玩具材料中可迁移的三价铬与六价铬的同时测试——IC-ICP-MS法

玩具材料中可迁移的三价铬与六价铬的同时测试——IC-ICP-MS法
玩具材料中可迁移的三价铬与六价铬的同时测试——IC-ICP-MS法

玩具材料中铬(VI)和铬(III)的测定方法

IC-ICP-MS联用方法编制说明

1项目概况

1.1标准来源

本标准的制定是根据国家认证认可监督管理委员会2011年下达的检验检疫行业标准制订计划来进行的,标准计划编号为2011B117,标准项目名称为《玩具材料中铬(VI)和铬(III)的测定方法 IC-ICP-MS联用方法》,标准性质为推荐性。标准拟采用国际国外标准:无。

本标准由国家认证认可监督管理委员会提出并归口,由上海出入境检验检疫局负责起草。

1.2目的和意义

1.2.1项目背景

所有铬的化合物都有毒性,其中六价铬的毒性最大。六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。通过呼吸空气中含有不同浓度的铬化合物时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险。三价铬的毒性相对六价铬而言要小很多,但是毒性较小的三价铬和毒性剧烈的六价铬可以在一定条件下互相转化。这就是为什么欧盟玩具新指令2009/48/EC要对三价铬和六价铬的含量同时进行限制的原因。可以预见的是,欧盟开了同时限制三价和六价铬的先例之后,世界各国也将起而效仿,对于不同形态铬的限制将成为立法新趋势。

在欧盟新指令中,三价铬的最低限量为9.4mg/kg,六价铬限量低至0.005mg/kg。该指令的生效日期为2013年7月。至于检测方法,欧盟公布的EN71-3:2012的草案的推荐性附录中提供了LC-ICP-MS法供参考。目前国内尚无可供参考的三价铬和六价铬同时测试的标准方法,故建立一种简便、准确、可推广的同时测试三价和六价铬的标准方法刻不容缓。

1.2.2相关国内、国际标准及方法

1.2.2.1相关标准

对六价铬的检测,比较常见的为二苯碳酰二肼显色,分光光度法检测。所涉及的国内标准有GB/T 15555.4-1995 《固体废物六价铬的测定二苯碳酰二肼分光光度法》、GB/T 17593.3-2006 《纺织品重金属的测定第3部分:六价铬分光光度法》、GB/T 7467-1987 《水质六价铬的测定二苯碳酰二肼分光光度法》、GB/T 9758.5-1988 《色漆和清漆 "可溶性"金属含量的测定第五部分:液体色漆的颜料部分或粉末状色漆中六价铬含量的测定二苯卡巴肼分光光度法》、GB/Z 《21275-2007 电子电气产品中限用物质六价铬检测方法》、GB/T 22807-2008《皮革和毛皮化学试验六价铬含量》以及SN 0704-1997 《出口皮革手套中铬(VI)的检验方法》等等;国际方法为IEC 62321:2008《电子电器产品中限用物质含量的测定程序》、DIN EN ISO17075-2008 《皮革—化学试验—六价铬的测定》;也有离子色谱ICP-MS联用法,涉及标准为SN/T 2210-2008 《保健食品中六价铬的测定离子色谱-电感耦合等离子体质谱法》。而对于三价铬,目前国内尚无标准测试方法可供参考。我国儿童用品相关国家标准中,尚无三价铬和六价铬的同时测试的方法,因此有必要建立起一种方便、快捷、灵敏的,玩具材料中可迁移的三价和六价铬含量测试方法,以便更好应对国际趋势,为国内厂商提供可靠技术依据。

1.2.2.2相关文献

对于六价铬的分析,常见的有二苯碳酰二肼显色法。其原理为六价铬离子将显色剂中的二苯碳酰二肼氧化成苯肼羧基偶氮苯,而其本身被还原成三价铬;苯肼羧基偶氮苯与三价铬形成紫红色的化合物与六价铬的量成正比,生成的紫红色化合物,在波长540nm处有最大吸收。该方法的测定低限约为0.01mg/LCr(VI)[1]。

随着科学技术的发展,出现了液相色谱法、离子色谱法及各种联用方法测定六价铬和三价铬的报道。朱岩等人报道了一种液相色谱法同时测定Cr(VI)和Cr(III)的方法,该方法采用EDTA作螯合剂,与Cr(Ⅲ)生成稳定的Cr(EDTA)

2-[2];Jirasak等使-,用阴离子交换液相色谱法分离和检测Cr(EDTA)-和CrO

4

用EDTA络合Cr(III),在流动相中加入离子对试剂——辛基铵磷酸盐用于稳定Cr(VI),在此基础上开发了一种液相色谱法检测三价铬和六价铬的方法[3]。方

法检出限为Cr(III)0.02mg/L,Cr(VI)0.3mg/L;Ramajeevan G.等报道了一种使用净化技术去除水中还原性物质(尤其是染料)后,使用离子色谱法测试环境水体中六价铬含量的方法[4]。李静等建立了一种牛奶中三价铬和六价铬的同时提取和检测方法[5]。该方法使用吡啶二羧酸(PDCA)对三价铬进行柱前衍生,使用二苯碳酰二肼进行柱后衍生,利用吡啶二羧酸铬和苯肼羧基偶氮苯铬在可见光区的吸收来进行检测。三价铬和六价铬的定量下限为77.5g/L以及1.3g/L。该方法随后被应用于快速溶剂萃取-离子色谱法(紫外检测器)同时测定塑料中三价铬和六价铬 [6],报道的仪器检出限为Cr(VI)0.5g/L,Cr(III)5.0g/L。

为了达到更加灵敏和快捷的目的,三价铬和六价铬的形态分析引入了多种新型联用技术,如高效液相色谱-ICP-MS联用法和离子色谱-ICP-MS联用法等等。

Andrle等人使用二硫代吡咯铵(APDC)与废水中Cr(III)及Cr(VI)结合成不同的化合物,并用固相萃取技术富集样品后,使用ICP-MS法及石墨炉法进行测试。检出限可达g/L 级[7];上世纪,有人在阳离子保护柱串联阴离子交换柱上分离了Cr(III)和Cr(VI),并用ICP-MS进行检测[8]。为了最大限度地降低两种价态铬之间的互相转换,样品(水产品)的前处理时间被尽量缩短,且浸提液选择了稀硝酸。方法检出限为Cr(III) 0.3g/L,Cr(VI) 0.5g/L;也有文献报道,使用离子色谱分离铬的两种形态时,在样品中加入EDTA与Cr(III)络合能够更好地在稳定三价铬[9] 。

1.2.2.3欧盟方法

欧盟玩具标准草案的附录中,提供了一种LC-ICP-MS法作为玩具材料中可迁移三价和六价铬含量测试的参考方法。该方法的原理是,玩具材料使用0.07mol/L盐酸,在37℃下浸提2h后,先加入等体积0.07mol/L氨水调pH为7.1。此时认为溶液中的Cr(III)和Cr(VI)均是稳定的。随后加入含有EDTA的流动相对样品溶液进行稀释。混合液在50℃下稳定1h,使EDTA络合三价铬形成阴离子。同时,流动相中还溶解了四正丁基铵盐(TBA),用于和带负电的三价铬和六价铬阴离子形成离子对,使之能够在反相色谱柱上实现分离。该方法也具有多个文献依据[10~12]。稳定后的样品溶液使用LC-ICP-MS法进行测试。该方法的定量下限为0.02g/L(三价铬和六价铬)。

1.2.2.4本标准方法

由于进行文献查阅的时候发现离子色谱进行三价和六价铬的形态分析是可行的,故而本标准采用离子色谱法进行测试,而不是液相色谱质谱法。这是由于1、标准草案中明确了当样品溶液的pH值被调至中性后,三价铬和六价铬在此介质中是稳定的,使用离子色谱进行测试,可以省去1h的络合过程,加快试验速度。2、标准草案上推荐的液相色谱方法,由于条件限制,所出的两个峰(代表三价和六价铬)间隔较短(30s),考虑到实际样品中如果含有大量的三价铬,存在三价铬的峰过大,影响到六价铬的峰的可能性。使用离子色谱法进行测试时,

由于两个目标离子形态完全不同(Cr3+和Cr

2O

4

2-或者Cr

2

O

7

2-),出峰时间相差较大,

能够避免上述情况发生。

1.3编制依据

1.3.1本标准方法是根据GB/T 1.1-2009《标准化工作导则第1部分:标准

的结构和编写规则》的要求进行编写。

1.3.2 EN71-3:2012《Safety of toys- Part3: Migration of certain

elements》(草案)。

1.3.3本标准方法以参照采用国内外有关文献为基础,经研究、改进和验证后

制定。

1.4方法概述

本标准方法用于需要进行EN71-3相关测试的分析样品,如玩具及玩具相关材料等等。样品经过盐酸溶液处理后获得样品溶液后,加入等量的氨水调pH为中性,再使用离子色谱-ICP-MS联用技术进行检测。

本标准方法对样品制备、样品前处理条件、色谱条件、ICP-MS条件、回收率试验、精密度试验以及方法验证试验进行了研究。结果表明,本标准方法科学合理、技术先进,既便于实验室检测,又完全满足国内外用户对检测限量的需要。

本标准方法中涉及的三价铬和六价铬的测试覆盖了欧盟玩具新指令中的法规要求。

2有关实验技术论证

2.1样品制备

参照GB6675-2003中的附录C.8-“测试试样的制备和提取”进行操作。一般样品的称样量不少于100mg,定容体积为称样量的50倍。如称样量不足100mg

时定容体积为5mL,且有关元素含量按称样量为100mg计算。样品量不足10mg 的不予测试。

样品加入0.07mol/L盐酸后,于37℃下振荡1h,静置1h。所得样品溶液经过滤(或者超声)后备用。

2.2仪器和试剂

Dionex ICS-3000离子色谱仪 (美国Dionex公司);IonPac AG17C季铵型离子交换保护柱(4 mm×50 mm,美国Dionex公司);Thermo X Series II电感耦合等离子体质谱仪(ICP-MS, 赛默飞世尔科技)。

所用盐酸和氨水均为优级纯(国药),高纯水(18.2 MΩ?cm)由Milli-Q 纯水器 (美国Millipore公司) 制得。Cr(III)标准溶液浓度为1000mg/L,购自美国NSI Solutions公司。Cr(VI)标准溶液浓度为100mg/L,购自国药。

2.3实验步骤

将处理好的样品溶液与0.07mol/L氨水按1:1的比例混匀,如出现沉淀,则使用定性慢速滤纸过滤后,进样。所用仪器设备参数见下表:

表1 仪器设备工作参数

离子色谱(Dionex ICS-3000)

离子色谱柱IonPac AG 17C(保护柱)

淋洗液0.07mol/L NH4Cl

流速0.8 mL min-1

进样体积100 μL

ICP-MS(Thermo X Series II)

正向功率1300 W

冷却气流量13 L min-1

辅助气流量0.8 L min-1

雾化气流量0.86 L min-1

碰撞气7 % H2 / He

碰撞气流量 2.4 L min-1

驻留时间300 ms

同位素52Cr

2.4优化实验

2.4.1流动相的选择

试验所用离子交换柱的树脂为强碱性阴离子交换树脂,在中性溶液中,三价

铬为正离子,在柱上基本不保留。六价铬为负离子,能够在柱上保留,并应使用酸性洗脱液进行洗脱。参照欧盟EN71-3:2012的附录中提供的前处理方法,样品溶液是使用0.07mol/L 盐酸进行提取,并使用等体积等浓度的氨水溶液调节pH 为中性。为了防止因为环境的变化导致的Cr (VI )和Cr (III )的浓度变化,本方法使用0.07mol/L NH 4Cl 溶液作为流动相。 2.4.2 谱峰确认

分别配制了20μg/L ,0.07mol/L NH 4Cl 介质中的Cr(III)标准溶液、Cr(VI)标准溶液以及Cr(III)和Cr(VI)的混合标准溶液,使用0.07mol/L NH 4Cl 溶液作为淋洗液,进行谱峰确认。

050100150200250300

I n t e n s i t y

Time sec

D C B A

Cr(III)

Cr(VI)

图1. 标准溶液与空白溶液的色谱图,其中A :0.07mol/L HCl 空白溶液;B :20μg/L 的Cr(III)溶液;C :20μg/L 的Cr(VI)溶液;D: 20μg/L 的Cr(III)和Cr(VI)混合溶液。淋洗液为0.07mol/L NH 4Cl ,流速为0.8mL/min ;质荷比m/z=52。

由图1,三价铬单标对应第一个峰,出峰时间为44.8s ;六价铬单标对应第二个峰,出峰时间为238.8s ;两种离子的混标出峰能够与两种离子的单标溶液出峰情况相对应。

同时,作相同溶液在不同质荷比下的质谱强度。结果如下图:

5.0x10

1.0x10

1.5x10

I n t e n s i t y

Time sec

图2.Cr(III)和Cr(VI)在m/z=52以及m/z=53下的色谱图。

52Cr 和53Cr 的丰度比约为8.8:1。由图2,质荷比为52与53的峰强度比例接近该比例。由图1和图2,确认了Cr(III)和Cr(VI)的出峰——第一个峰对应三价铬,第二个峰对应六价铬。

另外,观察空白溶液和Cr(VI)标准溶液的色谱图,可以发现在45s 左右,存在一个小峰干扰。这是氯元素的多原子离子干扰,来自于盐酸溶液中的氯离子。 2.4.3 干扰去除

可能影响到Cr(III)峰的氯元素的多原子离子包括双原子离子

35

Cl 16O +和

37

Cl 16O +,以及三原子离子

35

Cl 16OH +和

37

Cl 16OH +。我们在试验中使用了碰撞反应池

(CCT )技术,用7 % H 2/He 的碰撞反应气将这些多原子离子撞开以去除干扰。实验过程中对碰撞反应气流量进行了优化。

由于0.5μg/L 的Cr 水溶液与0.07mol/L NH 4Cl 空白溶液在m/z=52的信号强度接近,所以使用0.5μg/L 的Cr 水溶液做标准信号参照,逐步调大碰撞反应气流量,观察0.07mol/LNH 4CL 溶液背景信号的变化。由图3,碰撞反应气流量的增加能够显著降低背景信号,这意味着多原子离子的减少。故而,加大CCT 气流量有利于去除干扰。当碰撞气流量达到2.4L/min 时,背景信号衰减了90%左右。可以认为,此时干扰已基本去除完全,此时背景信号强度约为Cr 信号强度的1/8。为了在不影响灵敏度的前提下尽量减小多原子离子的干扰,最终选定碰撞气流量为2.4L/min 。

2.0x10

4.0x106.0x108.0x101.0x101.2x10

1.4x101.6x101.8x10I n t e n s i t y

CCT gas flow (L/min)

图3. CCT 碰撞气流量优化图

2.4.4 pH 环境

Cr(VI)在酸性环境下易被还原为Cr(III),而Cr(III)在碱性环境下易生成氢氧化铬沉淀。为了保证提取试验结束后,提取液中Cr(III)和Cr(VI)是处于稳定状态的,必须让提取液处于适当的pH 值环境。使用氨水微调Cr(III)和Cr(VI)的0.07mol/L HCl 溶液,考察其信号强度变化。由图4,在

pH5.5~7时,Cr(VI)和Cr(III)基本稳定,当pH 值为8时,Cr(III)信号大幅下降,这意味着Cr(III)开始沉淀。至pH 值为9时,Cr(III)信号下降趋势变缓,说明沉淀基本完全。对于Cr(VI)来说,在整个优化试验的pH 范围内,其信号都较为稳定。参考试验结果,Cr(III)和Cr(VI)均稳定存在的pH 范围为5.5~7.0。欧盟玩具标准要求样品溶液调节pH 值为中性后进样,故本方法最终选择pH 值为7.0。

3x10

4x10

5x10

6x10

I n t e n s i t y

pH

图4. 不同pH 环境中的Cr(VI)和Cr(III)信号强度变化。

2.5 线性关系和检出限 2.5.1 线性关系

使用0.07mol/LNH 4Cl 配制两套Cr(VI)和Cr(III)的混和标准溶液。其中第一套标准溶液中Cr(VI)的浓度为0,0.05,0.20,0.50,1.0,2.0,5.0μg/L ;Cr(III)的浓度为0,0.25,0.50,1.0,2.0,5.0μg/L ;第二套标准溶液中Cr(VI)和Cr(III)的浓度为0,5,10,25,50,75,100μg/L 。Cr(VI)和Cr(III)的响应值与浓度均成良好线性关系。

1x10

2x103x10

4x10I n t e n

s i t y

Cr(III) Concentration μg/L I n t e n s i t y

Cr(VI) concentration μg/L

图5a. Cr(III)与Cr(VI)的标准曲线,浓度范围为0.05~5μg/L (第一套标准溶液)

2.0x10

4.0x106.0x10

8.0x101.0x10I n

t e n s i t y

Cr(III) concentration μg/L 2.0x10

4.0x10

6.0x10

I n t e n s i t y

Cr(VI) concentration μg/L

图5b. Cr(III)与Cr(VI)的标准曲线,浓度范围为5~100μg/L (第二套标准溶液)

表2. 三价铬和六价铬的线性方程

元素 同位素

线性方程 浓度范围 相关系数 Cr(III)

52

Cr

y=80692x+9765 y=85334x-18045

0.5~5μg/L 5~100μg/L

0.9996 0.9999

Cr(VI)y=66040x-1015

y=68861x-381580.05~5μg/L

5~100μg/L

0.9997

0.9999

2.5.2检出限

使用0.07mol/L NH

4

Cl空白溶液重复进样7次,对25~60s以及200~260s区域进行积分,记录七次峰面积,取平均值。该值的三倍在标准曲线上的对应浓度为检出限。

表3. Cr(III)与Cr(VI)的检出限

元素空白峰面积平均值

检出限

(g/L)

(第一套标

准溶液)

检出限

(g/L)

(第二套标

准溶液)

Cr(III

)10021, 10658, 9996, 9371, 10778, 9531,

9430

99690.250.43

Cr(VI)326, 224, 316, 208, 316, 440, 164,3630.0210.56使用第一套标准溶液(浓度范围0.05~5g/L)计算检出限,得Cr(III)的

检出限为0.25g/L,Cr(VI)的检出限为0.039g/L。Cr(III)检出限偏高的原

因在于多原子离子导致的空白背景偏高。虽然此干扰可以通过大幅提高碰撞气流

量予以消除,但同时灵敏度也会有所下降。欧盟玩具指令中对于Cr(III)的最低

限量为9.4mg/kg。考虑到样品稀释倍数(100倍),本方法中Cr(III)的方法检

出限为0.025mg/kg,完全可以满足欧盟标准的要求。故而没有必要再进一步提

高碰撞气流量以降低空白。另外,本方法对于六价铬的检出限为0.0021mg/kg,

同样完全满足欧盟标准中最低达0.005mg/kg的要求。

使用第二套标准溶液(浓度范围5~100g/L)计算检出限,得Cr(III)的检

出限为0.43g/L,Cr(VI)的检出限为0.56g/L。第二套标准溶液适用于浓度

较高的待测样品。当标准溶液的浓度范围很大时,较低浓度的样品测试结果偏差

也会很大。为了保证实验数据精确,对于样品溶液,建议使用第一套标准溶液先

进行定量,如果测得结果高于第一套标准曲线最高点浓度,则更换第二套标准曲

线进行定量。

2.6精密度和回收率试验

2.6.1空白加标试验

配制0.5μg/L和10μg/L的Cr(III)和Cr(VI)的0.07mol/L的HCl溶液,

按照实验步骤进行处理后,并重复进样7次,计算精密度和空白加标回收率,结果如下:

表4. 空白加标试验的精密度和回收率

元素

浓度

(μg/L)

响应值RSD(%)

平均浓度

(μg/L)

回收率

(%)

Cr(III

)

0.331851, 29625, 27112, 27276, 29153, 26908 , 28582 6.170.2790.0 Cr(VI)0.320040, 21799, 22394, 19311, 18371, 19422, 212497.240.30100.0

Cr(III

)10

865562, 843278, 837807, 824290, 855673, 816577,

843370

2.019.9699.6

Cr(VI)10

673845, 632963, 645540, 670023, 653491, 663244,

672378

2.349.9499.4

总的来说,两个水平的添加均获得较好的回收率。低浓度水平添加时,响应

值的上下扰动较大,但当浓度升高后,响应值变得更加稳定。

2.6.2时间稳定性

众所周知,Cr(VI)在具有大量还原性物质的酸性环境中,会很快被还原成

Cr(III)。欧盟的玩具标准EN71-3:2012中规定,进行六价铬和三价铬测试的玩

具样本必须先进行酸浸提试验,这意味着如果样品中本来存在大量的六价铬,进

行酸浸提试验后,这部分的六价铬将被还原到一个低于原值的水平。为了考察三

价铬和六价铬在酸浸提过程中可能发生的变化,进行了时间稳定性试验。

配制20μg/L的0.07mol/L的HCl溶液介质的Cr(III)和Cr(VI)标准溶液,

进行70min的时间稳定性试验。同时,选择了一块棕色绒布作为样品,按照欧盟

玩具标准要求进行2h的浸泡试验后,取样品溶液,加入Cr(III)和Cr(VI)标准

溶液使其中的Cr(III)和Cr(VI)为20μg/L,同样进行时间稳定性试验。以Cr(III)

和Cr(VI)的0.07mol/L NH

4

Cl溶液为参照溶液。结果如下(响应值以百分比形式

呈现):

表5. 时间稳定性数据汇总

时间Cr(III)

0.07mol/L

HCl

Cr(VI)

0.07mol/L

HCl

Cr(III)

Sample

Solution

Cr(VI)

Sample

Solution

Cr(III)

0.07mol/L

NH

4

Cl

Cr(VI)

0.07mol/L

NH

4

Cl

0100.399.6100.0100.0100.0100.0

5100.898.9135.468.299.699.8 10101.698.0167.835.0100.399.2 20100.997.7197.6 4.3101.098.7 30102.495.6198.5n.d101.598.4 70112.890.2199.7n.d101.798.5

由表5,水中的Cr(III)和Cr(VI)在70min内几乎没有变化,这说明在中性且无还原性物质干扰的前提下,六价铬非常稳定,环境中还原性物质对其的还原效果在1h内可以被忽略不计;而在胃酸模拟液——0.07mol/L盐酸中时,前30min 内,即使在pH=1.2的高酸度环境中Cr(VI) 也几乎不会被空气中的氧气还原,仅有不到5%浓度降低。70min后,Cr(VI)的信号也只衰减至90%左右。这意味着,在没有强还原性物质存在时,即使在强酸性环境中,Cr(VI)也是基本稳定的;绒布类样品中通常含有大量染料物质,这类物质是强还原性的。在浸提试验过程中,此类强还原性物质对Cr(VI)造成了显著影响。所添加的20μg/L的Cr(VI)在5min 内衰减了30%左右,在20min内基本衰减完全,衰减速度极快。

从时间稳定性试验的数据来看,首先,Cr(III)和Cr(VI)的0.07mol/L标准溶液在测试过程中的浓度是稳定可靠的,能够作为定量的依据;其次,证明了在没有强还原性物质存在时,Cr(VI)在强酸性溶液中也是相对较为稳定的;最后,在实际样品溶液中,如果存在还原性物质,Cr(VI)的衰减是非常快速的,这将导致大量阳性样品在浸泡试验后无法检出六价铬的存在。欧盟方面在4月份的标准解读会议中明确说明,欧盟玩具标准关注的只是迁移入人体的六价铬的量,这意味着浸提试验无法跳过,样品中六价铬的总量并不是关注的焦点,重要的只是这些六价铬在2h后能够“迁移”入儿童体内多少。

2.7实际样品试验

为了验证本方法准确性,并且更直观地考察不同样品的浸提试验过程中六价铬共选择了油漆涂层、瓦楞纸板、透明塑料膜、黑色塑料、红色油墨、彩色说明纸、橡皮泥以及红色毛绒作为样品进行测试。其中红色油墨和瓦楞纸板为阳性样品。所有样品均进行加标试验。

样品按照2.1加入酸浸提液后,马上加入Cr(III)和Cr(VI)的混合标准溶液,并进行浸提试验。试验结束后,取5mL样品溶液,与5mL0.07mol/L氨水混合后,进离子色谱。同时,调节pH值后的样品按照IEC62321方法,使用二苯卡巴肼作为显色剂进行紫外分光光度法测试。为了考察2h浸提试验后,六价铬在样品溶

液中是否还存在快速氧化的现象,紫外光谱测试均先于离子色谱-ICP-MS联用测试1h进行。

表6. 实际样品数据汇总

样品加标量(μg/L)

Cr(III)/Cr(VI)实测(μg/L)

Cr(III)

平均值实测(μg/L)

Cr(VI)

平均值紫外-可见光谱数据

(μg/L)

回收率(%)

[实测Cr(III)+ 实测

Cr(VI)]/[加标量Cr(III)+

加标量Cr(VI)

油漆涂层200/200365.8, 370.6,

368.3, 372.9,

377.1

370.9n.d n.d n.d92.7

瓦楞纸板(阳性样品)0/0

0/20

100.3, 107.6,

101.5, 109.0,

110.7

110.6, 115.3,

114.6,

116.8, 110.2

105.8

113.5

25.7, 30.9, 28.4,

35.6, 29.3

49.8, 43.2, 44.9,

46.1, 53.7

30.0

47.5

37.3

39.8

87.5

塑料膜100/100107.6, 103.5,

106.8, 107.9,

107.2106.682.6, 82.4, 87.8,

83.5, 88.9

85.074.495.8

黑色塑料200/400332.6, 346.2, 333.8246.6, 255.4, 252.7265.697.8

320.4,

329.8, 340.1

244.3, 250.0, 267.1

红色油墨(阳性样品)0/0

0/50

209.4, 207.6,

200.1, 195.4,

217.3

212.9, 215.6,

218.3,

216.2, 219.2

206.0

216.4

183.9, 188.7,

195.3,

180.6, 175.3

239.0, 236.4,

238.1, 244.0, 230.3

184.8

237.8

191.3

249.6

106.0

彩色说明纸100/400488.6, 475.3,

477.9

483.7, 480.5

481.210.4, 8.9, 12.3,

9.3

11.8

10.6n.d98.4

橡皮泥100/200289.3, 291.6,

283.1,

295.5, 290.0289.9 5.9, 5.0, 4.3, 5.2,

6.5

5.4n.d98.4

红色毛绒100/400469.3, 476.4,

480.1,

466.5, 470.9472.619.2, 17.5, 20.6,

18.3

17.7

18.724.098.3

首先,这八种样品的六价铬含量的IC-ICP-MS测试数据均与紫外可见光谱数据匹配度良好,说明样品溶液在调节酸度和进样的过程中,六价铬并没有因为氧化而导致浓度降低。又考虑到IC-ICP-MS测试晚于紫外分光光谱法1h进行,证明本方法具有一定的时间容量,调节pH为中性后Cr(VI)和Cr(III)的浓度都不会有显著变化。

结合表5数据,在含有强还原性物质的样品溶液中加入六价铬,六价铬将被瞬间氧化。而表6的数据证明了这点——样品溶液中的还原性物质和样品中的六价铬在2h的反应过程中,能够达到一个相对的稳定状态,在这个环境中六价铬的浓度不会发生改变。

在这八种样品中,还原性以油漆涂层和红色毛绒为最强,将加入的六价铬标准样品完全氧化。其余样品加入标准溶液并进行浸提试验后,六价铬均存在残留,其中以塑料膜样品的六价铬残留程度为最大,达85%。

最后,考察样品的添加回收率数据,所有样品的回收率均在85~98%,这证明本方法能够准确地对样品中的三价铬和六价铬同时进行测定。

3实验室间验证

本方法经北京玩具检测中心,检科院,华测检测上海分公司,上海质检院以及必维检测公司五个实验室的技术人员进行了方法验证试验。测试样品为红色油墨,黑色塑料两种。验证原始数据见表7。

表7. 实验室间验证的原始数据

根据GB/T 6379.2—2004《测量方法与结果的准确度(正确度与精密度)第2部分:确定标准测量方法重复性与再现性的基本方法》,计算总平均值、重复性和再现性,结果见表8。

表8. 实验室间验证IC-ICP-MS法测试玩具材料中Cr(III)和Cr(VI)的精密度(μg/L)

参考文献

[1] IEC 62321:2008

Electrotechnical products-Determination of levels of six regulated substances (lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers).

[2]朱岩,朱利中,分析仪器,04(1997)50~53.

[3] Jirasak Threeprom, Sumalee Purachaka, Lamfa Potipan, Journal of Chromatography A, 1073 (2005) 291–295.

[4] Ramajeevan Ganeshjeevan, Raghavan Chandrasekar, Subramanian Yuvaraj, Ganga Radhakrishnan, Journal of Chromatography A, 988(2003) 151-159.

[5] 李静,王雨,陈华宝,梁立娜,食品科学,31(2010)250~253.

[6] 虞锐鹏,胡忠阳,叶明立,车金水,色谱,30(2012)409~413.

[7] C.M. Andrle , N. Jakubowski , J.A.C. Broekaert, Spectrochimica Acta Part B: Atomic Spectroscopy, 52 (1997), 189~200.

[8] Mari Pantsar-Kallio, Pentti KG. Manninen, Analytica Chimica Acta 318, (1996), 335~343.

[9] ZuLiang Chena, Mallavarapu Megharaj, Ravendra Naidu, Talanta 72(2007) 394~400.

[10]Ruth E. Wolf, Jean M. Morrison and Martin B. Goldhaber, Journal of Analytical Atomic Spectrometry, 22 (2007) 1051~1060.

[11] 王华建,黎艳红,丰伟悦,王萌,贾光,汪冰,朱墨桃,王云,柴之芳,分析化学, 37 (2009) 433-436.

[12] H.J. Wang, X.M. Du, M. Wang, T.C. Wang, H. Ou-Yang, B. Wang, M.T. Zhu, Y. Wang, G. Jia, W.Y. Feng,Talanta, 81 (2010) 1856-1860.

国标法测定水溶液六价铬

六价铬的测定二苯碳酰二肼分光光度法 Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method 1 适用范围 1.1本标准适用于地面水和工业废水中六价铬的测定。 1.2测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5氢氧化锌共沉淀剂 3.5.1硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg 六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0

传统六价铬与三价铬的利弊_1_

传统六价铬钝化工艺的优点与危害性 六价铬钝化工艺有很多优点,如很高的耐蚀性,自我修复耐蚀性的自愈能力,蓝白、五彩、军绿色、黑色等颜色,原料来源广泛而且价廉。 、三价铬钝化的紧迫性 欧盟于2003年在布鲁塞尔签署了一项法令,规定从2003年1月1日起禁止2g 1].2004年8月14日。欧盟《电子垃圾处理法》正式出台,2005年8月13 这一法规将正式开始实施。该法令是2002依据2002年欧盟的两个指令完成(WEEE)和《关于在电子 ROHS),要求成员国确保从2006年 月1日起,投放于市场的新电子和电器设备不包括含铅、汞、镉、六价铬、聚6种有害物质。法令还规定,所有在欧盟市场上生产和销 CPU、主板机、鼠标、键盘、手机 2005年8月13日以前,建立完整地分类、回收、复原、再生使用系 并负担产品回收责任。中国生产出口产品的必须在2004年8月13日后停止 、三价铬钝化机理与组成 传统六价铬的钝化膜是通过锌的溶解、铬酸根的还原以及三价铬凝胶的析出 而三价铬膜层是通过锌的溶解形成锌离子,同时锌离子的溶解造成锌表面溶PH值上升,三价铬直接与锌离子、氢氧根等反应,形成不溶性化合物沉淀 溶锌过程:Zn+Ox(氧化剂)Zn2++Ox(反应式1) Zn+2H+ Zn2++H2(反应式1a) 成膜过程:Zn2++xCr(Ⅲ)+y H2O ZnCrxOy+2YH+(反应式2) 溶膜过程:ZnCrxOy+2yH+ Zn2+ xCr(Ⅲ)+ y H2O(反应式3) 三价铬Cr(Ⅲ):钝化膜的主要成份来源,三价铬可取硫酸铬、硝酸铬、氯 醋酸铬等。氧化剂:产生锌离子,促使膜形成。氧化剂用双氧水、硝酸盐、PH的 会把三价铬氧化成六价铬,而夹杂于镀层中,从而使镀层含有六价铬, Mn、Sb、Mo、Ti、Fe、Co、Ni、 和其它镧系稀土元素。 NO3-、SO42-、-PO43-、F-、Cl-、SiO32-、SiF62-、 、RCOOH. 、三价铬钝化技术的进展 在锌上进行无六价铬钝化的研究工作已经进行了十几年,主要采用三价铬钝 2],目前这些无铬钝化体系虽然是无毒环保,但耐蚀性及外观没有六价铬 满足不了普通五金件电镀要求,更不用说满足汽车部件电镀的高耐蚀 所以无铬钝化的工艺未曾在工业上广泛应用过。因此,无六价铬钝化的技 该工艺已成熟应用于生产,正如现代的碱性无氰

六价铬的检测方法样本

六价铬的检测方法

目次 前言..................................................................... III 引言...................................................................... IV 1 范围 (1) 2 规范性引用文件 (1) 3 X射线荧光光谱法 (1) 3.1 原理 (1) 3.2 试剂和材料 (1) 3.3 仪器和设备 (2) 3.4 样品制备 (2) 3.5 分析步骤 (2) 3.6 结果分析 (3) 4 金属防腐镀层中六价铬定性试验 (3) 4.1 原理 (3) 4.2 试剂和材料 (4) 4.3 仪器和设备 (4) 4.4 样品制备 (4) 4.5 试验 (4) 5 金属防腐镀层中六价铬含量测定 (6) 5.1 原理 (6) 5.2 试剂和材料 (6) 5.3 仪器和设备 (6) 5.4 样品制备 (6) 5.5 分析步骤 (6) 5.6 结果计算 (7)

5.7 精密度 (8) 6 聚合物材料和电子材料中六价铬含量测定 (8) 6.1 原理 (8) 6.2 试剂和材料 (8) 6.3 仪器和设备 (9) 6.4 样品制备 (9) 6.5 分析步骤 (9) 6.6 结果计算 (10) 6.7 精密度 (11) 7 皮革材料中六价铬含量测定 (11) 7.1 原理 (11) 7.2 试剂和材料 (11) 7.3 仪器和设备 (11) 7.4 样品制备 (12) 7.5 分析步骤 (12) 7.6 结果计算 (13) 7.7 回收率和检出限 (14) 8 试验报告 (14) 附录A( 资料性附录) 紧固件镀层表面积计算方法 (15) A.1 紧固件表面积计算公式 (15) A.2 螺栓、螺母表面积计算数据 (15) 附录B( 规范性附录) 聚合物材料和电子材料中六价铬含量测定方法回收率的测定和检出限的确定 (18) B.1 回收率的测定 (18) B.2 检出限的确定 (18)

六价铬的测定方法(二苯碳酰二肼分光光度法)

GB/T 7467 六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml 容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.00μg六价铬。使用当天配制此溶液。

三价铬与六价铬的区别

三价铬与六价铬的区别 在电子产品中的用途:六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。有报道,通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险。 过量的(超过10ppm)六价铬对水生物有致死作用。实验显示受污染饮用水中的六价铬可致癌六价铬化合物常用于电镀、制革等动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。 [编辑本段]禁用范围 在欧盟,会致癌或突变的六价铬都不允许公开贩售。但电化学工业中铬酸被还原成CrO态(零价),而磁带工业则还原成CrO2。所以不影响电化学工业或磁带工业。 RoHS:该指令所规范的电机电子设备自2008年起不得含有六价铬。 以下除外吸收式冷藏柜冷却系统使用六价铬防腐蚀剂TCO’01- Mobile Phones:目前对六价铬尚无管制规范。 铬是一种银白色的坚硬金属。有二价、三价和六价化合物。 所有铬的化合物都有毒性,其中六价铬毒性最大。 铬的工业用途很广,主要有金属加工、电镀、制革行业,这些行业排放的废水和废气是环境中的主要污染源。 欧盟ROHS指令中,明文规定,六价铬含量不能超过0.1%(1000PPM,1PPM的含义:百万分之一) 在电子行业及各种金属加工行业中,六价铬一般都存在于作为处理用的溶剂中。 所以,虽然目前我国已经开始推行和欧盟指令配套的“中国ROHS”计划,但在实际操作上,是属于治标不治本的做法。 因为经过六价铬处理过的污水和废弃,还是在国内排放的。 而经过处理的产品,在技术上,完全可以达到没有任何六价铬残余的效果。 而这些金属加工、电镀、制革行业,整个行业的自律性和自律意识是十分差的。 如果真的按照废水排放的处理流程,这种废水废气的处理是需要很大一笔经费的。 在目前以短期效益为先的经济环境下,要求行业自律,简直是痴人说梦。 有很多号称国际大公司的单位,虽然相应了世界上环保运动的号召,但是在实际的操作上,却采取一种避重就轻的手法,使用了符合国际标准的产品,但却指定使用污染严重的技术。这难道不应该感到羞愧么? 作为政府,放任污染严重的企业在居民区周围排放工业废水,却没有丝毫的监督。 这种政府,是为民服务的政府么? 我们的公务员们,都去哪里了?!

六价铬的测定

实验六 六价铬的测定 一、实验目的 (1)学会六价铬的水样采集保存、预处理及测定方法。 (2)学会各种标准溶液的配制方法和标定方法。 二、概述 铬(Cr )的化合物常见的价态有三价和六价。在水体中,六价铬一般以- 24CrO 、HCrO - 4二种阴子形式存在,受水中pH 值、有机物、氧化还原物质、温度及硬度等条件影响,三价铬和六价铬的化合物可以互相转化。 铬是生物体所必需的微量元素之一。铬的毒性与其存在价态有关,通常认为六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且在体内蓄积。但即使是六价铬,不同化合物的毒性也不相同。当水中六价铬浓度为1mg/L 时,水呈淡黄色并有涩味,三价铬浓度为1mg/L 时,水的浊度明显增加,三价铬化合物对鱼的毒性比六价铬大。 铬的工业来源主要是含铬矿石的加工、金属表面处理、皮革鞣制、印染等行业。 三、水样保存 水样应用瓶壁光洁的玻璃瓶采集。如测总铬水样采集后,加入硝酸调节pH<2;如测六价铬,水样采集后,加NaOH 使pH 为8~9;均应尽快测定,如放置不得超过24h 。 四、干扰及清除 含铁量大于1mg/L 水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L 不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min ,可自行褪色。 氧化性及还原性物质,如:ClO —、Fe 2+、SO 32-、S 2O 32-等,以及水样有色或混浊时,对 测定均有干扰,须进行预处理。 五、方法的选择 铬的测定可采用二苯碳酰二胼分光光度法、原子吸收分光光度法和滴定法。清洁的水样可直接用二苯碳酰二肼分光光度法测六价铬。如测总铬,用高锰酸钾将三价铬氧化成六价铬,再用二苯碳酰二肼分光光度法测定。 六、测定方法(二苯碳酰二肼分光光度法) 1. 实验原理 在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色络合物,其最大吸收波长为540nm ,吸光度与浓度的关系符合比尔定律。反应式如下: 如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价,再用本法测定。 O =C NH —NH —C 6H 5 NH —NH —C 6H 5 二苯碳酰二肼 +Cr 6+→O =C NH —NH —C 6H 5 N = N —C 6H 5 苯肼羟基偶氮苯 +Cr 3+→紫色络合物

六价铬测定方法

C r6+的测定(二苯碳酰二肼分光光度法) 1.适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定。 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2.原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3.试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液。 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4·7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。

六价铬的危害

六价铬的危害 在电子产品中的用途:六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。有报道,通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险 过量的(超过10ppm)六价铬对水生物有致死作用。实验显示受污染饮用水中的六价铬可致癌六价铬化合物常用于电镀、制革等动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。 禁用范围 在欧盟,会致癌或突变的六价铬都不允许公开贩售。但电化学工业中铬酸被还原成CrO态(零价),而磁带工业则还原成CrO2。所以不影响电化学工业或磁带工业。RoHS:该指令所规范的电机电子设备自2008年起不得含有六价铬。以下除外吸收式冷藏柜冷却系统使用六价铬防腐蚀剂TCO’01- Mobile Phones:目前对六价铬尚无管制规范。 铬是一种银白色的坚硬金属。有二价、三价和六价化合物。所有铬的化合物都有毒性,其中六价铬毒性最大。 铬的工业用途很广,主要有金属加工、电镀、制革行业,这些行业排放的废水和废气是环境中的主要污染源。欧盟ROHS指令中,明文规定,六价铬含量不能超过0.1%(1000PPM,1PPM的含义:百万分之一)。在电子行业及各种金属加工行业中,六价铬一般都存在于作为处理用的溶剂中。 所以,虽然目前我国已经开始推行和欧盟指令配套的“中国ROHS”计划,但在实际操作上,是属于治标不治本的做法。因为经过六价铬处理过的污水和废弃,还是在国内排放的。而经过处理的产品,在技术上,完全可以达到没有任何六价铬残余的效果。而这些金属加工、电镀、制革行业,整个行业的自律性和自律意

六价铬的测定方法(二苯碳酰二肼分光光度法)

六价铬的测定方法(二苯碳酰二肼分光光度法)GB/T 7467 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为 0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法 的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm 处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度 的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液

将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110?干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829?0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含 1.00μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。

三价铬与六价铬的对比分析

三价与六价铬 .前言: 传统六价铬钝化工艺地优点与危害性 六价铬钝化工艺有很多优点,如很高地耐蚀性,自我修复耐蚀性地自愈能力,能容易钝化出银白、蓝白、五彩、军绿色、黑色等颜色,原料来源广泛而且价廉.但六价铬是致癌物,对环境与人体健康存在严重地危害性.个人收集整理勿做商业用途 三价铬钝化地紧迫性 欧盟于年在布鲁塞尔签署了一项法令,规定从年月日起禁止车辆材料和部件中使用六价铬,根据该法令,每辆汽车地六价铬含量不超过[] . 年月日,欧盟《电子垃圾处理法》正式出台,年月日,这一法规将正式开始实施.该法令是依据年欧盟地两个指令完成地. 这两个指令分别是《关于报废电子电器设备指令》()和《关于在电子电器设备中禁止使用某些有害物质指令》(),要求成员国确保从年月日起,投放于市场地新电子和电器设备不包含铅、汞、镉、六价铬、聚溴二苯醚和聚溴联苯等种有害物质.法令还规定,所有在欧盟市场上生产和销售笔记本型计算机、桌上型计算机、打印机、、主机板、鼠标、键盘、手机等,必须在年月日以前,建立完整地分类、回收、复原、再生使用系统,并负担产品回收责任.中国生产出口产品地企业必须在年月后停止使用六价铬钝化工艺.个人收集整理勿做商业用途 .三价铬钝化技术地进展 在锌上进行无六价铬钝化地研究工作已经进行了十几年,主要采用三价铬钝化和无铬钝化两个方向.无铬钝化体系有钛酸盐、钼酸盐、钨酸盐、稀土、硅酸盐[],目前这些无铬钝化体系虽然是无毒环保,但耐蚀性及外观没有六价铬钝化地好,满足不了普通五金件电镀要求,更不用说满足汽车部件电镀地高耐蚀要求,所以无铬钝化地工艺未曾在工业上广泛应用过.因此,无六价铬钝化地技术主要立足于三价铬钝化技术,该工艺已成熟应用于生产,正如现代地碱性无氰镀锌新工艺地综合性能已经超过氰化镀锌、酸性镀锌,最新第三代三价铬钝化性能已经达到甚至超过传统六价铬钝化工艺.个人收集整理勿做商业用途第一代三价铬钝化 络合剂主要为氟化物,而氟化物与(Ⅲ)络合比较稳定,膜层薄,所以形成地膜层颜色一般为银白色、蓝白色,耐蚀性差,中性盐雾试验不超过,若要达到好地耐蚀性只有通过封闭,而封闭后地颜色变为银白,色泽单调,这种体系地(Ⅲ)浓度较高,操作温度也较高.个人收集整理勿做商业用途 第二代三价铬钝化技术 早期地第二代三价铬钝化工艺含有氧化剂,耐蚀性与膜颜色接近六价铬,但由于膜层中含有六价铬,被淘汰.后期地第二代工艺不含氧化剂,五彩颜色较淡.第二代三价铬钝化剂地共同特点是采用有机络合剂,并加入其它金属,耐蚀性大大提高,并可以得到不同钝化膜地颜色,如蓝白、五彩、黑色. 操作条件要求相对较低.典型产品有公司地,公司地,公司地等,目前已成功应用于生产.文档收集自网络,仅用于个人学习 最新第三代三价铬钝化技术 是在第二代钝化液中直接加入封孔剂,克服了三价铬钝化无自愈能力地缺点,大大提高膜层地耐蚀性,膜层地耐蚀性已达到或超过六价铬钝化工艺,所以满足于汽车部件电镀地环保高耐蚀要求.采用此工艺地有公司、(宏正)公司,典型产品有宏正地、三价铬五彩钝化、三价铬蓝白钝化、三价铬黑色钝化,目前已成功应用于生产.文档收集自网络,仅用于个人学习 .三价铬钝化机理与组成 传统六价铬地钝化膜是通过锌地溶解、铬酸根地还原以及三价铬凝胶地析出而形成,

水中六价铬的测定分光光度法

水中六价铬的测定—分光光度法 废水中铬的测定常用分光光度法,其原理基于:在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。如果测定总铬,需先用高锰酸钾将水样中的三价铬氧化为六价铬,再用本法测定。 一.实验目的 掌握分光光度法测定六价铬的原理和方法; 二.六价铬的测定 1.仪器 ①分光光度计、比色皿(1cm) ②50mL具塞比色管、移液管、容量瓶等。 2.试剂 (1)丙酮。 (2)(1+1)硫酸。 (3)(1+1)磷酸。 (4) 0.2%(m/V)氢氧化钠溶液。 (5)铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.100mg六价铬。 (6)铬标准使用液:吸取5.00mL铬标准贮备液于500mL容量瓶中,用水稀释至标线,摇匀。每毫升标准使用液含1.00μg六价铬。使用当天配制。 (7) 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 3.测定步骤 (1)水样预处理: 对不含悬浮物、低色度的清洁地面水,可直接进行测定。 (2)标准曲线的绘制:取9支50mL比色管,依次加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至标线,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀。5~10min 后,于540nm波长处,用1cm或3cm比色皿,以水为参比,测定吸光度并做空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 (3)水样的测量:取适量(含Cr6+少于50μg)无色透明或经预处理的水样于50mL比色管中,用水稀释至标线,以下步骤同标准溶液测定。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+含量。 4.计算 Cr6+(mg·L-1)=m/V 式中:m—从标准曲线上查得的Cr6+量,μg; V—水样的体积,mL; 第 1 页共1 页

六价铬的测定 二苯碳酰二肼分光光度法

六价铬的测定方法(二苯碳酰二肼分光光度法) 1 适用范围 1.1 本标准适用于地面水和工业废水中六价铬的测定 1.2 测定范围 试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。 1.3 干扰 含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。 2 原理 在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。 3 试剂 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。 3.1 丙酮。 3.2 硫酸 3.2.1 1+1硫酸溶液 将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。 3.3 磷酸:1+1磷酸溶液。 将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。 3.4 氢氧化钠:4g/L氢氧化钠溶液。 将氢氧化钠(NaOH)1g溶于水并稀释至250ml。 3.5 氢氧化锌共沉淀剂 3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。 称取硫酸锌(ZnSO4?7H2O)8g,溶于100ml水中。 3.5.2 氢氧化钠:2%(m/v)溶液。 称取2.4g氢氧化钠,溶于120ml水中。 用时将3.5.1和3.5.2两溶液混合。 3.6 高锰酸钾:40g/L溶液。 称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。 3.7 铬标准贮备液。 称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。 3.8 铬标准溶液。 称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0 0μg六价铬。使用当天配制此溶液。 3.9 铬标准溶液。 称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5. 00μg六价铬。使用当天配制此溶液。 3.10 尿素:200g/L尿素溶液。 将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。 3.11 亚硝酸钠:20g/L溶液。

六价铬危害

六价铬的危害 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 六价铬是很容易被人体吸收的,它可通过消化、呼吸道、皮肤及粘膜侵入人体。通过呼吸空气中含有不同浓度的铬酸酐时有不同程度的沙哑、鼻粘膜萎缩,严重时还可使鼻中隔穿孔和支气管扩张等。经消化道侵入时可引起呕吐、腹疼。经皮肤侵入时会产生皮炎和湿疹。危害最大的是长期或短期接触或吸入时有致癌危险。 六价铬化合物在体内具有致癌作用,还会引起诸多的其他健康问题,如吸入某些较高浓度的六价铬化合物会引起流鼻涕、打喷嚏、瘙痒、鼻出血、溃疡和鼻中隔穿孔。短期大剂量的接触,在接触部位会产生不良后果,包括溃疡、鼻黏膜刺激和鼻中隔穿孔。摄入超大剂量的铬会导致肾脏和肝脏的损伤、恶心、胃肠道刺激、胃溃疡、痉挛甚至死亡。皮肤接触会造成溃疡或过敏反应(六价铬是最易导致过敏的金属之一,仅次于镍)。六价铬离子对人体健康的毒害很大。它的化合物具有很强的氧化作用,对人体

的消化道、呼吸道、皮肤和粘膜都有危害。更甚者铬有致癌作用,铬致癌的部位主要是肺。 六价铬化合物常用于电镀、制革等,动物喝下含有六价铬的水后,六价铬会被体内许多组织和器官的细胞吸收。皮革中残留的六价铬,可以通过皮肤、呼吸道吸收,引起胃道及肝、肾功能损害,还可能伤及眼部,出现视网膜出血、视神经萎缩等。 六价铬常在电化学工业中作为铬酸。此外还用于色素中的着色剂(亦即铬酸铅)及冷却水循环系统中,如吸热泵、工业用冷冻库及冰箱热交换器中的防腐蚀剂(重铬酸钠)。 化工生产会产生六价铬 每生产l吨重铬酸钠同时产生铬渣3—3.5吨。目前国内冶金和化学工业中每年大约排出20一30万吨铬渣。铬渣中的有害成分主要是可溶性铬酸钠、酸溶性铬酸钙等六价铬离子。由于这些六价铬以及它的流失扩散而构成对生态环境的污染危害。其次是铬渣的强碱性危害。当铬渣在露天堆存时,经长期雨水冲淋后大量的六价铬离子随雨水溶渗、流失、渗入地表,从而污染地下水,也污染了江河、湖泊,进而危害农田、水产和人体健康。

水中六价铬检测方法-比色法

水中六價鉻檢測方法-比色法 NIEA W320.52A 一、方法概要 在酸性溶液中,六價鉻與二苯基二氨脲(1,5-Diphenylcarbazide)反應生成紫紅色物質,以分光光度計在波長540 nm處,量測其吸光度並定量之。 二、適用範圍 本方法適用於飲用水水質、飲用水水源水質、地面水體、地下水、放流水及廢(污)水中六價鉻之檢驗。 三、干擾 (一) 當鐵離子之濃度大於1 mg/L時,會形成黃色Fe+3,雖然在某些波長下會有吸光值,惟干擾 程度不大。六價鉬或汞鹽濃度大於200 mg/L、釩鹽濃度大於六價鉻濃度10倍時,會形成干擾;不過六價鉬或汞鹽在本方法指定的pH範圍內干擾程度不高。另若有上述干擾的六價鉬、釩鹽、鐵離子、銅離子等水樣,可藉氯仿萃取出這些金屬生成的銅鐵化合物 (Cupferrates)而去除之,惟殘留在水樣的氯仿和銅鐵混合物(Cupferron)可用酸分解。 (二) 高錳酸鉀可能形成之干擾,可使用疊氮化物(Azide)將其還原後消除之。 四、設備及材料 (一) pH計。 (二) 分光光度計,使用波長540 nm,樣品槽光徑可選用1或5或10公分,以能檢測出正確數 據為原則。 (三) 玻璃器皿:勿使用以鉻酸清洗過的玻璃器皿。 (四) 分析天平:可精秤至0.1 mg。 (五) 移液管或經校正之自動移液管。 五、試劑 (一) 試劑水:比電阻≧16 MΩ-cm。 (二) 0.5 M硫酸溶液:以蒸餾水稀釋83.3 mL之3 M硫酸溶液至500 mL。

(三) 二苯基二氨脲溶液:溶解0.25 g二苯基二氨脲於50 mL丙酮(Acetone),儲存於棕色瓶, 本溶液如褪色應棄置不用。 (四) 濃磷酸。 (五) 濃硫酸:9 M及3 M。 (六) 鉻儲備溶液:在1000 mL量瓶內,溶解0.1414 g重鉻酸鉀(K2Cr2O7)於蒸餾水,稀釋至刻 度:1.0 mL相當於0.05 mg Cr。或購買經濃度確認並附保存期限說明之市售標準儲備溶液。 (七) 鉻標準溶液:在100 mL量瓶內,稀釋10.0 mL鉻儲備溶液至刻度;1.0 mL相當於0.005 mg Cr。 六、採樣及保存 採集至少300 mL之水樣於塑膠瓶內,於4℃暗處冷藏,保存期限為24小時。 七、步驟 (一) 水樣處理及測定 1、取已經適當稀釋或原水樣47 mL置於適當容器中, 加入約0.12 mL的濃磷酸,再以0.5 M 硫酸溶液及pH計,調整水樣之pH至2.0 ±0.5。 2、加入1.0 mL二苯基二氨脲溶液,混合均勻,倒入50 mL量瓶中,以試劑水稀釋至50 mL。 靜置5~10分鐘後,以分光光度計於波長540 nm處讀取吸光度,以試劑水為對照樣品, 吸光度讀數應扣除製備空白吸光值,並由檢量線求得六價鉻濃度(mg/L)。 <注意>若經上述步驟稀釋至50 mL溶液成混濁狀態,則在加入二苯基二氨脲溶液前讀取吸光度,並自最終顏色溶液之吸光度讀取中扣除而予校正。 (二) 檢量線製備 1、精取適當之鉻標準溶液,配製一個空白和至少五種不同濃度的檢量線標準溶液,其濃度範圍如0至1.0 mg/L,或其他適當範圍。 2、依步驟七(一)操作並讀取吸光度,以標準溶液濃度(mg/L)為X軸,吸光度為Y軸,繪製一吸光度與六價鉻濃度(mg/L)之檢量線,。 八、結果處理

三价铬镀铬-三价铬镀铬

三价铬与六价铬电镀的比较 核心提示:三价铬镀铬技术的简单介绍,三价铬与六价铬电镀的比较 由于六价铬对人体的影响比较严重,一直都被列为环境污染的重要监测对象,特别是近年各国提高了对铬污染的控制标准,人们开始重视开发用毒性相对较低的三价铬镀铬来替代六价铬镀铬。因此三价铬镀铬是目前替代六价铬镀铬的一种新工艺。三价铬镀铬的研究始于l933年,但是直到l974年才在英国开发出有工业价值的三价铬镀铬技术。三价铬镀铬与六价铬镀铬的比较见表。 三价铬镀铬与六价铬镀铬比有明显的优点,特别是分散能力、均镀能力好;镀速高,可以达到0.2μm/min的镀速,从而缩短电镀时间。电流效率也比六价铬镀铬高,可达到25%以上。同时,还有烧焦等电镀故障减少、不受电流中断或波型的影响、不需要特殊的阳极隔膜等优点。而最为重要的是不采用有害的六价铬而没有了环境污染问题,降低了污水处理的成本,对操作者的安全性也大大提高。 三价铬镀铬有单槽方式和双槽方式,单槽方式中的阳极材料是石墨棒,其他与普通电镀一样,双槽方式是使用了阳极内槽,将铅锡合金阳极置于内槽内,另外作为阳极基础液使用了稀硫酸。相对六价铬镀铬,有容易操作和安全的优点。 三价铬镀铬和六价铬镀铬的比较 项目三价铬镀铬六价铬镀铬 单槽法双槽法 铬浓度/(g/L) pH值 阴极电流/(A/dm2)温度/℃ 20~24 2.3~ 3.9 5~20 21~49 5~10 3.3~3.9 4~15 21~54 100~350 1以下 10~30 35~50 阳极铅锡合金铅锡合金 搅拌 镀速/(μm/min)最大厚度/μm 均镀能力 分散能力 镀层构造 空气搅拌 0.2 25以上 好 好 微孔隙 空气搅拌 0.1 0.25 好 好 微孔隙 无 0.1 100以上 差 差 非微孔隙

三价铬钝化膜中六价铬成因及其影响因素

三价铬钝化膜中六价铬成因及其影响因素的研究 镀锌是提高钢铁抗大气腐蚀的有效方法。但在潮湿的环境中镀锌层容易发生腐蚀,表面形成白色疏松的腐蚀产物或变成灰暗的颜色影响外观。为进一步提高防蚀性和装饰性,镀层必须进行钝化处理。过去人们一直采用六价铬钝化处理,六价铬钝化工艺成熟稳定,钝化膜耐蚀性高,具有修复耐蚀性的自愈能力,原料来源广泛且价廉,但由于六价铬毒性大,严重污染环境和危害人体健康,欧盟RoHS规定禁止使用。 目前市场上已经出现了多种三价铬钝化液产品,替代六价铬钝化处理并得到了大规模的应用。其耐蚀性和装饰性已达到或超过六价铬钝化液的钝化效果。 我司于2011年在宝强、华裕螺丝中均有发现:三价铬彩锌在电镀过程并没有有意图添加六价铬,也没有过程污染的存在,在刚电镀出来的三价铬彩锌产品,用水煮法定性分析也未检测出有六价铬。但将产品放置15天以上时,一般会发现有微量的六价铬存在。随着时间的增加六价铬的含量会有所增加。放置到6个月时,转化趋于稳定。这时六价铬含量约为20ppm~50ppm左右。 经过我司众多的对比与考察,以上现象为电镀行业的普遍现象。目前常用的三价铬彩锌钝化用药水都存在这种转化现象,只是转化的时间或长或短,转化的程度或轻或重。 本文探讨了钝化液温度、pH值、钝化时间、钝化液成分等因素对钝化膜形成六价铬的影响,提出了减少或避免钝化膜中六价铬形成的方案。 下图是我司在做六价铬定性试验时所拍的图片。(试验方法为沸水萃取+比色法)

以下为三价铬镀锌与六价铬镀锌的一些对比图片

1.三价铬钝化膜出现六价铬的成因 从化学价态变化角度,经过三价铬钝化溶液处理,钝化膜表面形成了一层由 Cr(OH) 3、Zn(OH) 2 等胶状沉淀物转化而成的Cr 2 O 3 - ZnO- Zn钝化膜,钝化膜表面通常 呈弱碱性(PH7-8.5),钝化膜表面结构松散的微量三价铬在潮湿的空气中会被缓慢氧化成六价铬。 从热力学的角度,钝化膜表面形成的Cr(OH) 3 和CrO 2 -类化合物可以被空气中的 氧气氧化成六价铬,这可能是三价铬钝化膜转化为六价铬的最主要的原因。 在六价铬的形成过程中,钝化膜表面六价铬的形成速率、形成量,还与许多因素有关,如三价铬氧化成六价铬的动力学机制、钝化条件以及钝化膜表面的致密程度、其他组分的影响等。 2.工艺条件对钝化膜中六价铬形成的影响 2.1钝化液温度 图1 给出了钝化液温度对Cr6+形成的影响。由图1可知,钝化液温度越高,钝化膜出现六价铬速率越快;钝化液温度低,有利于降低六价铬的形成速率。因此,钝化液温度是六价铬形成的重要影响因素。当温度低至300℃时,出现六价铬的时间将超过30d。但温度过低将影响钝化膜的耐蚀性。

锌和锌合金镀层三价铬钝化的优越性分析

锌与锌合金镀层三价铬钝化的优越性分析 Superiority Analyse of Tri-chrome Passivation for Plating Zinc and Zinc Alloy 尚思通小米?盖尔 摘要:镀锌和锌合金采用三价铬替代六价铬进行钝化,是环保的大势所趋。三价铬钝化技术已趋成熟,其防锈性能不仅能够达到甚至可以超过六价铬钝化的水平,而且在耐温性、锌合金钝化和满足特种力学性能方面还要明显地优于六价铬钝化。 Abstract : It is a general trend to replace Chrome by Tri-chrome for passivation of Zinc and Zinc alloy plating due to environment protection issue. Tri-chrome technology is mature and available nowadays. Its performance has not only reached or exceeds the level of Chrome in corrosion resistance, but also is obviously better than chrome in temperature resistance, Zinc alloy passivation, and satisfying some special mechanical demand. 关键词:锌与锌合金三价铬钝化优越性 Key Words:Zinc & Zinc Alloy Tri-chrome Passivation Advantage 引言 自1970年,国外对镀锌三价铬钝化就开始了商用化研究,但仅在近10年来,才在生产中大量使用。我国对三价铬钝化的试验研究虽然起步较迟,但近二年已有多家公司推出了自己的产品。 人们越来越重视六价铬的毒性,对三价铬钝化工艺的发展起到了重要的推动作用,CMR化学品分类法(指致癌、诱变或生殖毒性化学品)也迫使人们去寻找替代物。此外,欧洲的WEEE (1)和ELV 指引(2),对六价铬的使用也给出了一个时限,即从2006年7月1日在电子电气领域,和2007年7月1日在汽车领域,均禁用六价铬。该指引不仅对欧洲原产地的产品,而且对海外生产以及进口产品都同等对待。即便是那些不受该指引影响的领域,在当今环保强制的情况下,也在新建项目中逐渐减少采用六价铬的电镀生产。 三价铬钝化量的大幅度增长,也意味着市场上有着更大的产品多样化需求。譬如,与迄今六价铬不同的蓝白、彩色、黑色,以及阳极性保护原理在电镀纯锌、锌合金(包括锌镍、锌铁和锌钴合金)上的有效应用,都不同程度地扩大了用户的可选择性和市场的适应性。同时,封闭工艺的开发也确保了抗腐蚀性能的更高的需要,并且它还与一些现有的镀层兼容。我国汽车工业快速发展、汽车行业国际标准越来越高,和近年欧美环保汽配的市场需要,在客观上都推动了三价铬钝化及其它环保型工艺的生产应用。 一、 高耐蚀三价铬钝化 高耐蚀三价铬钝化膜既可以是透明的、彩色的,也可以是黑色的。适合的镀层是纯锌、锌铁、锌镍和锌钴合金,还包括锌合金和铝合金基体上直接钝化。 1.镀锌三价铬透明彩色钝化 镀锌透明三价铬钝化剂主要分为三种类型:一是以氟化物为基础的钝化剂,为了满足汽车制造工业的防腐蚀标准,往往需要再加上封闭工艺。该类型的钝化剂含有高浓度的三价铬,其操作温度在50°C左右,如Lanthane 315,它可以在工件表面生成一种厚厚的、透明的、带有轻度彩虹色,大约1 mg/dm2的铬化膜。这层膜加上封闭后,根据NF A 05-109法国标准,其耐蚀性试验产生白锈的时间,通常可以超过200 h。

六价铬测试作业指导书

六价铬测试作业指导书 (二苯碳酰二肼分光光度法) 1 方法原理 在酸性溶液中,六价铬与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4×104。 2 干扰及消除 铁含量大于1mg/L水样显黄色,六价钼和汞也和显色剂反应生成有色化合物,但在本方法的显色酸度下反应不灵敏。钼和汞达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L 即干扰测定。但钒与显色剂反应后10min,可自行褪色。 氧化性及还原性物质,如:ClO-、Fe2+、SO32-、S203-等,以及水样有色或混浊时,对测定均有干扰,须进行预处理。 3 仪器 分光光度计,10mm、30mm比色皿。 4 试剂 丙酮、(1+1)硫酸、(1+1)磷酸、0.2%氢氧化钠溶液、氢氧化锌共沉淀剂、4%高锰酸钾溶液、铬标准贮备液、铬标准溶液、20%尿素溶液、2%亚硝酸钠溶液、显色剂。 5 步骤 5.1 样品预处理 5.1.1 样品中不含悬浮物,低色度的清洁地表水可直接测定。 5.1.2 色度校正:如水样有色但不太深,则另取一份水样,在待测水样中加入各种试液进行同样操作时,以2ml丙酮代替显色剂,最后以此代替水作为参比来测定待测水样的吸光度。 5.1.3 锌盐沉淀分离法:对混浊、色度较深的水样可用此法预处理。取适量水样(含六价铬少于100μg)置150ml烧杯中,加水至50ml,滴加0.2%氢氧化钠溶液,调节溶液pH值为7-8。在不断搅拌下,滴加氢氧化锌共沉淀剂至溶液pH值为8~9。将此溶液转移至100ml 容量瓶中,用水稀释至标线。用慢速滤纸干过滤,弃去10~20ml初滤液,取其中50.oml滤液供测定。 5.1.4 二价铁、亚硫酸盐、硫代硫酸盐等还原性物质的消除:取适量水样(含六价铬少于50μg)置于50ml比色管中,用水稀释至标线,加入4ml显色剂,混匀。放置5min后,加入(l+1)硫酸溶液lml,摇匀。5~10min后,于540m波长处,用10或30mm的比色皿,以水作参比,测定吸光度。扣除空白试验吸光度后,从校准曲线查得六价铬含量。用同法作校准曲线。 5.1.5 次氯酸盐等氧化性物质的消除:取适量水样(含六价铬少于50μg)置于50ml比色管中,用水稀释至标线,加入(1+1)硫酸溶液0.5ml,(1+1)磷酸溶液0.5ml,尿素溶液1.0m1,

相关文档
最新文档