压力容器用双相不锈钢_二_

压力容器用双相不锈钢_二_
压力容器用双相不锈钢_二_

低温压力容器设计要点

低温压力容器 目前我国没有专门的低温压力容器标准,JB4732都不划分低温与常温的温度界限。 ★低温管壳式换热器见GB151-1999附录A ★低温压力容器见GB150.3-2011附录E(老版150为附录C) ●为什么低温压力容器需要关注: 温度低,材料的韧性降低,会产生低温脆性破坏,而低温脆性破坏前应力远未到达材料的屈服极限(或许用应力),破坏时没有明显的征兆,所以低温压力容器的设计、选材、制造和检验等各个环节要求都有不同程度的提高。 ●低温压力容器的定义 设计温度为<-20℃(新标准GB150-2011第3.1.15条定义,老标准为≤-20℃)的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。 相关两个定义 ●最低设计金属温度(MDMT) GB150.1-2011第4.3.4d条:在确定最低设计金属温度时,应

当充分考虑在运行过程中,大气环境低温条件对容器金属温度的影响。大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。 ●低温低应力工况 GB150.3-2011附录E第E1.4条:低温低应力工况系指壳体或其受压元件的设计温度虽然低于-20℃,但设计应力(在该设计条件下,容器元件实际承受的最大一次总体薄膜和弯曲应力)小于或等于钢材标准常温屈服强度的1/6,且不大于50Mpa时的工况。(注:一次应力为平衡压力与其他机械载荷所必须的法向应力或且应力) 这个定义与老标准有差别,设计应力与环向应力的区别,用设计应力更严谨。 新标准明确了在进行容器的“低温低应力工况”判定时,除了对壳体元件进行一次总体薄膜应力的核定外,还应对承受一次弯曲应力的容器元件进行考查,如平封头、管板、法兰等。 ●关于低温低应力工况下,选材按照设计温度加50℃(或者,加40℃)的规定 GB150.3-2011附录E第E2.2条:当壳体或受压元件使用在“低温低应力工况”下,可以按设计温度加50℃(对于不要求焊后热处理的设备,加40℃)后的温度值选择材料,但不适用于:

WI不锈钢压力容器制造工艺

不锈钢压力容器制造工艺 WI03-08 1.总则:本工艺适用于奥氏体不锈钢各种容器的制造。对于不锈钢塔器的制造除执行本工艺技术外,还应执行WI03-07《塔器制造工艺》。若图纸或工艺有特殊要求时,应执行图纸或工艺。 2.一般要求: 2.1制造 2.1.1不锈钢容器的制造应在专门场地使用专用工装进行,不得与黑色金属制品或其它产品混杂生产,并应具备以下条件: 2.1.1.1制造场地要保持清洁、干燥,严格控制灰尘,且具备文明生产条件; 2.1.1.2工件存放和制造场地应铺设木质或橡胶垫板; 2.1.1.3托辊上均应挂胶或采用其它有效的方法,控制表面机械损伤;2.1.1.4打磨所用的砂轮片必须采用磨料为钢玉系列的砂轮片。 2.1.2材料标记及移植。 2.1.2.1制造过程中各受压元件材料标识应采用硬色笔、铅笔或蜡笔等,且应保持清晰完整,直到水压试验检查合格或竣工允许清洗掉为止。 2.1.2.2材料标识按WI03-01《产品标识规定》进行。

2.1.3防止磕碰划伤:板材或零部件在吊运、制造过程中,要始终保持钢板表面及所用设备及胎具的清洁,以防将熔渣、氧化皮等金属杂物压入工件表面,在各工序的制造过程中,要采取措施,防止工件表面磕碰划伤。 2.1. 3.1起吊不锈钢容器或零部件的吊具应加铜垫,吊缆宜采用绳制吊缆或柔性材料铠装的金属吊缆。 2.1. 3.2冲压胎具工作表面要光洁、平滑、无棱角,且涂油脂。 2.1. 3.3禁止直接踩踏不锈钢表面。如要在不锈钢表面或进入壳体内工作,则必须穿专用鞋套。 2.1. 3.4在滚剪刨前,要用去污粉(诸如:洗衣粉、热碱溶液等)清理设备平台及辊轮上的油污、铁锈等污渍,并对平台上的尖锐部分进行处理;并用白布及手触摸检查,白布清洁,触摸光滑无突起后方可进行滚剪刨加工。 2.1. 3.5对于滚剪刨过程中,漏油及滴落的油滴,要及时清理,避免渗入及压入母材,难以清理。 2.1. 3.6滚板过程前,将刨边突起及毛边打磨光滑;滚板过程中,用牛皮纸将碳钢滚轮与钢板隔离,确保加工过程中,母材表面的清洁以及尽可能减少对母材的划伤。

双相不锈钢的优点和缺点

双相不锈钢的分析 班级学号姓名 摘要双相不锈钢是在18-8奥氏体不锈钢的基础上,提高C r含量或者加入其他铁素体元素形成的,使钢具有奥氏体加铁素体双向组织,又节约了Ni合金。由于双向不锈钢两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。文章主要介绍双相不锈钢的性能、双相不锈钢的类型以及双相不锈铜的应用领域。 关键词双相不锈钢;性能;加工;热处理工艺;铁素体不锈钢;奥氏体不锈钢 双相不锈钢的基本优点如下: (1)含铬量为18%—22%的双相不锈钢在低应力下有良好的耐中性氯化物应力腐蚀性能。一般应用在70Y以上中性氯化物溶液中的18—8型奥氏体不锈钢容易发生应力腐蚀破裂,在微量氯化物及硫化氢的工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀破裂的倾向,而双相不锈钢却有良好的抵抗能力。 (2)含钥双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀当量值(PR5=cr%*3.3%Moll6%N)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相近。含18%cr的双相不 锈钢耐孔蚀性能与AIsl316L相当。含25%Cr的尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。 (3)有良好的耐腐蚀疲劳和磨损腐蚀性能,在某些腐蚀介质条件下被用于泵、阀等设 备中。 (4)综合力学性能好,有较高的强度和疲劳强度,屈服强度是18—8型奥氏体不锈钢的2倍。双相不锈钢由于具有奥氏体+铁素体双相组织,且两个相组织的含量基本相当,故兼有奥氏体不锈钢和铁素体不锈钢的特点。屈服强度可达400Mpa ~ 550MPa,是普通奥氏体不锈钢的2倍。与铁素体不锈钢相比,双相不锈钢的韧性高,脆性转变温度低,耐晶间腐蚀性能和焊接性能均显着提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、热导率高、线膨胀系数小,具有超塑性及磁性等。与奥氏体不锈钢相比,双相不锈钢的强度高,特别是屈服强度显着提高,且耐孔蚀性、耐应力腐蚀、耐腐蚀疲劳等性能也有明显的改善。 (5)可焊性良好,热裂倾向小。一般焊前不需预热,焊后不需热处理,可与18—8型奥氏体不锈钢或碳钢等异种钢焊接。 (6)台低铬(18%cr)的双相不锈钢热加工温度范围比18—8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板”肯高铬(25%c)的钢则比奥氏休不锈钢热加r 困难。 (7)与奥氏体不锈钢相比,导热系数大,线膨胀系数小板,也适用丁制造热交换器的管芯。与奥氏体不锈钢相比,双相不锈钢(DSS)的强度和耐局部腐蚀性能结合良好, DSS的金相组织通常为50%的铁素体和50%的奥氏体,但二者的比例也可以在35%/65%到55%/45%之间变化。由于其高强度及长期使用中的高可靠性,目前国外开始考虑把它作为“基体材料”,以代替碳钢应用到大型储罐及设备制造方面。在炼油行业中经常使用的DSS有22%cr和25%Cr两个级别,后者与前者相比包含更多的钼和氮,具有更高的耐蚀性能双相不锈钥处存在如下缺点: (1)与奥氏休不锈钢比较,耐热性较低,一般控制在300Y以下的工作环境中使用。 (2)冷加r比18—8型奥氏体不锈钢的加丁硬化效应大,在管、板承受变形初期,需施

不锈钢容器制造通用工艺守则

1. 主题内容及适应范围 1.1本规程对不锈钢压力容器制造过程中的材料、各零部件和成品的组装程序、组装要求、质量检验、试验等做出通用规定。 1.2本守则如与设计、工艺文件相矛盾之处,应以设计、工艺文件为准。 1.3制造时,除引用标准和有关工艺守则外,还应符合设计图样的规定。 1.4本守则中引用的法规、标准、守则等如经修改,应以新的版本为准。 2. 引用标准 R0004《固定式压力容器安全技术监察规程》 150《压力容器》 151《管壳式换热器》 4710《钢制塔式容器》 4731《钢制卧式容器》 20584《钢制化工容器制造技术要求》 47015《钢制压力容器焊接规程》 21433《不锈钢压力容器晶间腐蚀敏感性检验》 3. 材料要求 3.1材料验收、保管按照《压力容器制造质量保证手册》及程序文件中材料质量控制的规定执行。 3.2不锈钢材料及零部件应防止长期露天存放、混料保管。要求按时投料、集中使用、随时回收、指定区域存放遮蔽保管。 3.3不锈钢与碳素钢等原材料有严格的隔离措施,搁置要稳妥,堆放要整齐,防止损伤(划痕、磕碰、压痕)和弯曲,散装的光亮板材应立放在15°斜度的木架上。 3.4设计图样要求对原材料进行抗晶间腐蚀试验复验的,其复验用试样的形状、尺寸、加工和试验方法,除设计图样另有规定外,应符合21433或设计图样规定的试验方法。 3.5制造压力容器用的不锈钢材料不得有分层,表面不允许有裂纹、结疤等缺陷。用于制造 有表面粗糙度要求的不锈钢板,应经80?100号砂头抛光后,再检查表面质量。 3.6不锈钢钢板表面允许存在深度不超过厚度负偏差之半的划痕、轧痕、麻点、氧化皮脱落后的粗糙等局部缺陷。 3.7经酸洗钝化供应的不锈钢材料表面不允许有氧化皮和过酸洗现象。 3.8不锈钢原材料和不锈复合钢板应按牌号、规格、炉号、批号分类存放,不锈钢材料上应有清晰的入库标识,应采用无氯、无硫记号笔书写,氯含量要w 25,也可用纸质标签粘贴 标识。 3.9钢板或另部件在吊运制作过程中应始终保持钢板表面的清洁,并防止磕碰划伤。 3.10深度超过规定应清除,清除打磨的面积应不大于钢板面积的30%,打磨的凹坑应与母 材圆滑过渡,斜度不大于1: 3。 3.11打磨后,如剩余厚度小于设计厚度,且凹坑深度小于公称厚度的5%或2 (取小者), 允许不做补焊;如凹坑深度较深,剩余厚度仍满足上述要求,与设计部门联系协商解决。 3.12超出上述界限的缺陷应考虑补焊,但应符合以下要求: (1)低合金铬钼钢,单个修补面积小于或等于1002,总计面积小于或等于300 2或2% (取小者); (2)允许焊补深度不大于板厚的1/5。 (3)钢板边缘的分层长度如不大于25,可免于修补或清除;长度大于25,且深度大于1.5的分层均应打磨消除。打磨深度如不大于3,可免于焊补,否则焊补后使用;同一平面内,间距不大于板厚5%的分层,应作为连续的分层长度。 (4)钢板表面及坡口分层补焊应符合《焊接通用工艺守则》的规定。

常用不锈钢基础知识

常用不锈钢基础知识

不锈钢定义 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。 从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。 为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬。 不锈钢种类: 不锈钢可以按用途、化学成分及金相组织来大体分类。 以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。 以化学成分分类: ①. CR系列:铁素体系列、马氏体系列 ②. CR-NI系列:奥氏体系列,异常系列,析出硬化系列。 以金相组织的分类: ①.奥氏体不锈钢 ②.铁素体不锈钢 ③.马氏体不锈钢 ④.双相不锈钢 ⑤.沉淀硬化不锈钢 不锈钢的标识方法

钢的编号和表示方法 ①用国际化学元素符号和本国的符号来表示化学成份,用阿拉 伯字母来表示成份含量,如:中国、俄国 12CrNi3A ②用固定位数数字来表示钢类系列或数字;如:美国、日本、 300系、400系、200系; ③用拉丁字母和顺序组成序号,只表示用途。 我国的编号规则 ①采用元素符号 ②用途、汉语拼音,平炉钢:P、沸腾钢:F、镇静钢:B、甲 类钢:A、T8:特8、GCr15:滚珠 ◆合结钢、弹簧钢,如:20CrMnTi 60SiMn、(用万分之几表示C含量) ◆不锈钢、合金工具钢(用千分之几表示C含量),如:1Cr18Ni9 千分之一(即0.1%C),不锈 C≤0.08% 如0Cr18Ni9,超低碳C≤0.03% 如 0Cr17Ni13Mo 国际不锈钢标示方法 美国钢铁学会是用三位数字来标示各种标准级的可锻不锈钢的。其中: ①奥氏体型不锈钢用200和300系列的数字标示, ②铁素体和马氏体型不锈钢用400系列的数字表示。例如,某 些较普通的奥氏体不锈钢是以201、 304、 316以及310为 标记, ③铁素体不锈钢是以430和446为标记,马氏体不锈钢是以 410、420以及440C为标记,双相(奥氏体-铁素体),

双相不锈钢性能特点-力学性能特点

与不锈钢中其他四类相比,由于双相不锈钢具有α+γ双相组织结构,因此,其性能特点兼有奥氏体不锈钢和铁素体不锈钢的特性,是一类高强度与高耐蚀性最佳匹配的不锈钢。 与铁素体不锈钢相比,α+γ双相不锈钢的脆性转变温度低,室温韧性高,耐晶间腐蚀和焊接性能显著改善,同时仍保留铁素体不锈钢的一些特点,如457℃脆性,中温脆性和高温脆性及热导率高、线胀系数小何具有超塑性等。 与奥氏体不锈钢相比,双相不锈钢的强度,特别是屈服强度显著提高,耐晶间腐蚀、应力腐蚀、疲劳腐蚀及磨蚀等性能明显改善,但有磁性。 上述双相不锈钢的特性,随两相比例的不同而有所改变。例如,当铁素体相的比例较大时,则更易显示铁素体不锈钢的性能特点;反之,则更易显示奥氏体不锈钢的性能特点。

1.力学性能 高强度,存在脆性转变温度和三个脆性区。 由于双相不锈钢具有微细的显微组织以及钼、氮等的强化作用,双相不锈钢的强度远远高于铁素体不锈钢和奥氏体不锈钢,一些试验结果见表1和图2。 表1.铁素体(430)、奥氏体(304)和双相不锈钢代表性牌号室温力学性能的对比 图2.分别为超级铁素体不锈钢、超级双相不锈钢、超级奥氏体不锈钢的力学性能对比 但是,双相不锈钢中含高铬、钼的大量铁素体相的存在,使得铁素体不锈钢中所具有的脆性 转变温度和457℃脆性、中温脆性以及高温脆性三个脆性区的特征,在双相不锈钢中先也显 现了出来(图3~5)。但是由于双相不锈钢的晶粒细化且又存在大量奥氏体,所以双相不锈 钢的脆性转变温度明显低于普通铁素体不锈钢,一般均在-40℃或-50℃以下,而且室温冲击 韧性也足够高(表1),因此不影响双相不锈钢的工程应用。至于457℃脆性和中温脆性只 要不高于260℃,长期使用就不会有任何危险。

低温压力容器设计应考虑的问题

低温压力容器设计应考虑的问题 一、选材。低温压力容器应选用低温压力容器用材料(低温低应力工况除外),选材原则: 1)低温容器受压元件用钢材应是镇静钢,承受载荷的非受压元件也应该是具有相当韧性且焊接性能良好的钢材; 2)一般低温用钢都要求正火处理,正火处理不仅可以细化晶粒,还可以减少由于终轧温度和冷却速率不同而引起的显微组织不均匀,可降低钢材无塑性转变温度; 3)对低温用碳素钢和低合金钢各类钢材,要求进行低温夏比V型缺口冲击试验; 4)C2.1.2 δs>20mm逐张UT Ⅲ;C2.1.4 对不同温度进行冲击试验。 二、容器的结构设计要求均应有足够的柔性需充分考虑下列问题GB150附录C3.2 1)尽可能简单,减少约束。 2)应避免产生过大的温度梯度。 3)应尽量避免结构形状突变,以减少局部高应力,接管、凸缘端部应打磨成圆角,圆滑过渡。 4)容器的鞍座、耳座、支腿应设置垫板或连接板,避免与容器壳体相焊。垫板或连接板按低温材料考虑。垫片要选择在低温下有良好弹性的材料。 5) 容器与非受压元件或附件的连接焊缝应采用连续焊。 6)接管补强应尽可能采用整体补强或厚壁管补强,若采用补强板,应为截面全焊透结构,且焊缝圆滑过渡。 7)在结构上应避免焊缝的集中和交叉。 8)容器焊有接管及载荷复杂的附件,需焊后消除应力而不能整体进行热处理时,应考虑部件单独热处理的可能性。 三、焊缝的结构设计:GB150附录C3.3 1)A类焊缝应采用双面对接焊,或采用保证焊透、与双面焊具有同等质量的单面对接焊。 2)B类焊缝也应采用与A类焊缝相同的全焊透对接焊缝。除非结构限制不得已时,允许采用不拆除垫板的带垫板单面焊。 3)C类、D类焊缝,原则均要求采用截面全焊透结构。对于一般平焊法兰的截面非全焊透结构,规定仅用于压力较低(设计压力不大于 1.0MPa)、较高温度(设计温度不低于-30℃)的场合,且标准抗拉强度下限值低于540MPa的材料。 四、焊接接头的无损检测(NDT/NDE) C4.6.1 容器的对接接头(A、B类)凡符合下列条件之一者应进行100%RT or UT: A)容器设计温度低于-40℃; B)容器设计温度虽高于-40℃,但接头厚度大于25mm; C)10.8.2.1和10.8.2.2者 1)无损检测比例为100%、50%。 2)凡按规定做100RT or UT的容器,其T形对接接头,角焊缝均需做100%MT or PT。 五、焊接要求 GB150附录C4.3 1)焊接前按JB4708进行焊接工艺评定试验,包括焊缝和热影响区的低温夏比(V)冲击试验。 2)当焊缝两侧母材具有不同冲击试验要求时,焊接金属的冲击试验温度应低于或等于母材中较高者,其冲击功按σb的较低者。热影响区按相应母材要求确定。接头的拉伸和弯曲性能按两侧母材中的较低要求。拉伸2块,面弯2块,背弯2块,冲击试验焊缝和热影响区各3块,当焊缝两侧母材的钢号不同时,每侧热影响区都应取3个冲击试样。 3)应严格控制焊接线能量及焊缝质量。 4)焊接区域内,包括对接接头和角接接头的表面不得有裂纹、气孔、咬边等缺陷,不应有急剧的形状变化,呈圆滑过渡。 六、热处理 GB150 附录C4.4.1 钢板厚度>16mm的碳素钢和低合金钢制容器或受压元件,应进行焊后热处理。

不锈钢基础知识

不锈钢基础知识培训材料 不锈钢大市场

不锈钢基础知识 一、不锈钢的简介: 所有金属都和大气中的氧气进行反应,在表面形成氧化膜。不幸的是,在普通碳钢上形成的氧化铁继续进行氧化,使锈蚀不断扩大,最终形成孔洞。可以利用油漆或耐氧化的金属(例如,锌,镍和铬)进行电镀来保证碳钢表面,但是,正如人们所知道的那样,这种保护仅是一种薄膜。如果保护层被破坏,下面的钢便开始锈蚀 耐空气、蒸汽、水等弱腐蚀介质和酸、碱、盐等化学浸蚀性介质腐蚀的钢。又称不锈耐酸钢。实际应用中,常将耐弱腐蚀介质腐蚀的钢称为不锈钢,而将耐化学介质腐蚀的钢称为耐酸钢。由于两者在化学成分上的差异,前者不一定耐化学介质腐蚀,而后者则一般均具有不锈性。不锈钢2的耐蚀性取决于钢中所含的合金元素。铬是使不锈钢获得耐蚀性的基本元素,当钢中含铬量达到12%左右时,铬与腐蚀介质中的氧作用,在钢表面形成一层很薄的氧化膜(自钝化膜),可阻止钢的基体进一步腐蚀。除铬外,常用的合金元素还有镍、钼、钛、铌、铜、氮等,以满足各种用途对不锈钢组织和性能的要求。 二、不锈钢的分类不锈钢通常按基体组织分为: 1、铁素体不锈钢。含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。 2、奥氏体不锈钢。含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。 3、奥氏体- 铁素体双相不锈钢。兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。 4、马氏体不锈钢。强度高,但塑性和可焊性较差。 三、不锈钢的特性和用途: 系列 美标 (ASTM ) 国标(GB)日表(SUS)性质用途 200 201 1Cr17Mn6Ni5N SUS201 具有耐酸、耐碱,密度高、抛光无气泡、 无针孔等特点,是生产各种表壳、表带 底盖优质材料等。 主要用于做装饰管,工 业管,一些浅拉伸制品. 202 1Cr18Mn8Ni5N SUS202 用Mn和N 代替了部分镍,从而获得 了良好的力学性能和耐蚀性能,是一种 节镍的新型不锈钢,他的室温强度比 304高,在800度以下有较好的抗氧化 性和中温强度 主要用于做装饰管,工 业管,一些浅拉伸制品. 2205 00Cr22Ni5Mo3N SUS2205 它的Cr、Mo和N元素的区间都比较 窄,容易达到相的平衡(即两相约各占一 半) , 改善了钢的强度,耐腐蚀性和焊接 性能,多用于性能要求较高和需要焊接 的材料,如油气管线等. 用于炼油, 化肥,造纸, 石油,化工等耐海水 耐高温浓硝酸等的热 交换器和冷淋器及器 件。

低温压力容器技术要求汇总

低温压力容器技术要求汇总 1. 钢板逐张超声检测 板厚大于20mm的16MnDR、Ni系低温钢(调质状态除外),逐张检查,不低于Ⅱ级合格。(GB150-2011)用于制造低温压力容器筒体、凸形封头和球壳的钢板,厚度超过以下数值时,需按《承压设备无损检测》JB4730.3进行超声检测,且不低于Ⅲ级。(HG/T20585-2011) 板厚大于16~20mm的钢板,每批抽检20%,最少1张。 板厚大于20mm的钢板,逐张检查。(GB150规定质量等级不低于Ⅱ级) 用作低温压力容器筒体的无缝钢管应逐根按《承压设备无损检测》JB4730.3进行超声检测检查。 2. 焊后热处理 球壳板厚度≥16mm的低温球罐应进行焊后整体热处理。(GB12337-1998附录A) 受压元件焊接接头厚度超过16mm时,低温压力容器或部件全部施焊工作完成后,应进行消除应力热处理。热处理工艺应与焊接工艺评定的热处理制度(温度曲线)一致。(HG/T20585-2011) 3. 100%射线或超声检测 设计温度低于-40℃的或者焊接接头厚度大于25mm的低温容器。(GB150-2011) 低温压力容器的对接接头符合下列情况之一者,应经100%射线或超声检测:(HG/T20585-2011) 盛装易爆介质的容器,且设计压力大于0.6MPa者 设计压力大于等于1.6MPa者 壳体板厚大于25mm者 钢材标准规定的最低抗拉强度Rm>540MPa或合金元素含量大于3%的低合金钢。 设计温度低于-40℃者。 C.无损检验方法和评定标准应符合下列要求 对接接头的射线检测按《承压设备无损检测》的规定进行。射线照相的质量应不低于AB级,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测) 焊接接头的超声检测按《承压设备无损检测》的规定进行,无论100%检测及局部检测均应不低于Ⅰ级要求。 焊接接头的TOFD检测《承压设备无损检测》的规定进行,焊缝质量不低于Ⅱ级为合格(100%检测及局部检测)。 4. 磁粉或渗透检测 10.3.1中低温容器上的A、B、C、D、E类焊接接头,缺陷修磨或补焊处的表面,卡具和拉筋等拆除处的割痕表面。(GB150-2011) 设计温度低于-40℃的低合金钢制低温压力容器上的焊接接头。(TSG R0004-2009) 低温压力容器下列部位应按《承压设备无损检测》进行表面磁粉检测或表面渗透检测。(HG/T20585-2011) a.符合本标准第8.7.1条的对接接头,但无法进行射线或超声检测者。 b.符合本标准第8.7.1条的容器壳体上的C类、D类焊接接头以及附件焊接的角接接头、填角焊缝的可及表面。 c.钢材标准规定的最低抗拉强度Rm>540Mpa的高强度钢容器上的全部焊接接头及热影响区表面。 d.受压壳体上工装卡具、拉筋板等临时附件拆除的焊痕表面,焊补前的坡口及焊补的表面以及电弧擦伤处。设计压力大于或等于1.60Mpa,且设计温度低于-40℃的设备法兰用紧固件材料为铁素体钢时,应逐件进行磁粉检测。(HG/T20585-2011)

1、压力容器用的金属材料的专业性要求

压力容器用的碳钢、低合金钢的基本要求 1钢材生产基本知识 1.1现代钢铁生产流程:高炉炼铁→铁水预处理→氧化转炉炼钢→炉外精炼→浇铸→钢胚(钢锭)加热→轧制→热处理→产品。 1.2炼钢炉 GB150规定压力容器用钢必须由平炉、电炉、氧化转炉三种炉型炼的钢。现代化大生产炼钢主要采用氧气转炉、电弧炉、电渣炉、感应炉。 1.3炉外精炼 为了提高钢材内在质量,现代最常用钢包脱气技术。 1.4脱氧技术 根据脱氧程度,可分为镇静钢、半镇静钢、沸腾钢。石化行业用的压力容器必须用镇静钢制造。 1.5钢材分类 常用钢材有五种 a.按化学成分分类为:碳素钢、合金钢(低合金钢、中合金钢、高合金钢)。 b.按品质分类为:普通钢、优质钢、高级优质钢和特级优质钢。 c.按冶炼方法分类: 按炉别:氧气转炉钢、电炉钢。 脱氧程度:镇静钢、半镇静钢、沸腾钢。 d. 按金相组织分类: 退火钢、正火钢、调质钢;铁素体+珠光体,铁素体钢,奥氏体,奥氏体+铁素体。 e. 按用途分类:可分为建筑及工程用钢、结构钢、工具钢、特殊性能钢、专业用钢(压力容器用钢属于专业用钢,如Q345R)。 1.6钢材的热处理 a.退火: b.正火: c.淬火 d.回火

e.调质 f.固溶 g.稳定化 2定义 2.1碳素钢:含锰量≤1.20%,含碳量≤2.0%,且无有意添加其他合金元素的铁碳合金。低碳钢一般指含碳量≤0.25%的碳素钢。 2.2低合金高强度钢:以提高钢材强度和改善综合性能为主要目的。合金总含量≤3%(5%)以下的合金钢,如Q345R。 2.3珠光体耐热钢,以改善钢材耐热及抗氢性能为主要目的。加入适量铬、钼等合金元素的低碳珠光体耐热钢,1Cr-0.5Mo(15CrMoR)。 2.4低合金钢:低合金高强度钢和珠光体耐热钢的总称。 2.5不锈钢:公称含铬量≥13%,在大气中不锈的合金钢。常温下金相组织可分为铁素体不锈钢、奥氏体不锈钢、双相不锈钢、马氏体不锈钢。石化容器常用奥氏体不锈钢、双相不锈钢。 2.6奥氏体不锈钢:常温下金相组织为奥氏体的不锈钢,304、304L、316、316L。 2.7铁素体不锈钢:常温下金相组织为铁素体的不锈钢,如0Cr13、1Cr13、2Cr13。 2.8双相不锈钢:常温下各为50%(左、右)铁素体及奥氏体不锈钢,如00Cr18Ni5Mo3Si2。 3一般规定 3.1钢材(板、管、型材、锻件)的化学成分,机械性能及规格应符合现行国家标准、行业标准。 3.2压力容器用钢材应符合GB150的要求,接受“容规”的监察 3.3主要受压元件(及与受压元件焊在一起非受压元件)必须有钢厂质量证明书。材料证明书的内容必须齐全、清晰,加盖材料生产单位质量检验章。 3.4在材料明显部位作出清晰、牢固的钢印标志,至少应包括材料制造标准、代号、材料牌号及规格、炉(批)号、国家安全监察机构认可标志、材料生产单位名称及检验印鉴标志。 4选材一般原则 4.1选择石化容器钢材必须考虑压力容器的操作条件(如设计压力、设计温度、介质特性)、材料的可焊性、冷热加工性、热处理及容器的结构特点等。

奥氏体不锈钢压力容器的制造特点

奥氏体不锈钢压力容器的制造特点 发表时间:2019-08-07T10:29:33.610Z 来源:《基层建设》2019年第15期作者:陆晾晾[导读] 摘要:自21世纪以来,我国不锈钢产量一直在上升。江苏省特种设备安全监督检验研究院江苏南京 210000摘要:自21世纪以来,我国不锈钢产量一直在上升。随着不锈钢总产量的增加,奥氏体不锈钢的比例逐渐上升,占总产量的三分之二以上。这种变化导致奥氏体不锈钢血管在压力下的价格上升。虽然提高奥氏体不锈钢流动性材料的强度,但可以节省材料以达到奥氏体不锈钢压力容器的目标。 关键词:奥氏体不锈钢压力容器;制造特点;前言:随着科学技术的快速发展,经济和社会压力容器钢应用在许多领域取得的成果和显著的需求:压力容器设备,核能,石油和天然气产量不断增加,但在大型压力容器金属材料需求较高,尤其需要特殊条件下压力升高。设备的可靠性,制造成本很高。最广泛使用的低温压力容器从奥氏体不锈钢,但由于奥氏体不锈钢材料本身具有低抗弯强度,如果按照现有的设计标准,这可能引起奥氏体不锈钢钢钢材料,具有负载特性不能完全披露,同时生产成本相对较高,轻型建筑是解决奥氏体不锈钢压力容器问题的主要方法。 一、奥氏体不锈钢压力容器 1.奥氏体外壳是不锈钢的。在最初的压力下,被两个半圆球体连接起来,这些球体是由两个半圆球体的两端连接起来的。这种设计的好处是,当一个变形和放大的过程发生时,压力容器的所有部分都有相同的力,使球均匀膨胀,从而不会对压力容器本身造成太大损害。弯曲放大技术的一个特点是它很容易改变容器的形状。因此,当变形增强技术开始对奥氏体不锈钢材料起作用时,压力下的几乎都是由盖子和圆柱体构成的。在不同的压力条件下,压力容器的最大变形通常发生中部。温度变形的模型是在温度下从奥氏体不锈钢中增加压力。具体的执行过程是在马鞍压力下加固奥氏体不锈钢容器,然后将水倒进容器中,最后将增压泵与奥氏体不锈钢的一端连接起来。在执行加压规则时,确保保持压力,直到奥氏体不锈钢外壳完全变形,然后移除。因此,这些环境要求在一定程度上限制了奥氏体不锈钢压力下变形模式的传播。 2.奥氏体不锈钢压力容器的测控方法。奥氏体压力容器的测量和控制方法是在高温变形模式下由不锈钢制成的不锈钢。奥氏体不锈钢压力容器通常通过电压控制。根据高压下的压力,计算出特定的适应压力,并通过多任务自动化控制系统来控制这一过程。这个系统不仅减少了对手工管理经验的依赖,而且在一定程度上提高了处理效率。(2)在低温变形模式下,用不锈钢测量和控制压力容器的方法。在压力下,由不锈钢制成的通常使用直径控制方法。因为这个过程必须考虑问题,恢复弹性模内径必须最大直径奥氏体不锈钢压力容器,所以当奥氏体不锈钢压力容器壳体上,最明显的部分变形接触模具,然后固定具体值压力在此刻。随着制造技术的发展,不锈钢的压力产生了一个二维尺寸控制系统。这种控制不仅简化了制造过程,而且调节了模具的大小,还制造了一系列直径不同的容器。 二、奥氏体不锈钢压力容器的制造特点 1.奥氏体不锈钢材料易受铁离子、氯离子、碳钢或低合金钢的污染。奥氏体不锈钢具有良好的耐蚀性,这与它的铬含量有关:当铬含量达到10.5%-12%时,可以在合金表面形成致密的保护性钝化膜;钝化膜一旦被破坏,由于局部铬含量较低,使钝化膜难以修复,其耐蚀性会降低甚至丧失。如果奥氏体不锈钢与铁离子接触,铁离子就会吸附在钝化膜上,形成电偶电池,造成电偶腐蚀。当奥氏体不锈钢与氯离子接触时,在氯离子的作用下,钝化膜容易被破坏,具有较强的穿透性。奥氏体不锈钢表面形成许多细小的腐蚀坑。这些腐蚀坑会加剧奥氏体不锈钢耐腐蚀性能的下降。如果奥氏体不锈钢与碳钢或低压钢直接接触,碳钢钢和低压钢很容易在空气中生锈,高铁离子腐蚀可能导致奥氏体不锈钢。还有一种理论认为,碳钢或低合金钢颗粒,粘在奥氏体不锈钢表面,会导致奥氏体不锈钢腐蚀。在处理奥氏体不锈钢污染时,企业必须:必须有奥氏体不锈钢、管道、填充物、零件、半成品、特殊存储设施的成品,不得与锈蚀、碳钢、低压钢等接触。必须有一种特殊的奥氏体外壳,在车间压力下不锈钢容器;生产环境必须干净、严格控制灰尘;生产车间必须使用地面上的水泥,净化土地必须集中和干燥,作为单一的地面清洁设备。在生产过程中,不锈钢表面应避免在焊接或切割前受到损害,不锈钢表面可喷洒,应涂上防污涂层或涂层。奥氏体不锈钢不锈钢应专门用于自动等离子切割,以避免碳钢切割、低压钢、钢瓶和内支架必须由奥氏体不锈钢制成。悬架夹应使用带有聚氨酯夹子的不锈钢特殊装置;运输平台必须有奥氏体不锈钢外壳或叉子外壳;水压试验水泵必须由不锈钢奥氏体制成;焊接夹具必须由铜夹具(不使用碳钢夹具)制成。 2.缝合线有很大的弯曲,容易发现热裂纹缺陷和应力腐蚀,晶体间腐蚀,低温脆弱性。奥氏体不锈钢的热力学特征:小热传导系数,大线性膨胀系数。奥氏体不锈钢的热传导率约为碳钢的31%。奥氏体不锈钢缝合的组织有一个特点:大谷物具有更大的方向性,对磷和硫磺的分离非常有利。这种缝合线织物的特性,以及增加焊接电压的叠加,使得奥氏体不锈钢在焊接过程中很容易造成热裂纹缺陷。此外,焊接电压升高的特性为压力下容器的腐蚀提供了必要的条件(也称为应力腐蚀)。奥氏体不锈钢外壳的不锈钢外壳广泛应用于氩弧焊、熔剂层焊接和小洞等离子弧焊。铜管接头纵向对接焊接应使用带有铜垫圈、冷却水循环和夹子的焊接机,这些焊接对热传导和操纵都非常有用。如果条件允许的话,鼓后纵向焊接和环形焊接,选择低顶点等离子电弧焊接技术、低强度焊接、高质量、高效率无疑是最佳选择;快速焊接参数和多层技术。封闭环内焊接不需要内部焊接或保护内部气体,通常需要单手弧形弧焊,使用永久内衬环。 3.由于不锈钢焊接管狭窄、直径、长度、周长、轴向角、直角、管孔位置等,不锈钢不锈钢产生的不锈钢血管很容易发现几何偏差的缺陷。然而,局部尺寸的偏差也会使压力容器很难组装,很容易被强大的装置引起。为了实现部分之间的平等,容器的压缩元素的组装不应该是困难的。坚固的装配是用锤子、千斤顶等工具组装的。强大的组装损害了材料的性能,增加了组装和焊接的剩余电压。因此,规则和技术标准限制了硬组装。为了应对焊缝变窄,减少焊缝的几何偏差,避免大规模组装,制造商必须采取以下措施:通过测试不同焊接过程和参数的强度和厚度,在不同的焊接过程和参数中,根据一定的挤压量和拖把量,保留足够数量的焊接接缝收缩。纵向焊接后的鼓段应使用卷饼机进行第二次圆形,减少环的椭圆和角度;在质量控制方面,必须严格控制主要几何尺寸;只有确认尺寸符合蓝图要求,才能进行后续组装;不应该用大锤,上面有千斤顶的压力来组装;不锈钢锤子和用于冷工作的木制锤子必须控制在8磅以下。结束语:高变形不锈钢材料的处理可以在一定程度上节省材料,减少运输和制造塔拉的能源损失。特别是,更容易实现技术温度上升模型。压力容器是一种特殊的设备,具有更安全、更危险的性质。奥氏体不锈钢外壳,企业必须掌握不锈钢容器的不锈钢,采取有效的战略,确保奥氏体不锈钢的制造和使用质量和安全。参考文献:

不锈钢压力容器的焊接技术

不锈钢压力容器的焊接技术 一、压力容器用不锈钢及其焊接特点 所谓不锈钢是指在钢中加入一定量的铬元素后,使钢处于钝化状态,具有不生锈的特性。为达到此目的, 其铬含量必须在12%以上。为提高钢的钝化性,不锈钢中还往往需加入能使钢钝化的镍、钼等元素。一般 所指的不锈钢实际上是不锈钢和耐酸钢的总称。不锈钢并不一定耐酸,而耐酸钢一般均具有良好的不锈性能。 不锈钢按其钢的组织不同可分为四类,即奥氏体不锈钢、铁素体不锈钢、马氏体不锈钢、奥氏体-铁素体双相不锈钢。 1.奥氏体不锈钢及其焊接特点 奥氏体不锈钢是应用最广泛的不锈钢,以高Cr-Ni型最为普遍。目前奥氏体不锈钢大致可分为Cr18-Ni8型、Cr25-Ni20型、Cr25-Ni35型。奥氏体不锈钢有以下焊接特点: ①焊接热裂纹奥氏体不锈钢由于其热传导率小,线膨胀系数大,因此在焊接过程中,焊接接头部位的高温停留时间较长,焊缝易形成粗大的柱状晶组织,在凝固结晶过程中,若硫、磷、锡、锑、铌等杂质元素含量较高,就会在晶间形成低熔点共晶,在焊接接头承受较高的拉应力时,就易在焊缝中形成凝固裂纹,在热影响区形成液化裂纹,这都属于焊接热裂纹。防止热裂纹最有效的途径是降低钢及焊材中易产生低熔点

共晶的杂质元素和使铬镍奥氏体不锈钢中含有 4 %?12%的铁素体组织。 ②晶间腐蚀根据贫铬理论,在晶间上析岀碳化铬,造成晶界贫铬是产生晶间腐蚀的主要原因。为此,选择 超低碳焊材或含有铌、钛等稳定化元素的焊材是防止晶间腐蚀的主要措施。 ③应力腐蚀开裂:应力腐蚀开裂通常表现为脆性破坏,且发生破坏的过程时间短,因此危害严重。造成奥氏体不锈钢应力腐蚀开裂的主要原因是焊接残余应力。焊接接头的组织变化或应力集中的存在,局部腐蚀介 质浓缩也是影响应力腐蚀开裂的原因。 ④焊接接头的b相脆化b相是一种脆硬的金属间化合物,主要析集于柱状晶的晶界。Y相和S相都可 发生b相转变。比如对于Cr25Ni20型焊缝在800'C?900'C加热时,就会发生强烈的丫转变。对于铬镍型奥氏体不锈钢,特别是铬镍钼型不锈钢,易发生S T b相转变,这主要是由于铬、钼元素具有明显的 b化作用,当焊缝中S铁素体含量超过12%时,S T b的转变非常显著,造成焊缝金属的明显的脆化,这也就是为什么热壁加氢反应器内壁堆焊层将S铁素体含量控制在3%?10%的原因。 2.铁素体不锈钢及其焊接特点 铁素体不锈钢分为普通铁素体不锈钢和超纯铁素体不锈钢两大类,其中普通铁素体不锈钢有Cr12~Cr14型, 如00Cr12、0Cr13AI ; Cr16~Cr18 型,女口1Cr17Mo; Cr25~30 型。 由于普通铁索体不锈钢中的碳、氮含量较高,故加工成形及焊接都较困难,耐蚀性也难以保证,使用受到 限制,在超纯铁素体不锈钢中严格控制了钢中的碳和氮总量,一般控制在0.035 %~0.045 %、0.030 %、 0.010 %~0.015 %三个层次,同时还加入必要的合金元素以进一步提高钢的耐腐蚀性和综合性能。素体不 与普通铁锈钢相比,超纯高铬铁素体不锈钢具有很好的耐均匀腐蚀、点蚀及应力腐蚀性能,较多的应用于石 化设备中。铁素体不锈钢有以下焊接特点:

低温压力容器制造工艺规程

文件编号 无锡汉英机器制造有限公司生效日期 BE0702-32 低温压力容器制造工艺 2014-2-8 1.低温压力容器的制造,检验和验收,除应符合GB150.1~150.4-2011《压力容器》、HG/T20585-2011《钢制低温压力容器技术规定》和图样及技术要求外,还应符合本规定的有关要求。 2.钢材受压元件复验要求按GB150.2-2011的规定,复验合格后方可投入使用。 3.制造低温压力容器受压元件用钢材(不包括锻件)应进行低温冲击韧性试验,按GB3531的规定,如需提高冲击功指示,应在设计文件中注明。如钢材质量证书中缺少低温夏比(V型缺口)冲击试验数据,低温冲击韧性试验需按规定加倍复验。 4.用于制造低温压力容器壳体、凸形封头和球壳的钢板,厚度大于20mm时,需按JB/T4730.3-2005《承压设备无损检测》标准进行超声波探伤,且不低于Ⅱ级(调质状态板材除外)。用于低温压力容器筒体的无缝钢管逐根检查。 5.不采用热加工,也不进行消除应力热处理的低温受压元件,不得采用锤出等强制手段进行成形或组装。不得在受压元件上刻或敲打钢印。材料和件号标记应用记号笔书写。焊工记录绘图标明,并随质量证书一同出厂。 6.钢板及钢管不得冷态下钢锤敲打成形或校形。若需在冷态下成形或校形必须采用胎具缓慢变形,或用木锤、橡皮锤轻打,并需对其变形率(纤维伸长率)加以控制,各种材料允许的冷加工变形率如下: (1)含Ni量<1.5%的铁素体合金钢和碳素钢,冷加工变形率应≤2%(钢板)、≤5%(钢管)。 (2)含Ni量≥1.5%以铁素体镍合金钢,冷加工变形率应≤5%,变形率>2%时,必须进行时效冲击试验(变形率5%)。 (3)对于CrNi奥氏体不锈钢,冷加工变形率应≤10%。材料的加工变形率超过上述允许值时,必须采用热成形或冷成形后消除应力热处理,热成形的终压温度不得低于材料的再结晶温度。对奥低体不锈钢材料应进行固溶或稳定化处理。 7.坯料热成形前的加热,必须在均热炉内进行,不得采用焦炭火焰直接加热。材料在加热过程中若出现合金元素烧损,金属组织破坏(无法通过热处理恢复)或表面龟裂,应予报废。 8.规定正火状态使用的材料,必须采用正火工艺控温热成形或热成形后重新正火处理。铬镍奥氏体不锈钢,热成形后,必须淬火(固溶)处理。 9.对焊法兰应采用无缝的锻制或轧制工艺生产,不允许采用厚钢板切割而成。但允许采 用型钢或钢板弯曲焊接而成。如采用钢板弯制,应将钢板沿轧制方向切成条形,弯曲时应使钢板表面平等于法兰的中心线,同时还必须对钢板进行超声波探伤,不得存在分层缺陷。 10.低温压力容器施焊前应按NB/T47014进行焊接工艺评定试验,包括焊缝和热影响区的低温夏比(V形缺口)冲击试验。 11.低温压力容器受压元件材料为铁素体钢,属下列情况之一者,焊接坡口焊前必须经磁粉探伤检验: (1)合金元素含量大于3% (2)钢材料标准规定的最低抗拉强度δb>540MPa的低合金钢,其焊接坡口采用火焰切割或碳 弧气刨者。(此时并要求在坡口三倍焊缝宽度范围内的钢板表面应作超声波探伤,且无分 层缺陷存在)。 12.引弧须采用引弧板或在坡口内引弧,不得在非焊接部引弧。 13.焊装附件或工卡上、拉筋等必须使用壳体焊接材料相同的焊接材料和焊接工艺、由合格的正式焊工施焊、焊道长度不得小于50mm。 14.焊接区域内,包括对接接头的角接接头的表面,不得有裂纹、气孔和咬边等缺陷,不应有急剧的形状变化,呈圆滑过渡。

低温压力容器应力计算

15、内容器与外壳支承应力计算和校核: 15.1、内容器支撑承受载荷计算 15.1.1内容器支撑承受静载荷 满载时内容器及其附件质量为m=27722Kg G=2.72X105 N 15.1.2内容器支撑承受动载荷 支座承受的力向上:1G (由上部四个支撑承受) 向下:2G (由下部四个支撑承受) 轴上:2G (由右端四个支撑承受)由此可知:下部四个支撑承受的力最大。 15.1.3支撑选用环氧玻璃管,材料性能如下: 压缩强度:180MPa;拉伸强度:180MPa; 下部支撑环氧玻璃管承受向下载荷为: P轴=2G cos30°/4=1.20×105N P切l=2G sin30°/4=0.69×105N 选用的环氧玻璃管尺寸为:φ180×20×102(L) 环氧玻璃管截面积为:A=π(D2-d2)/4=10053mm2 抗弯截面模量为:W=π(D4-d4)/(32×D)=363028mm3 弯矩为:M1=P切1×L=73.14×105N·mm 弯曲应力为:σb=M1/W=20.15Mpa<[σb]=87.5 Mpa 满足要求 /A=6.86 MPa<[τ]=12 Mpa 剪切应力为:τ=P 切1 满足要求 /A=11.95 MPa<[σc]=75 Mpa 压缩应力为:σc=P 轴 满足要求 15.1.4 右部支撐环氧玻璃管承受轴向截荷为 P切2=2G/4=1.38×105N 右下部选用的环氧玻璃管尺寸为:φ180×40×102(L) 环氧玻璃管截面积为:A=π(D2-d2)/4=17593mm2 抗弯截面模量为:W=π(D4-d4)/(32×D)=518014mm3

弯矩为:M 2=P 切2×L=1.41×107 N ·mm 弯曲应力为:σb =M/W=30.62Mpa <[σb ]=87.5 Mpa 满足要求 剪切应力为:τ=2 22 1切切P P +/A=8.8MPa <[τ]=12 Mpa 满足要求 压缩应力为:σc =P 轴/A=6.82MPa <[σc ]=75 Mpa 满足要求 15.2 内容器筒体应力计算 内容器筒体可视为承受均布载荷的两支撑点的外伸梁,其最大弯矩位于容器支承处 的截面上或圆筒中间处的截面上。 15.2.1 圆筒轴向弯矩计算 圆筒中间处截面的弯矩: 4/}/4)3/41/(]/)(21{[1222L A L h L hi Rm RL M i -+-+= mm N 1086.4954/}9200/18254)92003/50041/(]9200/)5001008(21{[92001032.15 2225??=?-??+-+???= 式中:R ——支座反力 R =1.36X105N L ——圆筒长度(两封头切线之间的距离) L =9200mm R m ——圆筒的平均半径 R m =1008mm h i ——封头曲面深度 h i =500mm A ——支座形心至封头切线的距离 A =1825mm 支座处截面上的弯矩: )}3/41/(]2/)(/1[1{222L hi AL hi Rm L A RA M +-+---= mm N ??-=??+??-+--???-=5 2251044.582)}92003/50041(/]920018252/)5001008(9200/18251[1{18251032.1 15.2.2圆筒轴向应力计算 在圆筒中间处横截面上,由于压力及轴向弯矩引起轴向应力: a .最高点处 e m e m R M pR δδσ21114.3/2/-=

相关文档
最新文档