的整个运动过程分为两段,前4 s 物体做匀加速运动,后6 s 物体做匀减速运

动。

前4 s 内物体的加速度为

2211/1/4

40s m s m t v a ==-= ① 设摩擦力为μF ,由牛顿第二定律得

1ma F F =-μ ②

后2a =F -μF =这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。使解题过程简单明了。

二、整体法与隔离法

1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。

运用整体法解题的基本步骤:

(1)明确研究的系统或运动的全过程.

(2)画出系统的受力图和运动全过程的示意图.

(3)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解

2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。

运用隔离法解题的基本步骤:

(1)明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所

选隔离对象和所列方程数尽可能少。

(2)将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离

出来。

(3)对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运

动过程示意图。

(4)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解。

3.整体和局部是相对统一相辅相成的

隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则

4.应用例析

【例4】如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。

解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。可得F m m m F B

A B N += 点评:这个结论还可以推广到水平面粗糙时(A 、B 与水平面间μ相同);也可以推广到沿

斜面方向推A 、B 向上加速的问题,有趣的是,答案是完全一样的。

【例5】如图所示,质量为2m 的物块A 和质量为m 的物块B 与地面的摩擦均不计.在已知水平推力F 的作用下,A 、B 做加速运动.A 对B 的作用力为多大?

解析:取A 、B 整体为研究对象,其水平方向只受一个力F 的

作用

根据牛顿第二定律知:F =(2m +m )a

a =F /3m

取B 为研究对象,其水平方向只受A 的作用力F 1,根据牛顿第二定律知:

F 1=

故F 1【例6解:

F N =Mg 【例7水平力F 拉度各多大?

解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。当

A 、

B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N

(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2B

A B A 3.3m/s =+==m m F a a

(2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2

【例8】如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =2

1g ,则小球在下滑的过程中,木箱对地面的压力为多少?

命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求. 错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.

解题方法与技巧:

解法一:(隔离法)

木箱与小球没有共同加速度,所以须用隔离法.

取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:

mg -F f =ma ①

取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图.

据物体平衡条件得:

F

N -F f ′-Mg =0

② 且F f =F f ′

③ 由①②③式得F N =2

2m M +g 由牛顿第三定律知,木箱对地面的压力大小为

F N ′=F N =2

2m M +g . 解法二:(整体法)

对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式:

(mg +Mg )-F N = ma +M ×0

故木箱所受支持力:F N =2

2m M +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =

2

2m M +g . 三、临界问题 在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。

【例9】一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.

命题意图:考查对牛顿第二定律的理解应用能力、分析推理能力及临界条件的挖掘能力。 错解分析:对物理过程缺乏清醒认识,无法用极限分析法挖掘题目隐含的临界状态及条件,使问题难以切入.

解题方法与技巧:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳拉力和斜面的支持力作用,绳平行于斜面,当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)

由mg cot θ=ma 0

所以a 0=g cot θ=7.5 m/s 2

因为a =10 m/s 2>a

所以小球离开斜面N =0,小球受力情况如图,则

Tc os α=ma , T sin α=mg

所以T =22)()(mg ma +=2.83 N ,N =0.

四、超重、失重和视重

1.超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象。

产生超重现象的条件是物体具有向上的加速度。与物体速度的大小和方向无关。

产生超重现象的原因:当物体具有向上的加速度a(向上加速运动或向下减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F,由牛顿第二定律得

F-mg=ma

所以F=m(g+a)>mg

由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′>mg.

2.失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象。

产生失重现象的条件是物体具有向下的加速度,与物体速度的大小和方向无关.

产生失重现象的原因:当物体具有向下的加速度a(向下加速运动或向上做减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F。由牛顿第二定律

mg-F=ma,所以

F=m(g-a)<mg

由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F′<mg.

完全失重现象:物体对支持物的压力(或对悬挂物的拉力)等于零的状态,叫做完全失重状态.

产生完全失重现象的条件:当物体竖直向下的加速度等于重力加速度时,就产生完全失重现象。

点评:(1)在地球表面附近,无论物体处于什么状态,其本身的重力G=mg始终不变。超重时,物体所受的拉力(或支持力)与重力的合力方向向上,测力计的示数大于物体的重力;失重时,物体所受的拉力(或支持力)与重力的合力方向向下,测力计的示数小于物体的重力.可见,在失重、超重现象中,物体所受的重力始终不变,只是测力计的示数(又称视重)发生了变化,好像物体的重量有所增大或减小。

(2)发生超重和失重现象,只决定于物体在竖直方向上的加速度。物体具有向上的加速度时,处于超重状态;物体具有向下的加速度时,处于失重状态;当物体竖直向下的加速度为重力加速度时,处于完全失重状态.超重、失重与物体的运动方向无关。

3.应用例析

【例10】质量为m的人站在升降机里,如果升降机运动时加速度的绝对值为a,升降机底板对人的支持力F=mg+ma,则可能的情况是

A.升降机以加速度a向下加速运动

B.升降机以加速度a向上加速运动

C.在向上运动中,以加速度a制动

D.在向下运动中,以加速度a制动

解析:升降机对人的支持力F=mg+ma大于人所受的重力mg,故升降机处于超重状态,具有向上的加速度。而A项中加速度向下,C项中加速度也向下,即处于失重状态。故只有选项B、D正确。

【例11】下列四个实验中,能在绕地球飞行的太空实验舱中完成的是

A.用天平测量物体的质量

B.用弹簧秤测物体的重力

C.用温度计测舱内的温度

D.用水银气压计测舱内气体的压强

解析:绕地球飞行的太空试验舱处于完全失重状态,处于其中的物体也处于完全失重状态,物体对水平支持物没有压力,对悬挂物没有拉力。

用天平测量物体质量时,利用的是物体和砝码对盘的压力产生的力矩,压力为0时,力矩也为零,因此在太空实验舱内不能完成。

同理,水银气压计也不能测出舱内温度。

物体处于失重状态时,对悬挂物没有拉力,因此弹簧秤不能测出物体的重力。

温度计是利用了热胀冷缩的性质,因此可以测出舱内温度。故只有选项C正确。

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律的应用学案

牛顿运动定律的应用学案 一.学习目标: 能用牛顿运动定律解决两类主要问题:已知物体的受力情况确定物体的运动情况、已知物体的运动情况确定受力情况。同时能够掌握应用牛顿运动定律解决问题的基本思路和方法,初步体会牛顿运动定律对社会发展的影响,建立应用科学知识解决实际问题的意识。 二.重点难点 能够灵活的选择和应用解题方法来处理牛顿运动定律相关问题。 三.课前检测 1.牛顿第二定律的内容? 四.课堂练习习题 1.(多选)如图所示,表示某小球所受的合力与时间关系,各段的合力大小相同,作用时间相同, 设小球从静止开始运动,由此可以判定( ) A.小球向前运动,再返回停止 B.小球向前运动,再返回不会停止 C.小球始终向前运动 D.小球在4秒末速度为0 2.放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示. 取重力加速度g=10 m/s2. 试利用两图线求 (1)物块在运动过程中受到滑动摩擦力大小; (2)物块在3~6s的加速度大小; (3)物块与地面间的动摩擦因数.

3.一物体以初速度20m/s自倾角为37°的斜面向上滑动,2.5秒后速度为零, (1)求斜面与物体间的动摩擦因数。 (g=10m/s2) (2)若它又滑下,最终到达斜面底端,又要用去多长时间? 4.质量为m=4 kg的小物块在一个平行于斜面的拉力F=40N的作用下,从静止开始沿斜面向上滑动,如图8所示。已知斜面的倾角α=37°,物块与斜面间的动摩擦因数μ=0.25,斜面足够长,力F作用5s后立即撤去,求: (1)力F作用时合力和加速度为多少? (2)前5 s内物块的位移大小及物块在5 s末的速率;8 (3)撤去外力后向上滑行多长时间? (4)撤去外力F后4 s末物块的速度。 5.某研究性学习小组利用力传感器研究小球与竖直挡板间的作用力,实验装置如图所示,已知斜面倾角为45°,光滑小球的质量m=3 kg,力传感器固定在竖直挡板上。求:(g=10 m/s2) (1)当整个装置静止时,力传感器的示数。 (3)当整个装置向右做匀加速直线运动时,力传 感器示数为36 N,此时装置的加速度大小。 (2)某次整个装置在水平方向做匀加速直线运动时,加速度为10m/s2?力传感器示数为多少?

牛顿运动定律教案

§ 3—3 牛顿运动定律的综合应用 勉县一中张华【考纲分析】“牛顿运动定律的应用”要求为II类,是高考必考的21个考点之一。超重和失重要求 为I类,也是考试的高频考点。由于整合了物体的受力分析和运动状态分析,使得本节成为高考的热点和必考内容。受力分析和运动状态分析,是解决物理问题的两种基本方法。并且,本单元的学习既是后继“动能”和“动量”等复杂物理过程分析的基础,也是解决“带电粒子在电场、磁场中运动”等问题的基本方法。 【学情分析】由于本部分知识对分析、综合和解决实际问题的能力要求高,不少同学在此感到困惑,疑难较多,主要反映在研究对象的选择和物理过程的分析上及规范解答上。 【教学目标】 一、知识与技能 1.超重和失重的的概念及实质; 2?用整体法和隔离法处理简单的连接体问题; 3?针对计算题分析、规范解答、列得分点方程加强训练。 二、过程与方法 掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题。 三、情感态度与价值观 通过相关问题的分析和解决,培养学生的思维严谨和科学精神。 【教学重点】整体法和隔离法的选取。 【教学难点】物体受力情况和运动状态的分析;处理实际问题时“物理模型”和“物理情景”的建立。 【教学方法】分析法、讨论法、图示法。 【课时计划】3课时 教学过程: 第1课时超重失重连接体问题 一.复习回顾: 上一节复习过的牛顿第二定律讲过和做过的典型题型都有哪些? 二.本节考点梳理: 考点1超重和失重 1.视重 (1)当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。 (2)视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。 2.超重和失重: 定义:物体对悬挂物的拉力(或对支持物的压力)大于物体所受重力的现象。 超重』条件:物体具有竖直向上的加速度。 原理式:F-mg=ma 所以F=m(g+a)>mg '-运动形式:加速上升或减速下降。 屜义:物体对悬挂物的拉力(或对支持物的压力)小于物体所受重力的现象。失重Y 条件:物体具有竖直向下的加速度。 原理式:mg_F =ma 所以F=m(g_a)

高考物理牛顿运动定律专题训练答案

高考物理牛顿运动定律专题训练答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。重力加速度g =10m/s 2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】(1)0.3(2) 120(3)2.75m 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:2221114/3/1 v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: 0121 2v mg mg m t μμ+?= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 21222v mg mg m t μμ-?= 而且121t t t s +== 联立可以得到:2120μ= ,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为: 01100.52 v x t m +=?=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律学案一

§4.1 《牛顿第一、第三定律》复习学案 【学习目标】 1.理解牛顿第一定律的内容和意义。 2.知道什么是惯性,会正确解释有关惯性问题。 3.知道作用力和反作用力的概念,理解牛顿第三定律的确切含义。 【课前复习】 一、牛顿第一定律 1.牛顿第一定律的内容:一切物体总保持状态或状态,直到有迫使它改变这种状态为止。 2.牛顿第一定律的理解: (1)牛顿第一定律不是由实验直接总结出来的规律,它是牛顿以的理想实验为基础,在总结前人的研究成果、加之丰富的想象而推理得出的一条理想条件下的规律。(2)牛顿第一定律成立的条件是,是理想条件下物体所遵从的规律,在实际情况中,物体所受合外力为零与物体不受任何外力作用是等效的。 (3)牛顿第一定律的意义在于 ①它揭示了一切物体都具有的一种基本属性惯性。 ②它揭示了运动和力的关系:力是的原因,而不是产生运动的原因,也不是维持物体运动的原因,即力是产生加速度的原因。 3.惯性 (1)定义:。 (2)对惯性的理解: ①惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关 ②是物体惯性大小的量度,质量大的物体惯性大,质量小的物体惯性小。 ③物体的惯性总是以保持“原状”和反抗“改变”两种形式表现出来:当物体不受外力作用时,惯性表现为保持原运动状态不变,即反抗加速度产生,而在外力一定时,质量越大运动状态越难改变,加速度越小。 ④惯性不是力,惯性是物体具有的保持或状态的性质,力是物体对物体的作用,惯性和力是两个不同的概念。 二、牛顿第三定律 1.内容:。 2.理解 (1)物体各种形式的作用都是相互的,作用力与反作用力总是产生、变化,同时消失、无先后之分。 (2)作用力与反作用力总是大小相等、方向相反、作用在同一条直线上。 (3)作用力与反作用力是性质的力。 (4)作用力与反作用力是分别作用在物体上的,既不能合成,也不能抵消,分别作用在各自的物体上产生各自的作用效果。

《牛顿运动定律的运用》教案

牛顿运动定律的应用 教学目标 一、 知识目标 1. 知道运用牛顿运动定律解题的方法 2. 进一步学习对物体进行正确的受力分析 二、 能力目标 1. 培养学生分析问题和总结归纳的能力 2. 培养学生运用所学知识解决实际问题的能力 三、 德育目标 1. 培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、 导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、 新课教学 (一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况

专题 牛顿运动定律的综合应用

专题1牛顿运动定律的综合应用 动力学中的图象问题 1.常见的动力学图象及问题类型 2.解题策略——数形结合解决动力学图象问题 (1)在图象问题中,无论是读图还是作图,都应尽量先建立函数关系,进而明确“图象与公式”“图象与规律”间的关系;然后根据函数关系读取图象信息或描点作图。 (2)读图时,要注意图线的起点、斜率、截距、折点以及图线与横坐标轴包围的“面积”等所表示的物理意义,尽可能多地提取有效信息。 考向动力学中的v-t图象 【例1】(多选)(2015·全国Ⅰ卷,20)如图1甲,一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图乙所示。若重力加速度及图中的v0、v1、t1均为已知量,则可求出() 图1 A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析由v-t图象可求物块沿斜面向上滑行时的加速度大小为a=v0 t1 ,根据牛顿

第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1。同理向下滑行时g sin θ-μg cos θ=v 1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1 cos θ,可见能计算出斜面的倾斜角度θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知, 向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为s =v 02t 1,根据斜面的倾斜角度可计算出向上滑行的最大高 度为s sin θ=v 02t 1×v 0+v 12gt 1 =v 0(v 0+v 1)4g ,选项D 正确;仅根据v -t 图象无法求出物块的质量,选项B 错误。 答案 ACD 考向 动力学中的F -t 图象 【例2】 (多选)(2019·全国Ⅲ卷,20)如图2(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2。由题给数据可以得出( ) 图2 A.木板的质量为1 kg B.2 s ~4 s 内,力F 的大小为0.4 N C.0~2 s 内,力F 的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

导学案:牛顿运动定律的应用

专题:牛顿运动定律的应用导学案 二、两类动力学问题 1、已知受力求运动 例题1:(2019学考)一个质量m=4Kg的木箱静止放置在水平地面上,某同学用F=18N的水平推力推动木箱做匀加速直线运动,已知木箱与地面之间的动摩擦因数为0.3,重力加速度g=10m/s2。求: (1)木箱受到的滑动摩擦力大小; (2)木箱运动的加速度大小; (3)木箱在2s末的速度大小。 变式1:上题若将力F改为20N,求:木箱在5s末的位移大小。 2、已知运动求受力 例题2:(2019学考)某人驾驶一辆新型电动汽车在水平路面上从静止开始做匀加速直线运动,汽车行驶了5s时速度达到10m/s。若人与汽车的总质量m=800kg,汽车所受阻力为F阻=160N。求: (1)汽车的加速度大小a; (2)汽车的牵引力大小F; (3)汽车牵引力的反作用作用在哪个物体上? 变式2:上题5s时撤除牵引力(汽车所受阻力不变),求: (1)汽车加速度大小; (2)汽车经多长时间停止运动? (3)撤去牵引力后汽车的还能运动多远? 小结: 课后巩固练习: 1、(2019学)一个质量m=10kg的物体静止在水平地面上,在F=20N的水平恒力作用下开始运动,重力加速度g=10m/s2。 (1)若水平面光滑,求物体加速度大小和2秒末的速度大小; (2)若水平面粗糙,且物体与水平面间的动摩擦因数为0.1,求物体加速度大小。 2、(2019学)一个滑雪者,质量m=70kg,从静止开始沿山坡匀加速滑下,已知滑雪者运动的加速度大小为4m/s2,山坡可看成充足长的斜面。 (1)求滑雪者在2s末的速度大小v; (2)求滑雪者受到的合力大小;

《牛顿运动定律》教案完美版

第四章牛顿运动定律 一、牛顿第一定律 [要点] 1.伽利略的成功在于把“明明白白的实验事实和清清楚楚的逻辑推理结合在一起”,物理学从此走上了正确的轨道。 2.力与运动的关系。(1)历史上错误的认识是“运动必须有力来维持” (2)正确的认识是“运动不需要力来维持,力是改变物体运动状态的原因”。 3.对伽利略的理想实验的理解。这个实验的事实依据是运动物体撤去推力后没有立即停止运动,而是运动一段距离后再停止的,摩擦力越小物体运动的距离越长。抓住这些事实依据的本质属性,并作出合理化的推理,这就是伽利略的高明之处,我们要学习的就是这种思维方法。 4.对“改变物体运动状态”的理解——运动状态的改变就是指速度的改变,速度的改变包括速度大小和速度方向的改变,速度改变就意味着存在加速度。 5.维持自己的运动状态不变是一切物体的本质属性,这一本质属性就是惯性。揭示物体的这一本质属性是牛顿第一定律的伟大贡献之一。 惯性:物体具有保持静止状态或匀速直线运动状态的性质叫做惯性。一切物体都具有惯性。 6.牛顿第一定律的内容:切物体在没有受到外力的作用时,总保静止状态或匀速直线运动状态。(1)“一切物体总保持匀速直线运动或者静止状态”——这句话的意思就是说一切物体都有惯性。(2)“除非作用在它上面的力迫使它改变这种状态”——这句话的意思就是外力是产生加速度的原因。 7.任何物理规律都有适用范围,牛顿运动定律只适用于惯性参照系。 8.质量是惯性大小的量度。 二、实验:探究加速度与力、质量的关系 [要点] 1.实验目的:探究加速度与外力、质量三者的关系。这个探究目的是在以下两个定性研究的基础上建立起来的。 (1)小汽车和载重汽车的速度变化量相同时,小汽车用的时间短,说明加速度的大小与物体的质量有关。 (2)竞赛用的小汽车与普通小轿车质量相仿,但竞赛用的小车能获得巨大的牵引力,所以速度的变化比普通小轿车快,说明加速度的大小与外力有关。 2.实验思路:本实验的基本思路是采用控制变量法。 (1)保持物体的质量不变,测量物体在不同外力作用下的加速度,探究加速度与外力的关系。探究的方法采用根据实验数据绘制图象的方法,也可以彩比较的方法,看不同的外力与由此外力产生的加速度的比值有何关系。 (2)保持物体所受的力相同,测量不同质量的物体在该力作用下的加速度,探究加速度与力的关系。探究的方法采用根据实验数据绘制图象的方法。 3.实验方案:本实验要测量的物理量有质量、加速度和外力。测量质量用天平,需要研究的是怎样测量加速度和外力。 (1)测量加速度的方案:采用较多的方案是使用打点计时器,根据连续相等的时间T内的位移之差Δx=a T2求出加速度。条件许可也可以采用气垫导轨和光电门。教材的参考案例效果也比较好。(2)提供并且测量物体所受的外力的方案:由于我们上述测量加速度的方案只能适用于匀变速直线运动,所以我们必须给物体提供一个恒定的外力,并且要测量这个外力。教材的参考案例提供的外力比较容易测量,采用这种方法是不错的选择。 4.对实验结果的分析是本实验的关键。如果根据实验数据描出的a-F图象和a-1/m图象都非常接

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

高考物理牛顿运动定律的应用专题训练答案及解析

高考物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

牛顿运动定律习题课导学案

牛顿运动定律习题课 【学习目标】 能够用牛顿三大定律解释相关现象和处理相关问题 【学习重点】:理解、熟练掌握牛顿第二定律及应用。 【学习难点】:(1)准确理解力和运动的关系。 (2)通过运动情况判断物体受力。 (3)熟练应用牛顿定律 【方法指导】自主探究、交流讨论、自主归纳 学习过程:自主学习:(看书回答) 一、基础知识1、牛顿第一定律: ,牛顿第一定律定义了力:物体的运动不需要力来维持,力是改变运动状态的原因。 2、牛顿第二定律: ,牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与物体的受力情况联系起来。 3、牛顿第三定律: ,牛顿第三定律说明了作用力与反作用力之间的关系,把相互作用的几个物体联系起来了。 二、基本题型: 类型一:从物体的受力情况确定物体的运动情况 已知物体的受力情况,能够由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。 类型二:从运动情况确定受力情况 已知物体的运动情况,根据________公式求出物体的加速度,于是就能够由牛顿第二定律确定物体所受的___________。 类型三:平衡类问题 可先对物体实行受力分析,根据__力的合成___法则,可转化成二力模型、三力模型、四力模型来处理。 合作探究一 三、解题要点:(1)分析流程图 强调:抓住 力 和 运动 之间的桥梁——加速度,受力分析和运动分析是基础, (2)基本步骤: 四、基本方法:正交分解、整体法、隔离法、三角形法等 五、典型例题 合作探究二 力的合成分解 受力情况 F 1、F 2…… F 合 a 受力情况 v 0、v t 、s 、t F 合=ma 运动学公式

大学物理 第二章牛顿运动定律教案()

第二章牛顿运动定律 教学要求: * 理解力、质量、惯性参考系等概念; * 掌握牛顿三定律及其适用条件,能熟练地用牛顿第二定律求解力学中的两大类问题; * 了解自然力与常见力; * 了解物理量的量纲。 教学内容(学时:2学时): §2-1 牛顿运动定律 §2-2 物理量的单位和量纲 §2-3 自然力与常见力 §2-4 牛顿运动定律的应用 §2-5 非惯性系中的力学问题 * 教学重点: * 掌握牛顿三定律及其适用条件;* 牛顿运动定律的应用(难点:牛顿二定律微分形式)。 作业: 2—03)、2—06)、2—08)、

2—13)、2—15)、2—17)。 ----------------------------------------------------------------------- §2–1 牛顿运动定律 一牛顿运动定律 1.牛顿第一定律(惯性定律) 任何物体都要保持其静止或匀速直线运动的状态,直到外力加于其上迫使它改变运动状态为止。 讨论: (1)肯定了力的概念 从起源看:力是物体间的相互作用。 从效果看:力是改变运动状态的原因,即力是产生加速度的原因。(2)说明了物体具有保持原有运动状态的特性------惯性。 (3)牛顿第一定律中所谈到的物体,实际上指的是质点。

即这里只涉及平动而不涉及 转动,在(2)中所说的惯性指 的是平动的惯性。 (4)牛顿第一定律是大量直观经验和实验事实的抽象概括,不能用实验直接证明。 原因是不受其它物体作用的孤立物体是不存在的。 (5)牛顿第一定律不是对任何参考系都适用。 牛顿第一定律谈到了静止和匀速直线运动,由于运动描述的相对性,必然涉及参考系问题。 例:甲看到物体A静止,乙看到物体A以加速度a向后运动。

高中物理牛顿运动定律的应用专题训练答案

高中物理牛顿运动定律的应用专题训练答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg 带负电荷的绝缘物块,其带电荷量q = -5×10- 8 C .物块与水平面间的动摩擦因数μ=0.2,给 物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求: (1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】 带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】 (1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a = (2)物块进入电场向右运动的过程,根据动能定理得:()2101 02 mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m (3)物块先向右作匀减速直线运动,根据:00111??22 t v v v s t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:21221 2 s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=- 根据:3322a t a t = 解得30.2t s = 物块运动的总时间为:123 1.74t t t t s =++= 【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.

2020高考物理一轮复习第三章第3讲牛顿运动定律综合应用学案(含解析)

第3讲 牛顿运动定律综合应用 主干梳理 对点激活 知识点 连接体问题 Ⅱ 1.连接体 多个相互关联的物体连接(叠放、并排或由绳子、细杆联系)在一起构成的□01物体系统称为连接体。 2.外力与内力 (1)外力:系统□ 02之外的物体对系统的作用力。 (2)内力:系统□03内各物体间的相互作用力。 3.整体法和隔离法 (1)整体法:把□ 04加速度相同的物体看做一个整体来研究的方法。 (2)隔离法:求□05系统内物体间的相互作用时,把一个物体隔离出来单独研究的方法。 知识点 临界极值问题 Ⅱ 1.临界或极值条件的标志 (1)有些题目中有“刚好”“恰好”“正好”等字眼,即表明题述的过程存在着□01临界点。 (2)若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往对应□ 02临界状态。 (3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点。 (4)若题目要求“最终加速度”“稳定速度”等,即是求收尾加速度或收尾速度。 2.四种典型的临界条件 (1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是□03弹力F N =0。 (2)相对滑动的临界条件:两物体相接触且相对静止时,常存在着静摩擦力,则相对滑动的临界条件是□ 04静摩擦力达到最大值。 (3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于□05它所能承受的最大张力,绳子松弛的临界条件是□06F T =0。 (4)加速度变化时,速度达到最值的临界条件:速度达到最大的临界条件是□07a =0,速度为0的临界条件是a 达到□ 08最大。 知识点 多过程问题 Ⅱ 1.多过程问题 很多动力学问题中涉及物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的□01运动情况和□02受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题。

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求: (1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ; (3)小球向下运动到最低点时,物块M 所受的拉力大小T 【答案】(1)53F Mg mg =- (2) 65M m = (3)()85mMg T m M =+(4855 T mg =或8 11T Mg = ) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得5 3 F Mg mg = - (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得 65 M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T 牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma 解得85mMg T m M = +()(488 5511 T mg T Mg = =或) 【点睛】

高中牛顿运动定律复习学案教案

《牛顿运动定律》复习学案 一.选择题 1.?以下关于物体运动状态的改变的说法,正确的是 A.?速度大小不变,运动状态就不变 B.?速度方向不变,运动状态就不变 C.?只有速度的大小和方向都变了,才能说运动状态改变了 D.?只要速度的大小或方向有一个变了,运动状态就发生了改变 2.?下面作个说法中正确的是 A.当物体的运动状态发生变化时,它一定受到外力作用 B.?静止或作匀速直线运动的物体,一定不受外力的作用 C.?当物体的速度等于零时,它一定处于平衡状态 D.物体的运动方向一定是它所受的合外力的方向 3.?下列说法中正确的是 A.子弹离开枪口飞出时速度大,力很大,飞行一段时间后速度小,力也就小了 B.作匀速直线运动的物体,所受的合外力一定是零 C.?运动得很快的汽车不容易停下来,是因为汽车运动得越快,惯性越大 D.子弹在空中飞行时受到三个力作用:重力、空气阻力、向前运动的力 4.?关于作用力和反作用力,下列说法中正确的是 A.地球对重物的作用力比重物对地球的作用力大 B.两个物体都外于平衡状态时,作用力与反作用力的大小才相等 C.一个作用力和它的反作用力的合力为零 D.作用力与反作用力总相同性质的力 5.当书本A静止于桌面B上时,下列说法中正确的是 A.A对B的正压力等于A的重力,这两个力是平衡力 B.?B对A的支持力等于A的重力,这两个力是作用力与反作用力 C.?B对A的支持力等于A的重力,这两个力是平衡力 D.?B对A的支持力等于A的重力,这两个力是平衡力 6.马拉车加速前进,则 A.?马拉车的力一定大于车拉马的力B.?马拉车的力可能小于车拉马的力 C.?马拉车的力一定等于车拉马的力 D.?马拉车的力等于车拉马的力跟地面与车的摩擦力之和 7.有关超重和失重,以下说法中正确的是() A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.斜上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.在月球表面行走的人处于失重状态 8.如图2所示,一个自由下落的小球,从它接触弹簧开始到弹簧压缩到最短 的过程中,小球的速度和所受合外力的变化情况为() A、速度一直变小直到零 B、速度先变大,然后变小直到为零 C、合外力一直变小,方向向上 D、合外力先变小后变大,方向先向下后向上 图2

牛顿运动定律优秀教案教学提纲

牛顿运动第一定律 教学目的: 1.知道亚里士多德、伽利略等对力和运动的关系的不同认识,了解伽利略的理想实验及其推理和结论,认识理想实验是科学研究的重要方法; 2.理解牛顿第一定律的内容和意义; 3.掌握惯性的概念,会应用惯性解释自然现象; 4.通过问题的分析和研究感悟科学研究的方法和规律。 重点难点:牛顿第一定律的理解和应用 教材处理:将教材第一节部分内容渗透到牛顿运动第一定律的教学过程中,并且在本章的教学过程中不断渗透其思想方法,通过不断深入的理性思维引导,提升感悟认识。 课型:规律建立课 教学方法:以讲授为主,调动学生观察与思维体验 手段:利用手边的钥匙做演示实验,多媒体辅助教学 教学过程 引入: 公共汽车急剎车, 一位男士踩到了一位女士, 女士很生气说:”瞧你这德性.”男士回答:”不是德性, 是惯性.”老师提问:”什么是惯性呢?” 教师演示实验,学生观察实验——引导学生体会、思考力与运动的关系:使一串钥匙:竖直上抛、使其摆动、使其圆周运动, 提出思考问题:为什么小球的运动过程不一样? 学生观察后绝大多数答案:小球受力情况不同。 教师变换条件,演示实验,学生观察实验——引导学生思考,感悟力不是决定具体运动形式唯一因素。 使同一串钥匙落体、上抛、平抛、斜抛 问题:小球受力情况是否相同? 答案:均只受重力 问题:为什么小球的运动过程不一样? 学生对比两次实验,深刻思考反思,有学生说到有惯性! 教师肯定,并且强调初始状态不同。 教师引出新课题: 运动学(kinematics) ——只研究物体怎样运用而不涉及运用与力的关系的理论; 动力学(dynamics) ——研究运动和力的关系的理论。 教师调动学生: 让我们走进牛顿的世界

《牛顿运动定律》章末复习教学设计与反思

《牛顿运动定律》章末复习教学设计与反思 一、教材分析 本章是在前面对运动和力分别研究的基础上的延伸——研究力和运动的关系,建立起牛顿运动定律。牛顿运动定律是动力学的基础,是力学中也是整个物理学的基本规律,正确地理解惯性概念,理解物体间的相互作用的规律,熟练地运用牛顿第二定律解决问题,是本章的学习要求,也为进一步学习今后的知识,提高分析解决问题的能力奠定基础。 本章还涉及到了许多重要的研究方法,如:在牛顿第一定律的研究中采用的理想实验法;牛顿第二定律中的控制变量法;运用牛顿第二定律处理问题时常用的整体法与隔离法,以及单位的规定方法,单位制的创建等。对这些方法要认真体会、理解,以提高认知的境界。 为了更扎实地理解牛顿第二定律,本章第二节安排了实验:探究加速度与力、质量的关系,并提供了参考案例,实验操作方便,规律性强,结论容易获得,控制变量法在此得到了实践。第五节牛顿第三定律的研究引入了传感器并与现代科技产物计算机进行有机的组合,现代科技气息浓厚,实验效果很好。物理知识来源于生活,最终应用于生活,本章的后两节就是牛顿运动定律的简单应用。 二、教学重点: 1、理解力和运动的关系。

2、理解牛顿第一定律,知道质量是物体惯性大小的量度。 3、牛顿第二定律的内容,会用正交分解法和牛顿第二定律解决实际问题。 4、物理公式既确定物理量之间的关系,又确定物理量单位间的关系;基本单位、导出单位和单位制;国际单位制中力学的三个基本单位;单位制在物理学中的重要意义。 5、通过对具体实例的观察和演示实验,认识力的作用是相互的;能找出某个力对应的反作用力,掌握牛顿第三定律的内容,运用牛顿第三定律解释生活中的有关问题。 6、动力学两类基本问题求解基本思路和一般步骤。 7、共点力平衡条件的应用;应用牛顿运动定律解决超、失重问题。 三、教学难点: 1、“不易测量的物理量转化为可测物理量”的实验方法,会对实验误差作初步分析。 2、加速度与物体所受的合力之间的关系(正比性、同体性、瞬时性和矢量性)。 3、利用物理公式得出单位之间的关系;根据物理量单位之间的关系,判断运算表达式是否错误。 4、运用牛顿第三定律解决受力分析中的相互作用力问题;区分平衡力和作用力与反作用力。

高中物理 第四章牛顿运动定律(复习)教案 新人教版必修1高一

第四章牛顿运动定律(复习)教案 ★新课标要求 1、通过实验,探究加速度与质量、物体受力之间的关系。 2、理解牛顿运动定律,用牛顿运动定律解释生活中的有关问题。 3、通过实验认识超重和失重。 4、认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。 ★复习重点 牛顿运动定律的应用 ★教学难点 牛顿运动定律的应用、受力分析。 ★教学方法 复习提问、讲练结合。 ★教学过程 (一)投影全章知识脉络,构建知识体系 (二)本章复习思路突破 Ⅰ物理思维方法 l、理想实验法:它是人们在思想中塑造的理想过程,是一种逻辑推理的思维过程和理论研究的重要思想方法。“理想实验”不同于科学实验,它是在真实的科学实验的基础上,抓主要矛盾,忽略次要矛盾,对实际过程作出更深层次的抽象思维过程。 惯性定律的得出,就是理想实验的一个重要结论。 2、控制变量法:这是物理学上常用的研究方法,在研究三个物理量之间的关系时,先让其中一个量不变,研究另外两个量之间的关系,最后总结三个量之间的关系。在研究牛顿第二定律,确定F、m、a三者关系时,就是采用的这种方法。 3、整体法:这是物理学上的一种常用的思维方法,整体法是把几个物体组成的系统作为一个整体来分析,隔离法是把系统中的某个物体单独拿出来研究。将两种方法相结合灵活运用,将有助于简便解题。 Ⅱ基本解题思路 应用牛顿运动定律解题的一般步骤 1、认真分析题意,明确已知条件和所求量。 2、选取研究对象。所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象。 3、分析研究对象的受力情况和运动情况。

4、当研究对象所受的外力不在一条直线上时,如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。 5、根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。 6、求解方程,检验结果,必要时对结果进行讨论。 (三)知识要点追踪 Ⅰ 物体的受力分析 物体受力分析是力学知识中的基础,也是其重要内容。正确分析物体的受力情况,是研究力学问题的关键,是必须掌握的基本功。 对物体进行受力分析,主要依据力的概念,分析物体所受到的其他物体的作用。具体方法如下: 1、明确研究对象,即首先要确定要分析哪个物体的受力情况。 2、隔离分析:将研究对象从周围环境中隔离出来,分析周围物体对它都施加了哪些作用。 3、按一定顺序分析:先重力,后接触力(弹力、摩擦力)。其中重力是非接触力,容易遗漏,应先分析;弹力和摩擦力的有无要依据其产生的条件认真分析。 4、画好受力分析图。要按顺序检查受力分析是否全面,做到不“多力”也不“少力”。 Ⅱ 动力学的两类基本问题 1、知道物体的受力情况确定物体的运动情况 2、知道物体的运动情况确定物体的受力情况 3、两类动力学问题的解题思路图解 注:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如 2220000/21,,2,22 t v v x v v at x v t at v v ax v v t +=+=+-====等 (四)本章专题剖析 [例1]把一个质量是2kg 的物块放在水平面上,用12 N 的水平拉力使物体从静止开始 运动,物块与水平面的动摩擦因数为0.2,物块运动2 s 末撤去拉力,g 取10m/s 2.求: (1)2s 末物块的瞬时速度. (2)此后物块在水平面上还能滑行的最大距离. 解析:(1)前2秒内,有F - f =ma 1,f =μΝ, F N =mg ,则 m/s 8,,m/s 41121===-=t a v m mg F a μ 牛顿第二定律 加速度a 运动学公式 运动情况 第一类问题 受力情况 加速度a 另一类问题 牛顿第二定律 运动学公式

相关文档
最新文档