Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity
Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity

Resource Double Nicking by RNA-Guided

CRISPR Cas9for Enhanced

Genome Editing Speci?city

F.Ann Ran,1,2,3,4,5,11Patrick D.Hsu,1,2,3,4,5,11Chie-Yu Lin,1,2,3,4,6Jonathan S.Gootenberg,1,2,3,4

Silvana Konermann,1,2,3,4Alexandro E.Trevino,1David A.Scott,1,2,3,4Azusa Inoue,7,8,9,10Shogo Matoba,7,8,9,10

Yi Zhang,7,8,9,10and Feng Zhang1,2,3,4,*

1Broad Institute of MIT and Harvard,7Cambridge Center,Cambridge,MA02142,USA

2McGovern Institute for Brain Research

3Department of Brain and Cognitive Sciences

4Department of Biological Engineering

Massachusetts Institute of Technology,Cambridge,MA02139,USA

5Department of Molecular and Cellular Biology,Harvard University,Cambridge,MA02138,USA

6Harvard/MIT Division of Health Sciences and Technology

7Howard Hughes Medical Institute

8Program in Cellular and Molecular Medicine

9Department of Genetics

10Harvard Stem Cell Institute

Harvard Medical School,Boston,MA02115,USA

11These authors contributed equally to this work

*Correspondence:zhang@https://www.360docs.net/doc/ad2973705.html,

https://www.360docs.net/doc/ad2973705.html,/10.1016/j.cell.2013.08.021

SUMMARY

Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9nuclease from the microbial CRISPR-Cas system is targeted to speci?c genomic loci by a20 nt guide sequence,which can tolerate certain mis-matches to the DNA target and thereby promote undesired off-target mutagenesis.Here,we describe an approach that combines a Cas9nickase mutant with paired guide RNAs to introduce targeted dou-ble-strand breaks.Because individual nicks in the genome are repaired with high?delity,simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of speci?cally recognized bases for target cleavage.We demonstrate that using paired nicking can reduce off-target activity by50-to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacri?cing on-target cleav-age ef?ciency.This versatile strategy enables a wide variety of genome editing applications that require high speci?city.

INTRODUCTION

The ability to perturb the genome in a precise and targeted fashion is crucial for understanding genetic contributions to biology and disease.Genome engineering of cell lines or animal models has traditionally been accomplished through random mutagenesis or low-ef?ciency gene targeting.To facilitate genome editing,programmable sequence-speci?c DNA nuclease technologies have enabled targeted modi?cation of endogenous genomic sequences with high ef?ciency,particu-larly in species that have proven traditionally genetically intrac-table(Carlson et al.,2012;Geurts et al.,2009;Takasu et al., 2010;Watanabe et al.,2012).The RNA-guided Cas9nucleases from the microbial CRISPR(clustered regularly interspaced short palindromic repeat)-Cas systems are robust and versatile tools for stimulating targeted double-stranded DNA breaks(DSBs)in eukaryotic cells(Chang et al.,2013;Cho et al.,2013;Cong et al.,2013;Deltcheva et al.,2011;Deveau et al.,2010;Friedland et al.,2013;Gratz et al.,2013;Horvath and Barrangou,2010; Jinek et al.,2013;Mali et al.,2013b;Wang et al.,2013),where the resulting cellular repair mechanisms—nonhomologous end-joining(NHEJ)or homology-directed repair(HDR)pathways—can be exploited to induce error-prone or de?ned alterations (Hsu and Zhang,2012;Perez et al.,2008;Urnov et al.,2010). The Cas9nuclease from Streptococcus pyogenes can be directed by a chimeric single-guide RNA(sgRNA)(Jinek et al., 2012)to any genomic locus followed by a50-NGG protospacer-adjacent motif(PAM).A20nt guide sequence within the sgRNA directs Cas9to the genomic target via Watson-Crick base pairing and can be easily programmed to target a desired genomic locus (Deltcheva et al.,2011;Deveau et al.,2010;Gasiunas et al.,2012; Jinek et al.,2012).Recent studies of Cas9speci?city have demon-strated that,although each base within the20nt guide sequence contributes to overall speci?city,multiple mismatches between the guide RNA and its complementary target DNA sequence can be tolerated depending on the quantity,position,and base identity of mismatches(Cong et al.,2013;Fu et al.,2013;Hsu et al.,2013;Jiang et al.,2013),leading to potential

off-target

1380Cell154,1380–1389,September12,2013a2013Elsevier Inc.

DSBs and indel formation.These unwanted mutations can poten-tially limit the utility of Cas9for genome editing applications that require high levels of precision,such as generation of isogenic cell lines for testing causal genetic variations (Soldner et al.,2011)or in vivo and ex vivo genome-editing-based therapies.To improve the speci?city of Cas9-mediated genome editing,we developed a strategy that combines the D10A mutant nickase version of Cas9(Cas9n)(Cong et al.,2013;Gasiunas et al.,2012;Jinek et al.,2012)with a pair of offset sgRNAs complementary to opposite strands of the target site.Whereas nicking of both DNA strands by a pair of Cas9nickases leads to site-speci?c DSBs and NHEJ,individual nicks are predominantly repaired by the high-?delity base excision repair pathway (BER)(Dianov and Hu

¨bscher,2013).A paired nickase strategy was described while this manuscript was under review,which suggests the possibility for engineering a system to ameliorate off-target activity (Mali et al.,2013a ).In a manner analogous to dimeric zinc ?nger nucle-ases (ZFNs)(Miller et al.,2007;Porteus and Baltimore,2003;Sander et al.,2011;Wood et al.,2011)and transcription-acti-vator-like effector nucleases (TALENs)(Boch et al.,2009;Chris-tian et al.,2010;Miller et al.,2011;Moscou and Bogdanove,2009;Reyon et al.,2012;Sanjana et al.,2012;Wood et al.,2011;Zhang et al.,2011),wherein DNA cleavage requires syner-gistic interaction of two independent speci?city-encoding DNA-binding modules directing FokI nuclease monomers,this double-nicking strategy minimizes off-target mutagenesis

by

C

B Figure 1.Effect of Guide Sequence Exten-sion on Cas9Activity

(A)Cas9with matching or mismatching sgRNA sequences targeting a locus (target 1)within the human EMX1gene.

(B)SURVEYOR assay gel showing comparable modi?cation of target 1by sgRNAs bearing 20and 30nt long guide sequences.

(C)Northern blot showing that extended sgRNAs are largely processed to 20nt guide-length sgRNAs in HEK293FT cells.

each individual Cas9n-sgRNA complex while maintaining on-target modi?cation rates similar to those of wild-type Cas9.Here,we de?ne crucial parameters for the selection of sgRNA pairs that facilitate effective double nicking,compare the speci?city of wild-type Cas9and Cas9n with double nicking,and demonstrate a variety of experimental applications that can be achieved using double nicking in cells as well as in mouse zygotes.RESULTS

Extension of Guide Sequence Does Not Improve Cas9Targeting Speci?city

Cas9targeting is facilitated by base pair-ing between the 20nt guide sequence

within the sgRNA and the target DNA (Deltcheva et al.,2011;Deveau et al.,2010;Gasiunas et al.,2012;Jinek et al.,2012).We reasoned that cleavage speci?city might be improved by increasing the length of base pairing between the guide RNA and its target locus.To test this,we generated U6-driven expression cassettes (Hsu et al.,2013)to express three sgRNAs with 20(sgRNA 1)or 30nt guide sequences (sgRNAs 2and 3)targeting a locus within the human EMX1gene (Figure 1A).

We and others have previously shown that,although single-base mismatches between the PAM-distal region of the guide sequence and target DNA are well tolerated by Cas9,multiple mismatches in this region can signi?cantly affect on-target activ-ity (Fu et al.,2013;Hsu et al.,2013;Mali et al.,2013a;Pattanayak et al.,2013).To determine whether additional PAM-distal bases (21–30)could in?uence overall targeting speci?city,we designed sgRNAs 2and 3to contain additional bases consisting of either 10perfectly matched or 8mismatched bases (bases 21–28).Surprisingly,we observed that these extended sgRNAs medi-ated similar levels of modi?cation at the target locus in HEK293FT cells regardless of whether the additional bases were complementary to the genomic target (Figure 1B).Sub-sequent northern blots revealed that the majority of both sgRNA 2and 3were processed to the same length as sgRNA 1,which contains the same 20nt guide sequence without additional ba-ses (Figure 1C).

Cell 154,1380–1389,September 12,2013a2013Elsevier Inc.1381

Cas9Nickase Generates Ef?cient NHEJ with Paired,Offset Guide RNAs

Given that extension of the guide sequence failed to improve Cas9targeting speci?city,we sought an alternative strategy for increasing the overall base-pairing length between the guide sequence and its DNA target.Cas9enzymes contain two conserved nuclease domains,HNH and RuvC,which cleave the DNA strand complementary and noncomplementary to the guide RNA,respectively.Mutations of the catalytic residues (D10A in RuvC and H840A in HNH)convert Cas9into DNA nickases (Cong et al.,2013;Gasiunas et al.,2012;Jinek et al.,2012).As single-strand nicks are preferentially repaired by the

high-?delity BER pathway (Dianov and Hu

¨bscher,2013),we reasoned that two Cas9-nicking enzymes directed by a pair of sgRNAs targeting opposite strands of a target locus could mediate DSBs while minimizing off-target activity (Figure 2A).A number of factors may affect cooperative nicking leading to indel formation,including steric hindrance between two adjacent Cas9molecules or Cas9-sgRNA complexes,overhang type,

and

C

B

A

Figure 2.Double Nicking Facilitates Ef?-cient Genome Editing in Human Cells

(A)Schematic illustrating DNA double-stranded breaks using a pair of sgRNAs guiding Cas9D10A nickases (Cas9n).The D10A mutation renders Cas9able to cleave only the strand complemen-tary to the sgRNA;a pair of sgRNA-Cas9n com-plexes can nick both strands simultaneously.sgRNA offset is de?ned as the distance between the PAM-distal (50)ends of the guide sequence of a given sgRNA pair;positive offset requires the sgRNA complementary to the top strand (sgRNA a)to be 50of the sgRNA complementary to the bottom strand (sgRNA b),which always creates a 50overhang.

(B)Ef?ciency of double-nicking-induced NHEJ as a function of the offset distance between two sgRNAs.Sequences for all sgRNAs used can be found in Table S1.n =3;error bars show mean ±SEM.

(C)Representative sequences of the human EMX1locus targeted by Cas9n.sgRNA target sites and PAMs are indicated by blue and magenta bars,respectively.(Bottom)Selected sequences showing representative indels.See also Tables S1and S2.

sequence context;some of these may be characterized by testing multiple sgRNA pairs with distinct target sequences and offsets (the distance between the PAM-distal [50]ends of the guide sequence of a given sgRNA pair).To systematically assess how sgRNA offsets might affect subsequent repair and generation of in-dels,we ?rst designed sets of sgRNA pairs targeted against the human EMX1genomic locus separated by a range of offset distances from approximately à200to 200bp to create both 50and 30

overhang products (Figure 2A and Table S1available online).We then assessed the ability of each sgRNA pair with the D10A Cas9mutant (referred to as Cas9n;H840A Cas9mutant is referred to as Cas9H840A)to generate indels in human HEK 293FT cells.Robust NHEJ (up to 40%)was observed for sgRNA pairs with offsets from à4to 20bp,with modest indels forming in pairs offset by up to 100bp (Figure 2B,left).We subsequently recapitulated these ?ndings by testing similarly offset sgRNA pairs at two other genomic loci,DYRK1A and GRIN2B (Figure 2B,right).Of note,across all three loci examined,only sgRNA pairs creating 50overhangs with less than 8bp overlap between the guide sequences (offset greater than à8bp)were able to mediate detectable indel formation (Figure 2C).

Importantly,each guide used in these assays is able to ef?-ciently induce indels when paired with wild-type Cas9(Table S1),indicating that the relative positions of the guide pairs are the most important parameters in predicting double-nicking activity.Because Cas9n and Cas9H840A nick opposite strands of DNA,substitution of Cas9n with Cas9H840A with a given

1382Cell 154,1380–1389,September 12,2013a2013Elsevier Inc.

A

B

C D

E F

(legend on next page)

Cell154,1380–1389,September12,2013a2013Elsevier Inc.1383

sgRNA pair should result in the inversion of the overhang type. For example,a pair of sgRNAs that will generate a50overhang with Cas9n should,in principle,generate the corresponding30 overhang instead.Therefore,sgRNA pairs that lead to the gener-ation of a30overhang with Cas9n might be used with Cas9H840A to generate a50overhang.Further work will be needed to identify the necessary design rules for sgRNA pairing to allow double nicking by Cas9H840A.

Double Nicking Mediates Ef?cient Genome Editing with Improved Speci?city

Having established that double nicking(DN)mediates high-ef?-ciency NHEJ at levels comparable to those induced by wild-type Cas9(Table S1),we next studied whether DN has improved speci?city over wild-type Cas9by measuring their off-target ac-tivities.We co-delivered Cas9n with sgRNAs1and9,spaced by a+23bp offset,to target the human EMX1locus in HEK293FT cells(Figure3A).This DN con?guration generated on-target indel levels similar to those generated by the wild-type Cas9paired with each sgRNA alone(Figure3B,left).Strikingly,unlike with wild-type Cas9,DN did not generate detectable modi?cation at a previously validated sgRNA1off-target site,OT-4,by SUR-VEYOR assay(Hsu et al.,2013;Figure3B,right),suggesting that DN can potentially reduce the likelihood of off-target modi?cations.

Using deep sequencing to assess modi?cation at?ve different sgRNA1off-target loci(Figure3A),we observed signi?cant mutagenesis at all sites with wild-type Cas9+sgRNA1(Fig-ure3C).In contrast,cleavage by Cas9n at5off-target sites tested was barely detectable above background sequencing https://www.360docs.net/doc/ad2973705.html,ing the ratio of on-to off-target modi?cation levels as a metric of speci?city,we found that Cas9n with a pair of sgRNAs was able to achieve>100-fold greater speci?city relative to wild-type Cas9with one of the sgRNAs(Figure3D).We conducted additional off-target analysis by deep sequencing for two sgRNA pairs(offsets of+16and+20bp)targeting the VEGFA locus,with similar results(Figure3E).DN at these off-target loci(Table S5) was able to achieve200-to>1,500-fold greater speci?city than the wild-type Cas9(Figure3F and Table S1).Taken together,these results demonstrate that Cas9-mediated double nicking minimizes off-target mutagenesis and is suitable for genome editing with increased speci?city.

Double Nicking Facilitates High-Ef?ciency Homology-Directed Repair,NHEJ-Mediated DNA Insertion,and Genomic Microdeletions

DSBs can stimulate homology-directed repair(HDR)to enable highly precise editing of genomic target sites.To evaluate DN-induced HDR,we targeted the human EMX1locus with pairs of sgRNAs offset byà3and+18bp(generating31and52bp 50overhangs),respectively,and introduced a single-stranded oligodeoxynucleotide(ssODN)bearing a Hin dIII restriction site as the HDR repair template(Figure4A).Each DN sgRNA pair successfully induced HDR at frequencies higher than those of single-guide Cas9n nickases and comparable to those of wild-type Cas9(Figure4B).Furthermore,genome editing in embry-onic stem cells or patient-derived induced pluripotent stem cells represents a key opportunity for generating and studying new disease paradigms as well as developing new therapeutics. Because single-nick approaches to inducing HDR in human embryonic stem cells(hESCs)have met with limited success (Hsu et al.,2013),we attempted DN in the HUES62hES cell line and observed successful HDR(Figure4C).

To further characterize how offset sgRNA spacing affects the ef?ciency of HDR,we next tested in HEK293FT cells a set of sgRNA pairs in which the cleavage site of at least one sgRNA is situated near the site of recombination(overlapping with the HDR ssODN donor template arm).We observed that sgRNA pairs generating50overhangs and having at least one nick occur-ring within22bp of the homology arm are able to induce HDR at levels comparable to those of wild-type Cas9-mediated HDR and signi?cantly greater than those of single Cas9n-sgRNA nick-ing.In contrast,we did not observe HDR with sgRNA pairs that generated30overhangs or double nicking of the same DNA strand(Figure4D).

The ability to create de?ned overhangs could enable precise insertion of donor repair templates containing compatible over-hangs via NHEJ-mediated ligation(Maresca et al.,2013).To explore this alternative strategy for transgene insertion,we tar-geted the EMX1locus with Cas9n and an sgRNA pair designed to generate a43bp50overhang near the stop codon and sup-plied a double-stranded oligonucleotide(dsODN)duplex with matching overhangs(Figure5A).The annealed dsODN insert, containing multiple epitope tags and a restriction site,was suc-cessfully integrated into the target(1out of37screened by Sanger sequencing of cloned amplicons).This ligation-based strategy thus illustrates an effective approach for inserting dsODNs encoding short modi?cations such as protein tags or recombination sites into an endogenous locus.

Additionally,we targeted combinations of sgRNA pairs(four sgRNAs per combination)to the DYRK1A locus in HEK293FT cells to facilitate genomic microdeletions.We generated a set of sgRNAs to mediate0.5kb,1kb,2kb,and6kb deletions(Fig-ure5B and Table S2;sgRNAs32,33,and54–61)and veri?ed successful multiplex nicking-mediated deletion over these ranges via PCR screen of predicted deletion sizes.

Figure3.Double Nicking Facilitates Ef?cient Genome Editing in Human Cells

(A)Schematic illustrating Cas9n double nicking(red arrows)the human EMX1locus.Five off-target loci with sequence homology to EMX1target1were selected to screen for Cas9n speci?city.

(B)On-target modi?cation rate by Cas9n and a pair of sgRNAs is comparable to those mediated by wild-type Cas9and single sgRNAs(left).Cas9-sgRNA1 complexes generate signi?cant off-target mutagenesis,whereas no off-target locus modi?cation is detected with Cas9n(right).

(C)Five off-target loci of sgRNA1are examined for indel modi?cations by deep sequencing of transfected HEK293FT cells.n=3;error bars show mean±SEM.

(D)Speci?city comparison of Cas9n with double nicking and wild-type Cas9with sgRNA alone at the off-target sites.Speci?city ratio is calculated as on-target/ off-target modi?cation rates.n=3;error bars show mean±SEM.

(E and F)Double nicking minimizes off-target modi?cation at two additional human VEGFA loci while maintaining high speci?city(on/off-target modi?cation ratio). n=3;error bars show mean±SEM.

1384Cell154,1380–1389,September12,2013a2013Elsevier Inc.

A

B C

D

Figure4.Double Nicking Allows Insertion into the Genome via HDR in Human Cells

(A)Schematic illustrating HDR mediated via a single-stranded oligodeoxynucleotide(ssODN)template at a DSB created by a pair of Cas9n enzymes.A12nt sequence(red),including a Hin dIII restriction site,is inserted into the EMX1locus at the position marked by the gray dashed lines;distances of Cas9n-mediated nicks from the HDR insertion site are indicated on top in italics.

(B)Restriction digest assay gel showing successful insertion of Hin dIII cleavage sites by double-nicking-mediated HDR in HEK293FT cells.Top bands are unmodi?ed template;bottom bands are HindIII cleavage product.

(C)Double nicking promotes HDR in the HUES62human embryonic stem cell line.HDR frequencies are determined by deep sequencing.n=3;error bars show mean±SEM.

(legend continued on next page)

Cell154,1380–1389,September12,2013a2013Elsevier Inc.1385

Double Nicking Enables Ef?cient Genome Modi?cation in Mouse Zygotes

Recent work demonstrated that co-delivery of wild-type Cas9mRNA along with multiple sgRNAs can mediate single-step gen-eration of transgenic mice carrying multiple allelic modi?cations (Wang et al.,2013).Given the ability to achieve genome modi?-cation in vivo using several sgRNAs at once,we sought to assess the ef?ciency of multiple nicking by Cas9n in mouse zygotes.Cytoplasmic coinjection of wild-type Cas9or Cas9n mRNA and sgRNAs into single-cell mouse zygotes allowed successful targeting of the Mecp2locus (Figure 6A).To identify the optimal concentration of Cas9n mRNA and sgRNA for ef?cient gene tar-geting,we titrated Cas9mRNA from 100to 3ng/ul while main-taining the sgRNA levels at a 1:20Cas9:sgRNA molar ratio.All concentrations tested for Cas9double-nicking-mediated modi-?cations in at least 80%of embryos screened,similar to levels achieved by wild-type Cas9(Figure 6B).Taken together,these results suggest a number of applications for double-nicking-based genome editing.

(D)HDR ef?ciency depends on the con?guration of Cas9or Cas9n-mediated nicks.HDR is facilitated when a nick occurs near the center of the ssODN homology arm (HDR insertion site),leading to a 50resulting overhang.Nicking con?gurations are annotated with position and strand (red arrows)and length of overhang (black lines)(left).The distance (bp)of each nick from the HDR insertion site is indicated at the end of the black lines in italics,and the positions of the sgRNAs are illustrated in bold on the schematic of the EMX1locus.HDR ef?ciency mediated by double nicking with paired sgRNAs (top)or single sgRNAs with either Cas9or Cas9n are shown (bottom and Table S2).n =3;error bars show mean ±

SEM.

A

B

Figure 5.Multiplexed Nicking Facilitates Non-HR-Mediated Gene Integration and Genomic Deletions

(A)Schematic showing insertion of a double-stranded oligodeoxynucleotide (dsODN)donor fragment bearing overhangs complementary to 50overhangs created by Cas9double nicking.The dsODN was designed to remove the native EMX1stop codon and contains a HA tag,33FLAG tag,Hin dIII restriction site,Myc epitope tag,and a stop codon in frame,totaling 148bp.Successful insertion was veri?ed by Sanger sequencing as shown (1out of 37clones screened).Amino acid translation of the modi?ed lo-cus is shown below the DNA sequence.

(B)Co-delivery of four sgRNAs with Cas9n generates long-range genomic deletions in the DYRK1A locus (from 0.5to 6kb).Deletion was detected using primers (Table S6)spanning the target region.

DISCUSSION

Given the permanent nature of genomic modi?cations,speci?city is of paramount importance to sensitive applications such as studies aimed at linking speci?c genetic variants with biological processes or disease phenotypes and gene therapy.Here,we have explored strategies to improve the tar-geting speci?city of Cas9.Although simply extending the guide sequence length of sgRNA failed to improve targeting speci-?city,combining two appropriately offset sgRNAs with Cas9n effectively generated in-dels while minimizing unwanted cleavage because individual off-target single-stranded nicks are repaired with high ?delity via base excision repair.Given that signi?cant off-target mutagen-esis has been previously reported for Cas9nucleases in human cells (Fu et al.,2013;Hsu et al.,2013),the DN approach could provide a generalizable solution for rapid and accurate genome editing.The characterization of spacing parameters governing successful Cas9double-nickase-mediated gene targeting re-veals an effective offset window >100bp long,allowing for a high degree of ?exibility in the selection of sgRNA pairs.Previous computational analyses have revealed an average targeting range of every 12bp for the Streptococcus pyogenes Cas9in the human genome based on the 50NGG PAM (Cong et al.,2013),suggesting that appropriate sgRNA pairs should be readily identi?able for most loci within the genome.We have additionally demonstrated DN-mediated indel frequencies com-parable to wild-type Cas9modi?cation at multiple genes and loci in both human and mouse cells,con?rming the reproducibility of this strategy for high-precision genome engineering (Table S1).

1386Cell 154,1380–1389,September 12,2013a2013Elsevier Inc.

The Cas9double nicking approach is,in principle,similar to ZFN-and TALEN-based genome editing systems,in which cooperation between two heminuclease domains is required to achieve double-stranded break at the target site.Systematic studies of ZFN and TALEN systems have revealed that the tar-geting speci?city of a given ZFN and TALEN pair can be highly dependent on the nuclease architecture (homo-or heterodimeric nucleases)or target sequence,and in some cases TALENs can be highly speci?c (Ding et al.,2013).Although the wild-type Cas9system has been shown to exhibit high levels of off-target mutagenesis,the DN system is a promising solution and brings RNA-guided genome editing to similar speci?city levels as ZFNs and TALENs.

Additionally,the ease and ef?ciency with which Cas9can be targeted renders the DN system especially attractive.However,DNA targeting using DN will likely face similar off-target challenges as ZFNs and TALENs,in which cooperative nicking at off-target sites might still occur,albeit at a signi?cantly reduced likelihood.Given the extensive characterization of Cas9speci-?city and sgRNA mutation analysis (Fu et al.,2013;Hsu et al.,2013),as well as the NHEJ-mediating sgRNA offset range identi-?ed in this study,computational approaches may be used to evaluate the likely off-target sites for a given pair of sgRNAs.To facilitate sgRNA pair selection,we developed an online web tool that identi?es sgRNA combinations with optimal spacing for dou-ble nicking applications (https://www.360docs.net/doc/ad2973705.html,/).Although Cas9n has been previously shown to facilitate HDR at on-target sites (Cong et al.,2013),its ef?ciency is substantially lower than that of wild-type Cas9.The double nicking strategy,by comparison,maintains high on-target ef?ciencies while reducing off-target modi?cations to background levels.

Never-

A

B

Figure 6.Cas9Double Nicking Mediates Ef?cient Indel Formation in Mouse Embryos

(A)Schematic illustrating Cas9n double nicking the mouse Mecp2locus.Representative indels are shown for mouse blastocysts coinjected with in-vitro-transcribed Cas9n-encoding mRNA and sgRNA pairs matching targets 92and 93.

(B)Ef?cient blastocyst modi?cation is achieved at multiple concentrations of sgRNAs (1.5to 50ng/ul)and wild-type Cas9or Cas9n (3to 100ng/ul).

theless,further characterizations of DN off-target activity,particularly via whole-genome sequencing and targeted deep sequencing of cells or whole organisms generated using the DN approach,are urgently needed to evaluate the utility of Cas9n DN in biotechnological or clinical applications that require ultrahigh-preci-sion genome editing.Additionally,Cas9n has been shown to induce low levels of in-dels at on-target sites for certain sgRNAs (Mali et al.,2013b ),which may result from residual double-strand break activ-ities and may be circumvented by further structure-function studies of Cas9cata-lytic activity.Overall,Cas9n-mediated multiplex nicking serves as a customizable platform for highly precise and ef?cient tar-geted genome engineering and promises to broaden the range of applications in biotechnology,basic science,and medicine.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection

Human embryonic kidney (HEK)cell line 293FT (Life Technologies)cell line was maintained in Dulbecco’s modi?ed Eagle’s medium (DMEM)supple-mented with 10%fetal bovine serum (HyClone),2mM GlutaMAX (Life Technol-ogies),100U/ml penicillin,and 100m g/ml streptomycin at 37 C with 5%CO 2incubation.

Cells were seeded onto 24-well plates (Corning)at a density of 120,000cells/well,24hr prior to transfection.Cells were transfected using Lipofect-amine 2000(Life Technologies)at 80%–90%con?uency following the manu-facturer’s recommended protocol.A total of 500ng Cas9plasmid and 100ng of U6-sgRNA PCR product was transfected.

Human embryonic stem cell line HUES62(Harvard Stem Cell Institute core)was maintained in feeder-free conditions on GelTrex (Life Technologies)in mTesR medium (StemCell Technologies)supplemented with 100ug/ml Nor-mocin (InvivoGen).HUES62cells were transfected with Amaxa P3Primary Cell 4-D Nucleofector Kit (Lonza)following the manufacturer’s protocol.SURVEYOR Nuclease Assay for Genome Modi?cation

HEK 293FT and HUES62cells were transfected with DNA as described above.Cells were incubated at 37 C for 72hr posttransfection prior to genomic DNA extraction.Genomic DNA was extracted using the QuickExtract DNA Extrac-tion Solution (Epicenter)following the manufacturer’s protocol.In brief,pel-leted cells were resuspended in QuickExtract solution and were incubated at 65 C for 15min,68 C for 15min,and 98 C for 10min.

The genomic region ?anking the CRISPR target site for each gene was PCR ampli?ed (Table S3),and products were puri?ed using QiaQuick Spin Column (QIAGEN)following the manufacturer’s protocol.400ng total of the puri?ed PCR products were mixed with 2m l 103Taq DNA Polymerase PCR buffer

Cell 154,1380–1389,September 12,2013a2013Elsevier Inc.1387

(Enzymatics)and ultrapure water to a?nal volume of20m l and were subjected to a reannealing process to enable heteroduplex formation:95 C for10min;

95 C to85 C ramping at–2 C/s;85 C to25 C at–0.25 C/s;and25 C hold for1min.After reannealing,products were treated with SURVEYOR nuclease and SURVEYOR enhancer S(Transgenomics)following the manufacturer’s recommended protocol were and analyzed on4%–20%Novex TBE polyacryl-amide gels(Life Technologies).Gels were stained with SYBR Gold DNA stain (Life Technologies)for30min and were imaged with a Gel Doc gel imaging system(Bio-Rad).Quanti?cation was based on relative band intensities.Indel percentage was determined by the formula1003(1–(1–(b+c)/(a+b+c))1/2), wherein a is the integrated intensity of the undigested PCR product and b and c are the integrated intensities of each cleavage product.

Northern Blot Analysis of TracrRNA Expression in Human Cells Northern blots were performed as previously described(Cong et al.,2013).In brief,RNAs were extracted using the mirPremier microRNA Isolation Kit (Sigma)and were heated to95 C for5min before loading on8%denaturing polyacrylamide gels(SequaGel,National Diagnostics).Afterward,RNA was transferred to a prehybridized Hybond N+membrane(GE Healthcare)and was crosslinked with Stratagene UV Crosslinker(Stratagene).Probes were labeled with[g-32P]ATP(Perkin Elmer)with T4polynucleotide kinase(New England Biolabs).After washing,membrane was exposed to phosphor screen for1hr and scanned with phosphorimager(Typhoon).

Deep Sequencing to Assess Targeting Speci?city

HEK293FT cells were plated and transfected as described above72hr prior to genomic DNA extraction.The genomic region?anking the CRISPR target site for each gene was ampli?ed(see Table S4for primer sequences)by a fusion PCR method to attach the Illumina P5adapters as well as unique sample-speci?c barcodes to the target.PCR products were puri?ed using EconoSpin 96-well Filter Plates(Epoch Life Sciences)following the manufacturer’s recom-mended protocol.

Barcoded and puri?ed DNA samples were quanti?ed by Qubit2.0Fluorom-eter(Life Technologies)and were pooled in an equimolar ratio.Sequencing libraries were then sequenced with the Illumina MiSeq Personal Sequencer (Life Technologies).

Sequencing Data Analysis,Indel Detection,and Homologous Recombination Detection

MiSeq reads were?ltered by requiring an average Phred quality(Q score)of at least30,as well as perfect sequence matches to barcodes and amplicon for-ward primers.Reads from on-and off-target loci were analyzed by performing Ratcliff-Obershelp string comparison,as implemented in the Python dif?ib module,against loci sequences that included30nt upstream and downstream of the target site(a total of80bp).The resulting edit operations were parsed, and reads were counted as indels if insertion or deletion operations were found.Analyzed target regions were discarded if part of their alignment fell outside of the MiSeq read itself or if more than?ve bases were uncalled. Negative controls for each sample provided a gauge for the inclusion or exclusion of indels as putative cutting events.For quanti?cation of homo-logous recombination,reads were?rst processed as in the indel detection work?ow and were then checked for presence of homologous recombination template CCAGGCTTGG.

Microinjection into Mouse Zygotes

Cas9mRNA and sgRNA templates were ampli?ed with T7promoter sequence-conjugated primers.After gel puri?cation,Cas9and Cas9n were transcribed with mMESSAGE mMACHINE T7Ultra Kit(Life Technologies). sgRNAs were transcribed with MEGAshortscript T7Kit(Life Technologies). RNAs were puri?ed by MEGAclear Kit(Life Technologies)and frozen at–80 C. MII-stage oocytes were collected from8-week-old superovulated BDF1fe-males by injecting7.5I.U.of PMSG(Harbor,UCLA)and hCG(Millipore).They were transferred into HTF medium supplemented with10mg/ml bovine serum albumin(BSA;Sigma-Aldrich)and were inseminated with capacitated sperm obtained from the caudal epididymides of adult C57BL/6male mice.Six hours after fertilization,zygotes were injected with mRNAs and sgRNAs in M2media (Millipore)using a Piezo impact-driven micromanipulator(Prime Tech Ltd.,Ibaraki,Japan).The concentrations of Cas9and Cas9n mRNAs and sgRNAs are described in the text and Figure6B.After microinjection,zygotes were cultured in KSOM(Millipore)in a humidi?ed atmosphere of5%CO2and 95%air at37 C.

Genome Extraction from Blastocyst Embryos

Following in vitro culture of embryos for6days,the expanded blastocysts were washed with0.01%BSA in PBS and were individually collected into 0.2ml tubes.Five microliters of genome extraction solution(50mM Tris-HCl [pH8.0],0.5%Triton X-100,and1mg/ml Proteinase K)were added and the samples were incubated in65 C for3hr followed by95 C for10min.Samples were then ampli?ed for targeted deep sequencing as described above.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and six tables and can be found with this article online at https://www.360docs.net/doc/ad2973705.html,/10. 1016/j.cell.2013.08.021.

ACKNOWLEDGMENTS

We thank Joshua Weinstein and Yinqing Li for statistical consultation,Xuebing Wu and Phillip Sharp for assistance with northern blotting experiments,Su Vora for help with the manuscript,and the entire Zhang lab for their support and advice.P.D.H.is a James Mills Pierce Fellow.C.-Y.L.is supported by T32GM007753from the National Institute of General Medical Sciences.

D.A.S.is an NSF predoctoral fellow.A.I.and S.M.are research fellows for Research Abroad of the Japan Society for the Promotion of Science.Y.Z.is supported by NIH grants GM68804and U01DK089565and is an Investigator of the Howard Hughes Medical Institute.F.Z.is supported by an NIH Director’s Pioneer Award(1DP1-MH100706),a NIH Transformative R01grant(1R01-DK097768),the Keck,McKnight,Damon Runyon,Searle Scholars,Klingen-stein,Vallee,and Simons Foundations,Bob Metcalfe,and Jane Pauley.

Received:July25,2013

Revised:August13,2013

Accepted:August14,2013

Published:August29,2013

REFERENCES

Boch,J.,Scholze,H.,Schornack,S.,Landgraf,A.,Hahn,S.,Kay,S.,Lahaye, T.,Nickstadt,A.,and Bonas,U.(2009).Breaking the code of DNA binding speci?city of TAL-type III effectors.Science326,1509–1512.

Carlson,D.F.,Tan,W.F.,Lillico,S.G.,Stverakova,D.,Proudfoot,C.,Christian, M.,Voytas,D.F.,Long,C.R.,Whitelaw,C.B.A.,and Fahrenkrug,S.C.(2012). Ef?cient TALEN-mediated gene knockout in livestock.Proc.Natl.Acad.Sci. USA109,17382–17387.

Chang,N.,Sun,C.,Gao,L.,Zhu,D.,Xu,X.,Zhu,X.,Xiong,J.W.,and Xi,J.J. (2013).Genome editing with RNA-guided Cas9nuclease in zebra?sh embryos. Cell Res.23,465–472.

Cho,S.W.,Kim,S.,Kim,J.M.,and Kim,J.S.(2013).Targeted genome engi-neering in human cells with the Cas9RNA-guided endonuclease.Nat. Biotechnol.31,230–232.

Christian,M.,Cermak,T.,Doyle,E.L.,Schmidt,C.,Zhang,F.,Hummel,A., Bogdanove, A.J.,and Voytas, D.F.(2010).Targeting DNA double-strand breaks with TAL effector nucleases.Genetics186,757–761.

Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X., Jiang,W.,Marraf?ni,L.A.,and Zhang,F.(2013).Multiplex genome engineering using CRISPR/Cas systems.Science339,819–823.

Deltcheva,E.,Chylinski,K.,Sharma,C.M.,Gonzales,K.,Chao,Y.,Pirzada, Z.A.,Eckert,M.R.,Vogel,J.,and Charpentier,E.(2011).CRISPR RNA matura-tion by trans-encoded small RNA and host factor RNase III.Nature471, 602–607.

1388Cell154,1380–1389,September12,2013a2013Elsevier Inc.

Deveau,H.,Garneau,J.E.,and Moineau,S.(2010).CRISPR/Cas system and its role in phage-bacteria interactions.Annu.Rev.Microbiol.64,475–493. Dianov,G.L.,and Hu¨bscher,U.(2013).Mammalian base excision repair:the forgotten archangel.Nucleic Acids Res.41,3483–3490.

Ding,Q.,Lee,Y.K.,Schaefer,E.A.,Peters,D.T.,Veres,A.,Kim,K.,Kuper-wasser,N.,Motola,D.L.,Meissner,T.B.,Hendriks,W.T.,et al.(2013).A TALEN genome-editing system for generating human stem cell-based disease models.Cell Stem Cell12,238–251.

Friedland,A.E.,Tzur,Y.B.,Esvelt,K.M.,Colaia′covo,M.P.,Church,G.M.,and Calarco,J.A.(2013).Heritable genome editing in C.elegans via a CRISPR-Cas9system.Nat.Methods10,741–743.

Fu,Y.,Foden,J.A.,Khayter,C.,Maeder,M.L.,Reyon,D.,Joung,J.K.,and Sander,J.D.(2013).High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.Nat.Biotechnol.Published online June23,2013.https://www.360docs.net/doc/ad2973705.html,/10.1038/nbt.2623.

Gasiunas,G.,Barrangou,R.,Horvath,P.,and Siksnys,V.(2012).Cas9-crRNA ribonucleoprotein complex mediates speci?c DNA cleavage for adaptive immunity in https://www.360docs.net/doc/ad2973705.html,A109,E2579–E2586. Geurts,A.M.,Cost,G.J.,Freyvert,Y.,Zeitler,B.,Miller,J.C.,Choi,V.M.,Jen-kins,S.S.,Wood,A.,Cui,X.X.,Meng,X.D.,et al.(2009).Knockout rats via embryo microinjection of zinc-?nger nucleases.Science325,433–433. Gratz,S.J.,Cummings,A.M.,Nguyen,J.N.,Hamm,D.C.,Donohue,L.K.,Har-rison,M.M.,Wildonger,J.,and O’Connor-Giles,K.M.(2013).Genome engineering of Drosophila with the CRISPR RNA-guided Cas9nuclease. Genetics194,1029–1035.

Horvath,P.,and Barrangou,R.(2010).CRISPR/Cas,the immune system of bacteria and archaea.Science327,167–170.

Hsu,P.D.,and Zhang,F.(2012).Dissecting neural function using targeted genome engineering technologies.ACS Chem.Neurosci.3,603–610.

Hsu,P.D.,Scott,D.A.,Weinstein,J.A.,Ran,F.A.,Konermann,S.,Agarwala,V., Li,Y.,Fine,E.J.,Wu,X.,Shalem,O.,et al.(2013).DNA targeting speci?city of RNA-guided Cas9nucleases.Nat.Biotechnol.Published online July21,2013. https://www.360docs.net/doc/ad2973705.html,/10.1038/nbt.2647.

Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.,and Marraf?ni,L.A.(2013).RNA-guided editing of bacterial genomes using CRISPR-Cas systems.Nat. Biotechnol.31,233–239.

Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.A.,and Charpentier, E.(2012).A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science337,816–821.

Jinek,M.,East,A.,Cheng,A.,Lin,S.,Ma,E.,and Doudna,J.(2013).RNA-pro-grammed genome editing in human cells.eLife2,e00471.

Mali,P.,Aach,J.,Stranges,P.B.,Esvelt,K.M.,Moosburner,M.,Kosuri,S., Yang,L.,and Church,G.M.(2013a).CAS9transcriptional activators for target speci?city screening and paired nickases for cooperative genome engineer-ing.Nat.Biotechnol.Published online August1,2013.https://www.360docs.net/doc/ad2973705.html,/10. 1038/nbt.2675.

Mali,P.,Yang,L.,Esvelt,K.M.,Aach,J.,Guell,M.,DiCarlo,J.E.,Norville,J.E., and Church,G.M.(2013b).RNA-guided human genome engineering via Cas9. Science339,823–826.

Maresca,M.,Lin,V.G.,Guo,N.,and Yang,Y.(2013).Obligate ligation-gated recombination(ObLiGaRe):custom-designed nuclease-mediated targeted integration through nonhomologous end joining.Genome Res.23,539–546. Miller,J.C.,Holmes,M.C.,Wang,J.,Guschin,D.Y.,Lee,Y.L.,Rupniewski,I., Beausejour, C.M.,Waite, A.J.,Wang,N.S.,Kim,K.A.,et al.(2007).An

improved zinc-?nger nuclease architecture for highly speci?c genome editing. Nat.Biotechnol.25,778–785.

Miller,J.C.,Tan,S.,Qiao,G.,Barlow,K.A.,Wang,J.,Xia,D.F.,Meng,X., Paschon,D.E.,Leung,E.,Hinkley,S.J.,et al.(2011).A TALE nuclease architec-ture for ef?cient genome editing.Nat.Biotechnol.29,143–148.

Moscou,M.J.,and Bogdanove,A.J.(2009).A simple cipher governs DNA recognition by TAL effectors.Science326,1501.

Pattanayak,V.,Lin,S.,Guilinger,J.P.,Ma,E.,Doudna,J.A.,and Liu,D.R. (2013).High-throughput pro?ling of off-target DNA cleavage reveals RNA-pro-grammed Cas9nuclease speci?city.Nat.Biotechnol.Published online August 11,2013.https://www.360docs.net/doc/ad2973705.html,/10.1038/nbt.2673.

Perez,E.E.,Wang,J.B.,Miller,J.C.,Jouvenot,Y.,Kim,K.A.,Liu,O.,Wang,N., Lee,G.,Bartsevich,V.V.,Lee,Y.L.,et al.(2008).Establishment of HIV-1resis-tance in CD4+T cells by genome editing using zinc-?nger nucleases.Nat. Biotechnol.26,808–816.

Porteus,M.H.,and Baltimore,D.(2003).Chimeric nucleases stimulate gene targeting in human cells.Science300,763.

Reyon,D.,Tsai,S.Q.,Khayter,C.,Foden,J.A.,Sander,J.D.,and Joung,J.K. (2012).FLASH assembly of TALENs for high-throughput genome editing.Nat. Biotechnol.30,460–465.

Sander,J.D.,Dahlborg,E.J.,Goodwin,M.J.,Cade,L.,Zhang,F.,Cifuentes, D.,Curtin,S.J.,Blackburn,J.S.,Thibodeau-Beganny,S.,Qi,Y.,et al.(2011). Selection-free zinc-?nger-nuclease engineering by context-dependent assembly(CoDA).Nat.Methods8,67–69.

Sanjana,N.E.,Cong,L.,Zhou,Y.,Cunniff,M.M.,Feng,G.,and Zhang,F. (2012).A transcription activator-like effector toolbox for genome engineering. Nat.Protoc.7,171–192.

Soldner,F.,Laganiere,J.,Cheng,A.W.,Hockemeyer,D.,Gao,Q.,Alagappan, R.,Khurana,V.,Golbe,L.I.,Myers,R.H.,Lindquist,S.,et al.(2011).Generation of isogenic pluripotent stem cells differing exclusively at two early onset Par-kinson point mutations.Cell146,318–331.

Takasu,Y.,Kobayashi,I.,Beumer,K.,Uchino,K.,Sezutsu,H.,Sajwan,S., Carroll,D.,Tamura,T.,and Zurovec,M.(2010).Targeted mutagenesis in the silkworm Bombyx mori using zinc?nger nuclease mRNA injection.Insect Biochem.Mol.Biol.40,759–765.

Urnov,F.D.,Rebar,E.J.,Holmes,M.C.,Zhang,H.S.,and Gregory,P.D.(2010). Genome editing with engineered zinc?nger nucleases.Nat.Rev.Genet.11, 636–646.

Wang,H.,Yang,H.,Shivalila,C.S.,Dawlaty,M.M.,Cheng,A.W.,Zhang,F., and Jaenisch,R.(2013).One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Cell153, 910–918.

Watanabe,T.,Ochiai,H.,Sakuma,T.,Horch,H.W.,Hamaguchi,N., Nakamura,T.,Bando,T.,Ohuchi,H.,Yamamoto,T.,Noji,S.,et al.(2012). Non-transgenic genome modi?cations in a hemimetabolous insect using zinc-?nger and TAL effector https://www.360docs.net/doc/ad2973705.html,mun.3.Published online August21,2012.https://www.360docs.net/doc/ad2973705.html,/10.1038/ncomms2020.

Wood,A.J.,Lo,T.W.,Zeitler,B.,Pickle,C.S.,Ralston,E.J.,Lee,A.H.,Amora, R.,Miller,J.C.,Leung,E.,Meng,X.,et al.(2011).Targeted genome editing across species using ZFNs and TALENs.Science333,307.

Zhang,F.,Cong,L.,Lodato,S.,Kosuri,S.,Church,G.M.,and Arlotta,P.(2011). Ef?cient construction of sequence-speci?c TAL effectors for modulating mammalian transcription.Nat.Biotechnol.29,149–153.

Cell154,1380–1389,September12,2013a2013Elsevier Inc.1389

电容器的工作原理及结构

电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 电容 diànróng 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 2. [capacitor;condenser]:电容器的俗称 [编辑本段]概述 定义: 电容(或称电容量[4])是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质

westernblot原理及步骤

westernblot原理及步骤 1.western blot 即蛋白免疫印迹( Western Blot) 是将电泳分离后的细胞或组织总蛋白质从凝胶转移到固相支持物NC膜或PVDF 膜上,然后用特异性抗体检测某特定抗原的一种蛋白质检测技术,现已广泛应用于基因在蛋白水平的表达研究、抗体活性检测和疾病早期诊断等多个方面。 2.原理 简单来说就是原理是通过特异性抗体对凝胶电泳处理过的细胞或生物组织样品进行着色。通过分析着色的位置和着色深度获得特定蛋白质在所分析的细胞或组织中表达情况的信息 3.步骤 (一)蛋白样品制备 培养的细胞(定性) 1.去培养液后用温的PBS冲洗2~3遍(冷的PBS有可能使细胞脱落)。 2.对于6孔板来说每孔加200~300uL,60~80℃的1×loading buffer。 3.刮下的细胞在EP管中煮沸10min,期间vortex 2~3次。 4.用干净的针尖挑丝,将团块弃掉,如果没有团块但有拉丝现象,可将EP管置于0℃后在 5.14000~16000g离心2min,再次挑丝。若无团块也无丝状物但溶液有些粘稠,可使用1ml注射器反 6.复抽吸来降低溶液粘滞度,便于上样。 7.待样品恢复到室温后上样。 培养的细胞(定量) 1.去培养液后用温的PBS冲洗2~3遍(冷的PBS有可能使细胞脱落)。

2.加入适量的冰预冷的裂解液后置于冰上10~20min。 3.刮下的细胞收集在EP管后超声(100~200w)3s,2次。 4.12000g离心,4℃,2min。 5.取少量上清进行定量。 6.将所有蛋白样品调至等浓度,充分混合沉淀后加loading buffer后直接上样最好,剩余溶液(溶于1×loading buffer)可以低温储存,-70℃一个月,-20℃一周,4℃1~2天,每次上样前98℃,3min。 (二)SDS-PAGE电泳 (1)清洗玻璃板 (2)灌胶与上样 (3)电泳 (三)转膜 (四)免疫反应 (五)化学发光,显影,定影 (六)凝胶图象分析将胶片进行扫描或拍照,用凝胶图象处理系统分析目标带的分子量和净光密度值。

电容器的工作原理及作用

电容器通常简称其为电容,用字母C表示。 定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。 定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 原理 电容器是由两个电极及其间的介电材料构成的。介电材料是一种电介质,当被置于两块带有等量异性电荷的平行极板间的电场中时,由于极化而在介质表面产生极化电荷,遂使束缚在极板上的电荷相应增加,维持极板间的电位差不变。这就是电容器具有电容特征的原因。电容器中储存的电量Q等于电容量C与电极间的电位差U的乘积。电容量与极板面积和介电材料的介电常数ε成正比,与介电材料厚度(即极板间的距离)成反比。 用途 电力电容器按用途可分为8种: 1.并联电容器。原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。 2.串联电容器。串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。 3.耦合电容器。主要用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。 4.断路器电容器。原称均压电容器。并联在超高压断路器断口上起均压作用,使各断口间的电压在分断过程中和断开时均匀,并可改善断路器的灭弧特性,提高分断能力。 5.电热电容器。用于频率为40~24000赫的电热设备系统中,以提高功率因数,改善回路的电压或频率等特性。

6.脉冲电容器。主要起贮能作用,用作冲击电压发生器、冲击电流发生器、断路器试验用振荡回路等基本贮能元件。 7.直流和滤波电容器。用于高压直流装置和高压整流滤波装置中。⑧标准电容器。用于工频高压测量介质损耗回路中,作为标准电容或用作测量高压的电容分压装置。 如有侵权请联系告知删除,感谢你们的配合!

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

WesternBlot原理和操作方法(全)讲解

Western Blot 原理和操作方法(全) Western Blot 工作原理 蛋白质的电泳分离是重要的生物化学分离纯化技术之一,电泳是指带电粒子在电场作用下,向着与其电荷相反的电极移动的现象.根据所采用的支持物不同,有琼脂糖凝胶电泳,淀粉凝胶电泳,聚丙烯酰胺凝胶电泳等.其中,聚丙烯酰胺凝胶电泳(PAGE)由于无电渗作用,样品用量少(1-100μg),分辨率高,可检出10-9-10-12mol 的样品,凝胶机械强度大,重复性好以及可以通过调节单体浓度或单体与交联剂的比例而得到孔径不同的凝胶等优点而受到广旱挠τ? SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量. PAGE能有效的分离蛋白质,主要依据其分子量和电荷的差异,而SDS-PAGE(SDS 变性不连续聚丙烯酰胺凝胶电泳)的分离原理则仅根据蛋白质的分子量的差异,因为SDS-PAGE的样品处理液是在要跑电泳的样品中假如含有SDS和巯基乙醇(2-ME)或二巯基赤藓醇(DTT),其可以断开半胱氨酸残基之间的二硫键,破坏蛋白质的四级结构,SDS是一种阴离子表面活性剂即去污剂,它可以断开分子内和分子间的氢键,破坏蛋白质分子的二级及三级结构,并与蛋白质的疏水部分相结合,破坏其折叠结构,电泳样品假如样品缓冲液后,要在沸水中煮3-5分钟使SDS与蛋白质充分结合形成SDS-蛋白质复合物,SDS-蛋白质复合物在强还原剂巯基乙醇存在时,蛋白质分子内的二硫键被打开而不被氧化,蛋白质也完全变性和解聚,并形成榛状结构,稳定的存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,平均每两个氨基酸残基结合一个SDS分子,这时各种蛋白质分子本身的电荷完全被SDS掩盖,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基. 样品处理液中通常加入溴酚蓝染料, 溴酚蓝指示剂是一个较小的分子,可以自由通过凝胶孔径,所以它显示着电泳的前沿位置,当指示剂到达凝胶底部时,即可停止电泳. 另外样品处理液中也可加入适量的甘油或蔗糖以增大溶液密度,使加样时样品溶液可以沉入样品加样槽底部. 重要参数 ①聚丙烯酰胺凝胶(PAG)制备原则:由于孔径的大小取决于单体和双体丙烯酰胺在凝胶中的总浓度(T)以及双体占总浓度的百分含量即交联度(C)决定的,因而制胶之前必须首先知道这两个参数.一般可以由下述公式计算: T%=(a+b)/m*100%; 和C%=a/(a+b)*100% 其中: a=双体(bis)的重量;b=单体(arc)的重量;m=溶液的体积(ml) ②当分析一个未知样品时,常常先用7.5%的标准凝胶制成4-10的梯度凝胶进行试验,以便选择理想的胶浓度.如果蛋白质的分子量已知,可参考下表选择所需凝胶浓度: 蛋白质分子量范围(Da) 适宜的凝胶浓度(%) <104 20-30

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

wb原理步骤及总结

实验原理 蛋白质印迹是把电泳分离的蛋白质转移到固定基质上,然后利用抗原抗体反应来检测特异性的蛋白分子的技术,包括三个部分:SDS—聚丙烯酰胺凝胶电泳,蛋白质的电泳转移,免疫印迹分析。 SDS—聚丙烯酰胺凝胶电泳主要用于测定蛋白质相对分子质量,SDS是阴离子去污剂,能断裂蛋白质分子内和分子间的氢键,使分子去折叠,破坏其高级结构。SDS与大多数蛋白质的结合比为1.4:1,由于SDS带有大量的负电荷,与蛋白质结合时掩盖了不同种类蛋白质间原有的电荷差别,使各种蛋白质带有相同密度的负电荷,形似长椭圆棒,蛋白迁移率与蛋白质相对分子质量的对数呈线性关系。因此,利用相对分子质量标准蛋白所作的标准曲线,可以求得未知蛋白的相对分子质量。 电泳后蛋白质分子嵌在凝胶介质中,探针分子很难通过凝胶孔,将蛋白质从凝胶转移到固定基质上可以对蛋白质进行免疫检测分析。方法有两种:①水平半干式转移即将凝胶和固定基质似三明治样夹在缓冲液浸湿的滤纸中间,通电10~30min可完成②垂直湿式转移即将凝胶和固定基质夹在滤纸中间,浸在转移装置的缓冲液中,通电2~4h或过夜可完成。固定基质通常有硝酸纤维素膜、聚偏二氟乙烯膜和尼龙膜。 蛋白质转移到固定化膜上之后,通过蛋白质染料如丽春红S检测膜上的总蛋白,或用考马斯亮蓝检测凝胶上的蛋白剩余量,以验证转移是否成功。用抗体作为探针进行特异性的免疫反应检测抗原蛋白,分为4步:①用非特异性、非反应活性分子封阻固定化膜上未吸附蛋白的自由结合区,以防止作为探针的抗体结合到膜上,出现检测时的高背景②固定化膜用专一性的一抗温育,使一抗与膜上的抗原蛋白分子特异性结合③酶标二抗与一抗特异结合④加入酶底物,适当保温,膜上便可见到颜色反应,检测出抗原蛋白区带。 主要溶液 10%分离胶 水 3.3mL、30% 丙烯酰胺混合液 4.0mL、1.0mol/L Tris(pH8.8)2.5mL、10% SDS 0.1mL、10%过硫酸铵0.1mL、TEMED 0.004mL 5%浓缩胶 水 2.7mL、30%丙烯酰胺混合液0.67mL、1.0mol/LTris0.5mL、10%SDS0.04Ml/10%过硫酸铵0.04mL、TEMED0.004mL 1×Tris –甘氨酸电泳缓冲液 Tris碱3.03g、甘氨酸18.77g、SDS 1g,用去离子水定容至1L 2×SDS凝胶加样缓冲液 Tris-HCl(pH6.8) 100mmol/L,β-巯基乙醇10%,10%甘油,0.01%溴酚蓝,10%SDS 转移缓冲液 Tris 2.45g,甘氨酸11.25g,甲醇100mL,加去离子水至1L TBST Tris 1.21g NaCl 8.77g,Tween-20 1mL,加去离子水至1L Stripping 1.3mL Tris (pH 6.8),4mL10%SDS,140μlβ-巯基乙醇,用水定容到20mL 实验步骤 1 SDS—聚丙烯酰胺凝胶电泳 ⑴凝胶配置 ①分离胶的配置:将配置好的分离胶液混匀后迅速倒入胶槽中,至距离短玻璃板顶端约2cm 处,停止灌胶。检查是否有气泡,若有用滤纸条吸出。然后在胶液界面上加蒸馏水进行水封。15~30min后,凝胶和水封层界面清晰,说明胶已经聚合完全,然后用滤纸吸取水封层,滤纸切勿接触到凝胶面。(使蛋白样品分离) ②浓缩胶的配置:将配置好的浓缩胶灌注在分离胶之上,直至短玻璃板的顶端,然后插入样品

电容降压式电源原理及电路

电容降压式电源原理及电路 电容降压式电源 将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。 一、电路原理 电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极

管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。 整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。 二、器件选择 1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。 2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。 3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。 三、设计举例 图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为: Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K 流过电容器C1的充电电流(Ic)为: Ic = U / Xc = 220 / 9.65 = 22mA。 通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。 电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。 请看: 电容降压式电源电路的计算与元件选择 电容降压式电源电路又称恒流电源电路,由于省去了笨重的交流电源变压器,体

WB实验原理

SDS聚丙烯酰胺凝胶电泳和Western印迹技术 SDS聚丙烯酰胺凝胶电泳技术首先在1967年由Shapiro等建立,主要用于测定蛋白质亚基分子量。Western 印迹是在SDS聚丙烯酰胺凝胶电泳基础上,将电泳分离的蛋白组分从凝胶转移至一种固相支持物上,应用抗体可与附着于固相支持物上的靶蛋白发生特异性反应的特点,针对特定蛋白进行鉴别和定量。 原理 1.SDS聚丙烯酰胺凝胶电泳 SDS是一种阴离子去污剂,作为变性剂和助溶剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白质分子的二级和三级结构。强还原剂,例如巯基乙醇和二硫苏糖醇则能使半胱氨酸残基之间的二硫键断裂。在样品和凝胶中加入SDS和还原剂后,蛋白质分子被解聚,使其氨基酸侧链与SDS充分结合形成带负电荷的蛋白质-SDS胶束,所带的负电荷大大超过了蛋白质分子原有的电荷量,这就消除了不同分子之间原有的电荷差异。在水溶液中蛋白质-SDS胶束的长度与亚基分子量的大小成正比。因此这种胶束在SDS聚丙烯酰胺凝胶系统中的电泳迁移率不再受蛋白质原有电荷的影响,而主要取决于蛋白质或亚基分子量的大小。当蛋白质的分子量在15KD~200KD之间时,电泳迁移率与分子量的对数呈线性关系。由此可见,SDS聚丙烯酰胺凝胶电泳不仅可以分离蛋白质,而且可以根据迁移率大小测定蛋白质亚基的分子量。 2.Western 印迹 在Western印迹法中,待测样品溶解于去污剂和还原剂的溶液中,经过SDS聚丙烯酰胺凝胶电泳后被转移到固相支持物上(常用硝酸纤维素滤膜),然后可被染色。随后滤膜可与抗靶蛋白的一抗反应。最后,结合上的抗体可用多种二级免疫学试剂(与辣根过氧化物酶或碱性磷酸酶偶联的A蛋白或抗免疫球蛋白)检测。Western 印记法可测出1-5ng中等大小的待检蛋白。 方法 1.样品的制备 从细胞中提取蛋白质样品用于Western印记的方法有两种,一是可以在加样缓冲液中直接溶解完整细胞;二是制备细胞提取液。可根据不同的目的采用不同的方法。如果仅是定性实验,可应用第一种方法;如果需测定蛋白含量并进行定量实验,可应用后一种方法。1.1 凝胶加样缓冲液裂解哺乳动物细胞和组织制备蛋白质样品 1)裂解细胞或组织 a.单层培养细胞:用PBS缓冲液漂洗细胞2次,弃去洗液并吸尽残余的PBS液体, 加入一定体积(50~200μl)的加热到85℃的1×SDS凝胶加样缓冲液[50mmol/L Tris.Cl(pH 6.8), 100mmol/L 二硫苏糖醇(DTT), 2% SDS, 0.1% 溴酚蓝,10%甘油] 溶解细胞,用细胞刮刀把粘稠状的细胞裂解物收集于一个微量离心管中,用于步骤2)。 b.悬浮培养细胞:用冷的PBS充分洗涤细胞后,去尽残液,加入一定体积用冰预冷 的悬浮缓冲液[0.1mol/L NaCl,0.01mol/L Tris.Cl(pH 7.6),0.001mol/L EDTA (pH 8.0),1μg/ml Aprotinin,100μg/ml PMSF],涡流振荡混匀后,加入等体积的2×SDS凝胶加样缓冲液[100mmol/L Tris.Cl(pH 6.8), 200mmol/L 二硫苏糖醇(DTT), 4% SDS, 0.2% 溴酚蓝,20% 甘油],混匀后,用于步骤2)。

westernblot原理及步骤

一、配胶 原理: 30% acrylamide mix:产生凝胶的基本物质 1.5M Tris(ph 8.8) :使分离胶PH为8.8(与甘氨酸的pka接近,从而使不同分子量的蛋白产生不同的电泳速度,从而使不同分子量的蛋白分开)1.0MTris(ph 6.8):使浓缩胶PH为6.8(可以通过甘氨酸和氯离子的作用产生压缩,从而使蛋白条带压细) 10% SDS阴离子去污剂:断裂分子内和分子间氢键,破坏蛋白质二三级结构,消除蛋白质在迁移过程中结构的影响。与蛋白质形成SDS-蛋白质复合物,由于SDS带有大量负电荷,蛋白质本身的电荷被掩盖,从而消除蛋白质迁移过程中自身电荷的差异造成的影响。同时能够助溶,蛋白质变为亲水,容易在水相中迁移。每克多肽可以与1.4g 去污剂结合,当分子量在15kd-200kd之间时,蛋白质的迁移率和分子量的对数呈线性关系,logMW(分子量)=K-bx(迁移率)AP:提供acr丙烯酰胺和bis亚甲丙烯酰胺聚合的氧自由基,是acr 和bis聚合的引发剂 TEMED:催化AP释放氧自由基,是反应的催化剂 1、清洗干净1.5mm或1mm玻璃板,检漏(有豁口和字的朝上) 2、倒掉水,配10ml 10%的分离胶(1.5mm板需要7ml,1mm 板需要4.5ml) 10%方案如下: H2O 4.0ml

30% acrylamide mix 3.3ml 1.5M Tris(ph 8.8) 2.5ml 10% SDS 0.1ml 10% ammonium persulfate 0.1ml TEMED 0.004ml 3、混合后上下摇晃,注意不要放在手中配(否则温度太高凝固的快),静置15s后用1ml枪二档吸一档打(在一角加即可,不用来回加,否则容易出气泡。不过出气泡了也没事,加水压一下就浮上来了) 4、加进玻璃板中,随后均匀来回加水到满 5、等待20分钟 6、倒掉水,将架子倒置过来让水排干,用纸巾擦拭斜角(一定要擦干净所有的水!否则两层胶之间出现水层就废了),同时配浓缩胶4ml H2O 2.7ml 30% acrylamide mix 0.67ml 1.0M Tris(ph 6.8) 0.5ml 10% SDS 0.04ml 10% ammonium persulfate 0.04ml TEMED 0.004ml 7、加满分离胶后插入1.5mm或1mm的梳子,注意不要有气泡,

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

电容器的工作原理及作用

电容器的工作原理及作用 定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,旁路,滤波,调谐回路,能量转换,控制等方面。 定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 原理电容器是由两个电极及其间的介电材料构成的。介电材料是一种电介质,当被置于两块带有等量异性电荷的平行极板间的电场中时,由于极化而在介质表面产生极化电荷,遂使束缚在极板上的电荷相应增加,维持极板间的电位差不变。这就是电容器具有电容特征的原因。电容器中储存的电量Q等于电容量C与电极间的电位差U 的乘积。电容量与极板面积和介电材料的介电常数ε成正比,与介电材料厚度(即极板间的距离)成反比。 用途电力电容器按用途可分为8种:1、并联电容器。原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。2、串联电容器。串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。3、耦合电容器。主要用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。4、断

路器电容器。原称均压电容器。并联在超高压断路器断口上起均压作用,使各断口间的电压在分断过程中和断开时均匀,并可改善断路器的灭弧特性,提高分断能力。5、电热电容器。用于频率为40~24000赫的电热设备系统中,以提高功率因数,改善回路的电压或频率等特性。6、脉冲电容器。主要起贮能作用,用作冲击电压发生器、冲击电流发生器、断路器试验用振荡回路等基本贮能元件。7、直流和滤波电容器。用于高压直流装置和高压整流滤波装置中。⑧标准电容器。用于工频高压测量介质损耗回路中,作为标准电容或用作测量高压的电容分压装置。

电容在不同的电路中的工作原理1

电容在不同的电路中的工作原理 1:无功补偿:工频电流和谐波电流是有本质区别的,一般常规设备不能测量谐波电流,且谐波的产生有随机性,就象心脏病一样,你测的时候不一定有,但你不测的时候却可能发生,只有连续化测量的数据才可用来谐波治理。 整流必然有谐波,但整流的方式不同,引起的谐波次数和大小也不同,如6脉动整流会产生5次和7次谐波,12脉动整流会产生11次和13次谐波。我想你拆掉一个变压器还能出直流,就是用二个接线组别不同的变压器,组成了12脉动整流,以消除低次谐波的影响;但你少了一个变压器,变成6脉动整流了,产生的谐波变了,但你的无功补偿柜还是原来补偿11次和13次谐波的,在5次和7次谐波下,当然不能用了。 你用的无功功率补偿装置,应该是一个具有滤谐波功能的电容器+电抗器组组成,内部由多个这样的单通滤波器组合而成,某个单通滤波器(一个电容器+电抗器)只能完成特定谐波的滤除,对其它次波反而有放大作用,如内部有11次滤波器,对5次谐波就有放大作用,你说的大谐波电流可能是放大后的谐波电流。 生产这个装置的厂家,估计技术力量也不强,很可能对上面的单通滤波器(一个电容器+电抗器)设计或生产组装产生问题,参数计算错误或元件参数分散性太大,如本设计的是滤11次谐波的,却变成了滤12次谐波的了,使11次谐波电流被放大,这也许就是变压器烧毁

的真正原因。(正规的滤波器设计应取电网参数,估计厂家根本作不到) 你改正电容器或电抗器参数是很复杂,没有意义的,只有恢复12脉动整流才是正确道路。即重新安装和烧毁变压器同接线组别,和未烧变压器不同接线组别的变压器,有可能降低系统运行电压,可能会解决这些问题。 2:电容器补偿器的作用:把具有容性负荷的装置与感性功率负荷并联接在同一电路,当容姓负荷释放能量时,感性负荷吸收能量;而感性 负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换,这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是电容补偿器基本原理。 3:电容供储电的原理:电容(Capacitor)是第二种最常用的元件。电容的主要物理特征是储存电荷。由于电荷的储存意味着能的储存,因此也可说电容器是一个储能元件,确切的说是储存电能。两个平行的金属板即构成一个电容器。电容也有多种多样,它包括固定电容,可变电容,电解电容,瓷片电容,云母电容,涤纶电容,钽电容等,其中钽电容特别稳定。电容有固定电容和可变电容之分。固定电容在电路中常常用来做为耦合,滤波,积分,微分,与电阻一起构成RC 充放电电路,与电感一起构成LC振荡电路等。可变电容由于其容量在一定范围内可以任意改变,所以当它和电感一起构成LC回路时,回路的谐振频率就会随着可变电容器容量的变化而变化。一般接受机电路就是利用这样一个原理来改变接收机的接收频率的。

电容的作用和工作原理

电容的作用和工作原理 在电子线路中,电容用来通过交流而阻隔直流,也用来存储和释放电荷以充当滤波器,平滑输出脉动信号。小容量的电容,通常在高频电路中使用,如收音机、发射机和振荡器中。大容量的电容往往是作滤波和存储电荷用。而且还有一个特点,一般1μF以上的电容均为电解电容,而1μF以下的电容多为瓷片电容,当然也有其他的,比如独石电容、涤纶电容、小容量的云母电容等。电解电容有个铝壳,里面充满了电解质,并引出两个电极,作为正(+)、负(-)极,与其它电容器不同,它们在电路中的极性不能接错,而其他电容则没有极性。 把电容器的两个电极分别接在电源的正、负极上,过一会儿即使把电源断开,两个引脚间仍然会有残留电压(学了以后的教程,可以用万用表观察),我们说电容器储存了电荷。电容器极板间建立起电压,积蓄起电能,这个过程称为电容器的充电。充好电的电容器两端有一定的电压。电容器储存的电荷向电路释放的过程,称为电容器的放电。 举一个现实生活中的例子,我们看到市售的整流电源在拔下插头后,上面的发光二极管还会继续亮一会儿,然后逐渐熄灭,就是因为里面的电容事先存储了电能,然后释放。当然这个电容原本是用作滤波的。至于电容滤波,不知你有没有用整流电源听随身听的经历,一般低质的电源由于厂家出于节约成本考虑使用了较小容量的滤波电容,造成耳机中有嗡嗡声。这时可以在电源

两端并接上一个较大容量的电解电容(1000μF,注意正极接正极),一般可以改善效果。发烧友制作HiFi音响,都要用至少1万微法以上的电容器来滤波,滤波电容越大,输出的电压波形越接近直流,而且大电容的储能作用,使得突发的大信号到来时,电路有足够的能量转换为强劲有力的音频输出。这时,大电容的作用有点像水库,使得原来汹涌的水流平滑地输出,并可以保证下游大量用水时的供应。 电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致的充电电流和放电电流。 电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为 6.3V,10V,16V,25V,50V 等。

westernblot原理及步骤

Western Blot的原理及步骤 免疫印迹(Western Blot)是将蛋白质转移到膜上,然后利用抗体进行检测。对已知表达蛋白,可用相应抗体作为一抗进行检测,对新基因的表达产物,可通过融合部分的抗体检测。Western Blot是检测单一细胞蛋白表达量最好的方法;若要对表达蛋白进行细胞定位,confocal应是首选的方法,若要进行蛋白相互作用的关系,应考虑免疫共沉淀技术。 1.收集蛋白样品(Protein sample preparation) 可以使用适当的裂解液裂解贴壁细胞、悬浮细胞或组织样品。加入RIPA缓冲液(每克组织3 ml RIPA),PMSF(每克组织30μl,10mg/ml PMSF),利用Polytron进一步匀浆(15,000转/分)维持4℃。加入PMSF(每克组织30μl,10 mg/ml PMSF),冰上孵育30分钟。移入离心管4℃约20,000 g(约15,000转)15分钟。上清液为细胞裂解液可分装-20℃保存。收集完蛋白样品后,为确保每个蛋白样品的上样量一致,需要测定每个蛋白样品的蛋白浓度。根据所使用的裂解液的不同,需要采用适当的蛋白浓度测定方法。 进行Bradford比色法测定蛋白质浓度。【具体方法】 2.电泳(Electrophoresis) (1)SDS-PAGE凝胶配制 SDS-PAGE凝胶可以参考一些文献资料进行配制,【配制方法根据分离的目的蛋白的分子量大小选择凝胶浓度】 (2)样品处理

在收集的蛋白样品中加入适量浓缩的SDS-PAGE蛋白上样缓冲液。例如2X或5X的SDS-PAGE蛋白上样缓冲液。使用5X的SDS-PAGE 蛋白上样缓冲液可以减小上样体积,在相同体积的上样孔内可以上样更多的蛋白样品。5X的SDS-PAGE蛋白上样缓冲液可以参考相关文献资料配制,100℃或沸水浴加热3-5分钟,以充分变性蛋白。(3)上样与电泳 冷却到室温后,把蛋白样品直接上样到SDS-PAGE胶加样孔内即可。为了便于观察电泳效果和转膜效果,以及判断蛋白分子量大小,最好使用预染蛋白质分子量标准。【预染marker?】 电泳时通常推荐在上层胶时使用低电压恒压电泳,而在溴酚蓝进入下层胶时使用高电压恒压电泳。对于Bio-Rad的标准电泳装置或类似电泳装置,低电压可以设置在80-100V,高电压可以设置在120V 左右。SDS-PAGE可以采用普通的电泳仪就可以满足要求。为了电泳方便起见,也可以采用整个SDS-PAGE过程恒压的方式,通常把电压设置在100V,然后设定定时时间为90-120分钟。设置定时可以避免经常发生的电泳过头。 通常电泳时溴酚蓝到达胶的底端处附近即可停止电泳,或者可以根据预染蛋白质分子量标准的电泳情况,预计目的蛋白已经被适当分离后即可停止电泳。 3.转膜(Transfer)【转膜缓冲液】 我们推荐在Western实验中选用PVDF膜。硝酸纤维素膜(NC膜)也可以使用,但硝酸纤维素膜比较脆,在操作过程中特别是用镊子夹

westernblot原理及步骤

westernblot原理及步骤 免疫印迹(Western Blot)是将蛋白质转移到膜上,然后利用抗体进行检测。对已知表达蛋白,可用相应抗体作为一抗进行检测,对新基因的表达产物,可通过融合部分的抗体检测。Western Blot是检测单一细胞蛋白表达量最好的方法;若要对表达蛋白进行细胞定位,confocal应是首选的方法,若要进行蛋白相互作用的关系,应考虑免疫共沉淀技术。 一、Western Blot的原理 Western Blot与Southern或Northern杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。 二、操作步骤 (一)蛋白质样品获得: 1.所需试剂: (1)蛋白酶抑制剂mix: hjjhh储存浓度5ml mix中的加入量终浓度 *PMSF(溶于乙醇)100mM 25ul 50uM *Trypsin Inhibitor 1mg/ml 250ul 50ug/ml *EGTA(pH8.0)0.5M 80ul 8mM *EDTA(pH8.0)0.5M 10ul 1mM Aprotinin 1mg/ml 25ul 5ug/ml Pepstatin(溶于乙醇)0.2mg/ml 50ul 10ug/ml Leupeptin 5mg/ml 100ul 0.1mg/ml Benzamidine 100mM 250ul 5mM NaF 5M 250ul 250mM NaVO4(FW183.8)0.2M 25ul 1mM 注意:*代表必须加的试剂 (2)细胞裂解缓冲液(培养细胞用):1% NP40, 25 mM Hepes。配制1M DTT溶液,保存在-20℃冰箱中。 配制细胞裂解液(现用现配):将裂解缓冲液和抑制剂溶液等体积混合,然后加入DTT溶液,使其浓度为1 mM。 (3)RIPA(组织样品):1×PBS,1%NP-40,0.5%脱氧胆酸钠,0.1% SDS。(蛋白抑制剂在提取蛋白时现加,按10ul/ml RIPA的量加10mg/ml PMSF,Aprotinin按30ul/ml RIPA的量加入) 也可用样品裂解液:(2%SDS;0.01%溴酚兰;10%甘油;60mmol/LTris-HCl(PH6.8);100mmol/LDTT(取自-20℃存放的1mol/L储存液,临用时加入)

电容式液位计工作原理

b电容式液位计原理? 答:电容传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成的。主要用于压力、位移、液位、厚度、水分含量等参数的测量。电容式液位计是采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。 两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。 所以,可通过两电极间的电容量的变化来测量液位的高低。电容液位计的灵敏度主要取决于两种介电常数的差值,而且,只有ε1和ε2的恒定才能保证液位测量准确,因被测介质具有导电性,所以金属棒电极都有绝缘层覆盖。电容液位计体积小,容易实现远传和调节,适用于具有腐蚀性和高压的介质的液位测量。 电容式液位测量装置的结构和工作原理 电容法是用一电容探头感受物面位置的变化。附图(图7-17电容式液位测量结构示意图)a所示为几种用于连续测量的电容探头结构。l是部分或整体绝缘的棍电极,3、4是拉紧或放松的绳电极。

如果容器壁由导电材料制成,则只需装入电极1或3或4,容器壁作为另一电极与外壳相连(接地)。如果容器壁由非金属材料制成,则必须使用具有内外电极的管式电极2,或对电极l、3、4另附一个反电极5,也可用金属带6与l、3、4组合,5、6均需接地。 测量时,电容器的上部隔着空气,下部充满液体或其它材料。空气的介电常数ε0=l,被测物的介电常数为εr。物位变化时,电容器的电容变化值ΔC与被测材料的物位高度x成线性关系,即 (12.12) 式中h—电容器的总高度; C0—初始电容值。 图7-17b所示是一些进行物位极限位置监控的电容测头结构。这时不再希望探头的电容值在整个高度范围内线性变化,而是希望物位在达到极限位置时电容能发生突变。l和2是部分或全部绝缘的棍电极或绳电极,3是侧面安装的棍电极,它以70°角倾斜安装可防止被测液的粘附,4是平面电极,可用于一些不能在内部插入电容探头的容器内物位的测量,如搅拌器。如果容器为非导电材料制成,同样需另外附加一个反向电极。 上面提到的整体绝缘探头用于导电材料物位的测量。

相关文档
最新文档