jpcc-Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes

jpcc-Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes
jpcc-Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2 Electrodes

Fast Regeneration of CdSe Quantum Dots by Ru Dye in Sensitized TiO2Electrodes Iva′n Mora-Sero′,*,?Vlassis Likodimos,?Sixto Gime′nez,?Eugenia Mart?′nez-Ferrero,§

Josep Albero,§Emilio Palomares,*,§,|Athanassios G.Kontos,?Polycarpos Falaras,*,?and

Juan Bisquert?

Grup de dispositius Foto V oltaics i Optoelectro`nics,Departament de F?′sica,Uni V ersitat Jaume I,12071

Castello′,Spain,Institute of Physical Chemistry,NSCR“Demokritos”,15310Aghia Paraske V i Attikis,Athens,

Greece,Institute of Chemical Research of Catalonia(ICIQ),A V da.Pa?¨sos Catalans16,43007Tarragona,

Spain,and ICREA,A V da.Llu?′s Companys28,Barcelona08020,Barcelona,Spain

Recei V ed:January21,2010;Re V ised Manuscript Recei V ed:March2,2010

Interacting properties of colloidal CdSe quantum dots(QDs)and polypyridyl ruthenium dyes employed as

cosensitizers of mesoporous TiO2electrodes as well as the effect of QDs coating and anchoring mode(direct

and linker adsorption)have been investigated by photoluminesce(PL),Raman,and transient absorption(TAS)

spectroscopies.Direct adsorption of QDs on TiO2leads to a more ef?cient PL quenching compared to that

of QDs attached by means of a molecular linker(cysteine).This fact suggests higher electron injection for

the former anchoring mode.Coating of ZnS on CdSe QDs sensitized TiO2electrodes passivates the QDs

surface states and partially releases quantum con?nement effects,as is observed in colloidal core-shell

nanoparticles.Subsequent cosensitization with a ruthenium molecular dye dramatically quenches the PL of

the QDs/TiO2electrodes,even in the presence of ZnS coating,indicating the presence of strong photoinduced

charge transfer between the CdSe QDs and the dye molecules.This is?rmly supported by TAS spectroscopy

on the interfacial recombination kinetics that points to the fast hole transfer from the photoexcited QDs to the

dye.The regenerating action of molecular dyes for QD sensitizers can have important implications in the

development of ef?cient photovoltaic devices based on the synergistic action of dye-QD-TiO2heterostructures.

Introduction

Semiconductor materials constitute the basis of photovoltaic devices governing the solar energy-to-electricity conversion ?eld.When these materials are scaled down to the nanometer range,new and fascinating properties appear,distinctly different from their bulk counterparts,as a consequence of the effect of quantum con?nement.Yet,some of their bulk properties,which are key for ef?cient light-to-energy conversion devices as,for example,the high extinction coef?cient1and the large intrinsic dipole moment2are preserved at the nanoscale.In addition,the band gap of semiconductor quantum dots(QDs)can be easily tuned1by control of their size and shape,providing a fertile ground for the design of light-absorbing materials with tailored optical properties.

One of the most attractive con?gurations to exploit the unique light-harvesting capability of QDs spanning the whole visible range is the quantum dot-sensitized solar cell(QDSC),3-5where QDs substitute the molecular dyes in a cell con?guration analogous to that of dye-sensitized solar cells.6In particular, colloidal QDs hold great promise as light-absorbing materials with tailored and well-controlled morphological characteristics (shape and size)that can be utilized as sensitizers of wide band gap nanostructured semiconductors(e.g.,TiO2,ZnO).7-12Recent studies have shown that preformed colloidal QDs can be adsorbed onto TiO2photoelectrodes by linker adsorption(LA), realized through bifunctional linker molecules,9-12as well as direct adsorption(DA),where QDs dispersed in appropriate organic media can be successfully tethered onto TiO2without any mediating linker.7,8However,it is important to note that the exact effect of the adsorption method on the performance of QDSCs is a topic that only recently has started to be investigated.13-15

One of the most striking properties imparted on QDs by quantum con?nement is their highly ef?cient and tunable photoluminescence(PL)that together with the low-cost process-ing of colloidal synthesis16threads most practical applications currently pursued for colloidal QDs,ranging from light-emitting diodes17to?uorescent labels for biological imaging.18However, the utilization of colloidal semiconductor nanocrystals as sensitizers in QDSCs implies ef?cient charge transfer to the wide band gap semiconductor electrode that renders internal radiative recombination and the concomitant PL emission, detrimental for such devices.Anchoring of CdSe QDs onto TiO2 leads to signi?cant quenching of their emission,19due to the injection of photogenerated electrons into the TiO2conduction band(CB).In that case,steady state as well as transient PL measurements can be fruitfully applied to quantify charge transfer kinetics from QDs of different sizes to TiO220as well as to trace the in?uence of the adsorption method.21Furthermore, PL measurements can be used to elucidate the interactions of QDs with other materials used for cosensitizing or coating purposes such as molecular dyes and ZnS.In fact,it has been shown that ZnS coating of CdSe QDs leads to an almost doubled photocurrent in QDSCs.7,22

On the other hand,combination of QDs and molecular dyes provides a particularly powerful route to create novel composite heterostructures with enhanced light harvesting ability.In this sense,colloidal QDs may serve as an excellent component for

*To whom correspondence should be addressed.E-mail:sero@fca.uji.es,

epalomares@iciq.es,and papi@chem.demokritos.gr.

?Universitat Jaume I.

?Institute of Physical Chemistry.

§Institute of Chemical Research of Catalonia.

|ICREA,Avda.Llu?′s Companys.

J.Phys.Chem.C2010,114,6755–67616755

10.1021/jp100591m 2010American Chemical Society

Published on Web03/15/2010

the development of more sophisticated heterostructures such as supracollector nanocomposites,exploiting the charge transfer interaction between semiconductor QDs and molecular dyes. The main purpose is to augment the spectral absorption range in QDSCs and to reduce the internal recombination of QDs.23,24 In that case,fast scavenging of photogenerated holes in QD sensitizers by a molecular dye can outbalance the competition between electron transfer from QDs to TiO2and the internal relaxation of the QD excited state,leading to higher electron injection yields.25,26Simultaneously,light absorption can be drastically enhanced over a broad spectral range better matching the solar irradiance,provided that a suitable combination of QDs and dye complexes with appropriate charge transfer energetics is used.19

In the present work,the interaction between colloidal CdSe/ ZnS-coated QDs and the polypyridyl ruthenium molecular dye N719has been systematically investigated in cosensitized mesoporous TiO2layers for both modes of attachment(DA and LA),employing PL emission and resonance Raman measure-ments.These techniques provide sensitive experimental probes of the individual components and the underlying interfacial interactions in the TiO2/QD/dye hybrid system.Speci?cally, resonance Raman spectroscopy has been proved to be a powerful technique to resolve the chemisorption of a single dye monolayer on nanocrystalline TiO2?lms and the coordinative interactions of the individual components in dye-sensitized solar cells27-29 as well as optical phonon con?nement effects,exciton-phonon coupling,and interfacial stress in colloidal core-shell QDs.30,31 Moreover,to shed more light on the origin of the QD-dye coupling,we have investigated the interfacial electron recom-bination dynamics in the cosensitized TiO2by transient absorp-tion spectroscopy(TAS).The ensuing results unveil marked PL quenching upon dye postsensitization of TiO2/QD electrodes that depends on the speci?c QDs adsorption mode,revealing that the dye plays a major role on the regeneration of the photo-oxidized QDs,which turns into higher electron injection into TiO2.

Experimental Section

Colloidal CdSe QDs capped with trioctylphosphine(TOP) were prepared by a solvothermal route that allows size control32 in a toluene dispersion.Mesoscopic TiO2?lms approximately 10μm thick were prepared by using a colloidal titania paste with20-450nm TiO2particle size(Dyesol18NR-AO) deposited on transparent conducting substrates and sintered at 450°C for30min.Cysteine has been used as a bifunctional linker in LA adsorption following the procedure reported in ref 11.For DA of QDs onto TiO2surface,solvent substitution is needed and a CH2Cl2CdSe QDs dispersion was prepared by centrifugation of the toluene colloidal dispersion,and redisso-lution.8Different QD adsorption times have been used(8,19, and72h)for both LA and DA.Longer adsorption times lead to a higher amount of adsorbed QDs but this has no in?uence on the qualitative trends discussed below.Some electrodes were coated with ZnS by twice dipping alternately into0.1M Zn(CH3COO)2and0.1M Na2S solutions for1min/dip,rinsing with Milli-Q ultrapure water between dips.22Samples with and without ZnS coating were sensitized with the polypyridyl ruthenium complex cis-RuL2(SCN)2(L)2,2′-bipyridyl-4,4′-dicarboxylic acid)(N719)that is commonly used in high-performance dye-sensitized solar cells(DSC),by dipping them overnight in a3×10-4M solution in ethanol.

The optical and vibrational properties of the QD-sensitized TiO2?lms were investigated by diffuse re?ectance,photolu-minescence,and micro-Raman spectroscopy before and after N719cosensitization.Diffuse re?ectance UV-vis measurements were performed on a Hitachi3010spectrophotometer equipped with an integrating sphere.Since the sensitized TiO2?lms are opaque,the absorption of the different samples has been extracted from their diffuse re?ectance R in Kubelka-Munk units as F(R))(1-R)2/2R.Micro-Raman and PL measure-ments were carried out in backscattering con?guration on a Renishaw inVia Re?ex spectrometer equipped with a high-sensitivity,deep-depletion CCD detector.The green line of an Ar+ion laser(λ)514.5nm)approaching closely both the metal-to-ligand charge transfer(MLCT)transition of the N719 molecular dye(535nm)33and the?rst exciton absorption peak of the colloidal CdSe QDs(~540nm)was used as excitation source for both resonance Raman and PL measurements.The spectra were acquired over the spectral range of100-3500cm-1 in a single scan(SynchroScan mode).The laser beam was focused on the sample surface using the×5and×50objectives of a Leica DMLM microscope at a wide range of laser powers regulated by motorized neutral density?lters of variable optical density,in order to obtain the optimum S/N ratio for the PL and Raman signals and avoid laser heating.Subtraction of the intense PL background in the Raman spectra has been performed by polynomial?tting and/or cubic spline interpolation routines, while spectral deconvolution has been carried out by nonlinear least-squares?tting of the Raman peaks to a mixed Lorentzian/ Gaussian line shape providing the peak position,full width at half-maximum(fwhm),height,and integrated intensity I for each Raman band.Resonance Raman has been used to selectively enhance the Raman signal of the semiconductor quantum dots (the excitation wavelength is centered at514.5nm,very close to the CdSe QD?rst excitonic peak,as commented before). Work under nonresonance conditions does not permit the detection of the QD vibration modes,due to their relatively low amount on the TiO2matrix.In fact,Raman measurements on the QD-sensitized electrodes under nonresonant excitation conditions(using a near-infrared laser line at785nm)show only the anatase TiO2Raman modes,whereas the CdSe LO phonon mode could not be traced.

Photophysical characterization was carried out by means of transient absorbance spectroscopy(TAS)measurements on Black Dye/QD-sensitized transparent4μm thick TiO2?lms (Black Dye(BD):tris(isothiocyanato)ruthenium(II)-2,2′:6′,2′′-terpyridine-4,4′,4′′-tricarboxylic acid,tris-tetrabutylammonium salt).We used as a blank transparent BD/QD-sensitized ZrO2?lms since the conduction band edge of the inorganic metal oxide is higher than the CB of both CdSe QDs and the BD, and thus,electron injection is avoided.TAS measurements were performed by excitation of the sensitized?lms at440or640 nm with pulses from a nitrogen-pumped dye laser PTI GL-301 (<1ns pulse duration,1Hz,intensity0.09mJ·cm-2).The resulting photoinduced changes in the optical density were monitored at different wavelengths by employing a150W tungsten lamp,with1nm bandwidth monochromators located before and after the sample,a home-built photodiode based detection system,and a TDS-200Tecktronix oscilloscope. Results and Discussion

Absorption and Emission Properties.Figure1shows the characteristicUV-visdiffusere?ectancespectrainKubelka-Munk units for the QD-TiO2electrodes(DA for72h)before and after cosensitization with the N719dye,compared with the corre-sponding data for the bare TiO2and N719-sensitized TiO2?lms. Adsorption of the CdSe QDs on TiO2extends its absorption

6756J.Phys.Chem.C,Vol.114,No.14,2010Mora-Sero′et al.

spectrum into the visible region with two pronounced local maxima,a broad one at 445and a sharper one at 540nm,re?ecting the contributions of the characteristic exciton peaks of the parent colloidal QDs.8Coating with ZnS leads to an increase of the optical absorption and a red-shift of the ?rst absorption exciton peak by approximately 15nm.The presence of electronic coupling between ZnS and the CdSe QDs can be accordingly inferred,similar to core -shell CdSe/ZnS nano-crystals,34where tunneling of the QD electron wave function into the surrounding ZnS shell reduces the con?nement energy and causes the shift of the exciton peaks to lower energies.Postsensitization with the N719molecular dye leads to a signi?cant increase of the optical absorption in the visible range,encompassing both the ?ne structure of the QD absorption,which eventually becomes smeared out,and the prominent contribution of the N719metal-to-ligand charge transfer (MLCT)transition (Figure 1).Analogous behavior has been observed for the samples sensitized with LA QDs.

A much more pronounced effect is evidenced though in the variation of the PL emission spectra after dye cosensitization of the QD/TiO 2electrodes.Figure 2a compares the PL spectra of the QD-sensitized electrodes (DA and LA),where the PL amplitude has been normalized to the total amount of adsorbed QDs by using the corresponding values of the ?rst QD absorption maximum.All the QD/TiO 2samples exhibit the sharp PL peaks stemming from the band-edge emission of CdSe QDs.A difference of about 15nm is observed in the PL peak position between the LA (575nm)and DA (590nm)modes,arising from the variation of the corresponding spectra for the parent colloidal dispersions,8while ZnS deposition leads to a red-shift of the emission peak,correlating with the variation of the corresponding absorption measurements,see Figure 1.

Figure 2b shows the evolution of the normalized photolumi-nescence peak intensity PL norm with the QD adsorption time for the DA and LA modes.In that case,two general trends can be identi?ed:(i)a systematic increase of PL for the ZnS-coated QD/TiO 2electrodes for both adsorption modes and (ii)a higher PL intensity for the LA samples in comparison with the DA ones.The former effect indicates a passivation of the CdSe QDs by the ZnS coating,increasing the luminescent quantum yield.Very recently,we have shown that the main effect of the ZnS coating on the QDSCs performance is a dramatic reduction of the recombination of photoinjected electrons in TiO 2with the

redox couple in the electrolyte by the interposition of the ZnS intermediate layer.15In addition,both the red shift and the enhancement of the optical absorption and the PL intensity caused by ZnS coating are consistent with the corresponding variations on CdSe/ZnS core -shell nanoparticles,where the ZnS shell improves the PL quantum yield of the CdSe core by passivating the QD surface states.34Comparing the effect of the adsorption mode on the PL emission,the systematically enhanced PL of the LA samples provides direct evidence for a signi?cantly higher radiative recombination rate due to the presence of the molecular linker,suggesting less ef?cient QD binding and charge transfer to TiO 2compared to the DA samples.On the other hand,the absence of a mediating linker in the direct adsorption mode leads to relatively lower PL emission and thus more ef?cient electron injection from QDs into TiO 2.This result corroborates the higher photovoltaic conversion ef?ciency reported for colloidal QDSCs,using the DA variant for QD attachment in comparison with the LA.7

Most importantly,cosensitization of the QD/TiO 2samples with the N719dye leads to a marked reduction of the QD emission,independently of the adsorption mode,as seen in Figure 2a.To quantify this prominent effect,we have calculated the intensity ratio r PL )PL QD /PL QD-dye using the PL intensity before (PL QD )and after (PL QD-dye )postsensitization of the QD/TiO 2samples with the N719dye,as shown in Table 1,where the corresponding variation of the optical absorption maxima in Kubleka -Munk units F (R )is also included.Dye adsorption is accordingly found to decrease the QD emission by 2-3orders of magnitude for all samples,the most pronounced reduction occurring for the uncoated DA samples,where PL emission is nearly totally quenched (r PL )5×103).Explicit comparison between the different types of QD/TiO 2samples shows that

PL

Figure 1.Kubelka -Munk plot of the diffuse re?ectance spectra for the TiO 2?lms sensitized with DA QDs for 72h,before and after N719cosensitization.The corresponding data for bare TiO 2are included for

comparison.

Figure 2.Photoluminescence emission spectra for the sensitized electrodes (DA and LA),normalized to the absorption values of the ?rst QD excitonic peak.(a)PL norm for QD sensitized samples before (QD/TiO 2,dashed line)and after (dye/QD/TiO 2,solid line)N719dye adsorption.QD adsorption time:72h.(b)PL norm intensity for the QD/TiO 2samples with and without ZnS coating,as a function the QD adsorption time.

Fast Regeneration of CdSe Quantum Dots J.Phys.Chem.C,Vol.114,No.14,20106757

quenching is much higher for the DA than the LA mode for similar values of the optical absorption F (R ),while the ZnS shell also reduces the extent of PL quenching for the DA samples.This conspicuous quenching of the CdSe QD emission upon interaction with the Ru-polypyridyl molecular complexes provides the ?rst evidence for the photoinduced charge transfer between the CdSe nanocrystals and the N719dye,as previously suggested,19,24,26and will be elucidated below by means of transient absorption measurements.It is important to point out that the QD -dye interaction is operative even in the presence of an intervening dielectric layer,as indicated by the signi?cant decrease of the PL intensity for the ZnS-coated samples after cosensitization with the N719dye.

Micro-Raman Spectroscopy.The effectiveness of the dye postsensitization to quench the QD emission together with the identi?cation of the dye/CdSe +ZnS/TiO 2components and their electronic coupling has been further explored by micro-Raman spectroscopy.Figure 3displays the micro-Raman spectra of the QD/TiO 2samples before and after dye sensitization at 514.5nm,where the strong interplay of the QDs emission impeding the Raman scattering intensity is clearly evinced.For all QD-sensitized samples,we can identify the most intense E g Raman mode of anatase TiO 2at 142cm -1and the resonantly excited longitudinal optical (LO)phonon of CdSe QDs at ~205cm -1(vide infra)superimposed on the PL background,which,depending on the PL peak position and intensity,severely obstructs the Raman signal.Dye cosensitization reduces drasti-cally the PL background but also the Raman intensity,since the N719dye absorbs light very ef?ciently under 514.5nm excitation that is close to its MLCT transition.33In that case,the decrease of the LO Raman intensity,which is directly proportional to the incident light intensity,can be exploited as an independent measure of the light attenuation by the strongly

absorbing dye molecules at 514.5nm.The corresponding intensity ratios r Raman )I LO QD /I LO QD-dye ,with I LO being the Raman intensity of the CdSe LO mode,are included in Table 1.These data reveal that in all cases r PL .r Raman ,verifying that only a small fraction of the PL quenching could be caused by the effective decrease of the light intensity due to the strong N719absorption.Moreover,the ratio of r PL to r Raman decreases signi?cantly for the LA samples as well as for the ZnS-coated electrodes,highlighting a clear in?uence of the attaching mode and the intermediate passivating layer on the dye-QD-TiO 2coupling.In fact,the large difference between the PL and the Raman signal reduction ratios after dye sensitization reinforces the idea that QDs and dye molecules do not act as independent sensitizers of TiO 2,but rather as a closely coupled system that promotes electron transfer to the semiconducting electrode.19

Furthermore,Raman spectral analysis allows identifying unambiguously the individual components of the QD-sensitized electrodes and their interactions.Figure 4shows the deconvo-luted Raman spectrum of the LA +ZnS-sensitized sample at 514.5nm,which exhibits the highest red-shift of the PL background (Figure 2a)and thus the best Raman resolution.The characteristic Raman-active phonons of anatase TiO 2can be resolved in comparison with the bare TiO 2electrode,namely the most intense E g modes at 142and 636cm -1along with the weaker B 1g mode at 397cm -1.The corresponding phonon frequencies are close to those of bulk anatase due to the large particle size in the underlying titania ?lm that hinders phonon con?nement effects.27The most intense Raman peak is though the ?rst-order LO phonon of the CdSe QDs at ~206cm -1,31due to the resonance Raman effect at 514.5nm.This was directly con?rmed by complementary nonresonant Raman measurements with a near-infrared diode laser at 785nm as excitation source.In that case,only the anatase modes were observed,while the CdSe LO mode could not be traced,re?ecting the much lower amount of QDs relative to that of the TiO 2?lm.The CdSe LO mode exhibits the characteristic asymmetric broadening at the low-frequency side stemming from the contribution of con?ned optical phonons 31and/or surface optical (SO)modes.30Its line shape can be effectively ?tted to the superposition of two peaks (Figure 4),the LO mode at 206.5cm -1with fwhm of 10cm -1,re?ecting the interplay of phonon con?nement and strain in the organic -inorganic interface of colloidal QDs,35and the low-frequency SO mode at 197cm -1with fwhm of 28cm -1,in good agreement with

TABLE 1:F (R)Measured from the Kubelka -Munk Plots

at 514nm for the Samples Sensitized with CdSe QDs (F (R )QD )and with QDs +Dye (F (R )dye-QD )d

F (R )QD

F (R )dye-QD

?F (R )a r PL b r Raman c

DA 2.05 5.60 3.55500015DA-ZnS 2.17 4.76 2.592205LA 1.84 4.32 2.481306LA-ZnS

2.42

4.92

2.50

150

8

a

?F (R ))F (R )dye-QD -F (R )QD .b r PL )PL QD /PL QD-dye (PL )PL intensity).c r Raman )I LO QD /I LO QD-dye ,where I LO )Raman intensity of the CdSe LO mode.d QD

adsorption time:72h.PL vs Raman intensity reduction ratios after dye absorption at 514nm.

Figure 3.Resonance Raman spectra of the QD/TiO 2samples before (solid

lines)and after (dashed lines)N719cosensitization,with and without the ZnS coating,at 514.5nm.

Figure 4.Spectral analysis of the Raman spectrum for the LA-ZnS-sensitized sample at 514.5nm,in comparison with the bare TiO 2?lm.The inset shows the variation of the CdSe LO mode before (solid lines)and after (dashed lines)dye cosensitization.

6758J.Phys.Chem.C,Vol.114,No.14,2010Mora-Sero ′et al.

previous results on CdSe/ZnS nanocrystals.30,35,36Comparison of the LO mode before and after N719dye sensitization (inset of Figure 4)reveals marginal differences between the different sensitized electrodes,indicating that the QDs retain their structural integrity upon dye adsorption.The only systematic variation that is traced concerns a shift of the LO peak from 205to 206.5cm -1together with a decrease of its fwhm from 15to 10cm -1upon deposition of the ZnS coating for both DA and LA samples.This behavior can be attributed to the release of interfacial strain and the passivation of surface defects by the ZnS shell,similar to colloidal CdSe/ZnS QDs.30,35An additional mode is observed at 284cm -1together with a rather broad band around 480cm -1(Figure 4).These Raman peaks can be attributed to the growth of a mixed CdS x Se 1-x interfacial layer between CdSe QDs and the ZnS shell that gives rise to a CdS-like LO mode at LO CdS ~280cm -1and its combination with the CdSe LO phonon at LO CdSe +LO CdS ~470-490cm -1,respectively.36,37Moreover,resonant excitation allows identify-ing the ?rst CdSe overtone 2LO at 413cm -1,whose integrated intensity ratio to the one-phonon LO mode is a sensitive probe of the exciton -phonon coupling strength.38The value of I 2LO /I LO is determined to be 0.11(1)for the LA +ZnS sample,which is comparable,though smaller than those of CdSe nanocrystals with mean diameter in the range of 2-3nm.38This implies weakening of the exciton -phonon interaction upon deposition of the ZnS coating,in good agreement with recent Raman results on CdSe/ZnS nanorods.39

On the other hand,cosensitization of the QD/TiO 2photo-electrode with the N719dye leads to distinct variations of the resonance Raman spectrum compared to that of the free dye molecules (Figure 5).The most intense bipyridine ring stretching modes (1470-1615cm -1)as well as the C -C inter-ring and C -O stretching modes (1250-1320cm -1)of the N719dye exhibit clear frequency shifts,intensity variations,and severe broadening upon sensitization of the QD/TiO 2electrode,exceeding in most cases those observed in the bare N719/TiO 2.This behavior,especially the increased damping of the dye vibrations inferred from the Raman peak broadening,is a characteristic feature of the ef?cient grafting of the dye molecules on the QD/TiO 2surface.27,28Furthermore,a weak and broad band appears at about 1370cm -1on both N719/TiO 2and N719/QD/TiO 2electrodes accompanied by a weak shoulder at ~1580cm -1on the QD/TiO 2electrode.Similar bands have been previously reported in the surface-enhanced Raman spectra of water and ethanol solutions of N719mixed with silver colloids and were identi?ed with the symmetric and asymmetric COO -

stretching modes,respectively.40The persistence of these modes in the Raman spectra of N719/QD/TiO 2suggests that the dye complex may be bound onto the CdSe QDs through its carboxylate groups,similar to colloidal metallic nanoparticles.Transient Absorption Spectroscopy.To establish the rela-tionship between QD and the dye we have undertaken TAS measurements on the TiO 2-QD-BD heterostructured system.The use of BD instead of N719allows the selective excitation of the dye,for example,at 640nm,where the QD does not absorb,see Figure 1.On the other hand,it has been previously reported that N719and BD molecular complexes exhibit similar behavior upon conjugation on QD-sensitized TiO 2electrodes.19Figure 6shows the normalized spectral transient absorption of QD,BD,and BD-QD-TiO 2samples at 100μs after sample excitation.After light excitation at λexc )440nm QDs are excited.Probing the sample absorption at different wavelengths,λprobe ,the spectral pattern of the analyzed samples is obtained by detecting the absorption signal from the QD +cation 14and the BD +cation.These cations originate from the charge transfer processes between the excited light-absorbers and TiO 2or between the different light-absorbers.We would also like to notice that from λprobe )850nm to the maximum wavelength of our system (980nm)the transient absorption spectrum may also have a component due to the absorption of the electrons at the TiO 2semiconductor ?lm.

The back electron transfer decays from TiO 2to the oxidized QDs were recorded by measuring exciting at λexc )440nm and monitoring at λprobe )620nm,the wavelength of maximum absorbance of QD +,see Figure 6.Moreover,TAS measurements for BD-QD-TiO 2for LA and DA samples are shown in Figure 7.When the samples are excited at λexc )640nm,only the dye is excited.The origin of the cation absorption decay is the recombination of an injected photogenerated electron into TiO 2with the remaining hole in the cation.In all cases,the recombination decay kinetics expands from nanoseconds to milliseconds time scale and can be ?tted by a stretch exponential of the form ?OD )OD o exp(-(t /τ) ),where OD is the optical density,τis a characteristic lifetime,and is the exponential factor.It is also worth noting that the decay on the dye-sensitized DA sample is twice that on the dye-LA suggesting lower recombination when using this synthetic approach that could partially compensate for the lower injection ef?ciency observed for the LA samples.On the other hand,the addition of the dye to the QD slows down 10times this back electron transfer,

see

Figure 5.Resonance Raman spectrum of the DA sample after N719cosensitization in the dye vibration region,compared to N719/TiO 2and the N719complex in powder form,at 514.5

nm.

Figure 6.Transient absorption spectra recorded at 100μs after excitation at λexc )440nm for TiO 2-(LA-ZnS)and TiO 2-(LA-ZnS)-BD samples,and at λexc )640nm for the TiO 2-BD sample.The increment in the optical density for the three samples has been normalized to unity for comparison purposes.DA samples present an analogous behavior.

Fast Regeneration of CdSe Quantum Dots J.Phys.Chem.C,Vol.114,No.14,20106759

Table 2,for both deposition methods.To exclude the possibility of electron injection from the black dye directly into TiO 2,the formation of the dye cation has been monitored by excitation at 640nm and probe at 780nm.A positive signal is not obtained in any sample suggesting that either there is no formation of BD +or that the recombination kinetics between photoinjected electrons at the QD and the oxidized dye occurs faster than our instrumental response.In any case,the increased recombination lifetime t 1/2,see Table 2,observed for the QD +after dye attachment can be directly correlated to the in?uence of the presence of the anchored dye.Finally,the formation of BD +and subsequent regeneration of the QD ground state by the hole transfer from the QD to the anchored dye have been monitored using λexc )440nm,where the BD +has no signi?cant absorption,see Figure 6,and monitored the decay at 780nm.For both DA and LA samples,the resulting decays occur on

the same time range,see Figure 7,and are ?tted to stretch exponentials.The calculated half-lifetime of BD +-QD-TiO 2is 100times higher compared to that of BD +anchored onto TiO 2(Table 2).

The main processes taking place in the sensitized electrodes are indicated in Figure 8.The QD photoexcitation,process 1in Figure 8a,at λexc )440nm promotes the electron injection from the QD excited state to the TiO 2conduction band,process 3in Figure 8a,and the immediate regeneration of the QD ground state by the attached dye,process 5in Figure 8b,which implies that the holes are located at the dyes and the charge recombina-tion process,between the photoinjected electrons at the TiO 2and the oxidized dyes,process 6in Figure 8b,is much slower than in the case with no dye attached,process 4in Figure 8a,due to the increase of distance between the electron donor material and the electron acceptor moiety.The charge recom-bination dynamics vs distance dependence relationship has already been reported for DSC by Durrant and co-workers.41

To further con?rm our hypothesis we have carried out TAS experiments on ZrO 2mesoporous ?lms,see Figure 9.The ZrO 2conduction band edge is much higher in energy than the TiO 2,which prevents the electron injection either from the QD or the dye.Nonetheless,the photoexcitation at 440nm and probe at 780nm lead to an extremely fast decay in our micro-to millisecond TAS system,close to the experimental setup response time.This fact indicates that there is an ef?cient electron transfer from the dye to the QD but the back-electron transfer lifetime occurs faster than microseconds.On the other hand,the fast regeneration of the QD by the Ru dye reduces the internal recombination in QDs,process 2in Figure 8a,producing the observed quenching in PL.The reduction of internal recombination also increases the amount of injected electrons from QDs into TiO 2,as has been previously observed.19,26Conclusions

In summary,we have performed a systematic investigation of the electronic coupling between colloidal CdSe QDs

and

Figure 7.Transient absorption measurements of the TiO 2-QD-dye ?lms excited at λexc )440nm,and recorded at λprobe )620nm (squares)or λprobe )780nm (full circles),and excited at λexc )640nm and probed at λprobe )780nm (line):(a)LA samples and (b)DA samples.

TABLE 2:Parameters Obtained from the TAS Measurements of Sensitised QD-TiO 2Electrodes a

sample λexc -λprobe t 1/2(ms) TiO 2-(LA-ZnS)440-6200.540.14TiO 2-(LA-ZnS)-BD 440-780230.22440-620 3.80.23TiO 2-(DA-ZnS)440-6200.380.17TiO 2-(DA-ZnS)-BD 440-780700.42440-620 1.70.32TiO 2-BD

640-760

0.61

0.32

a

BD denotes cosensitization with the black bye.BD-TiO 2is shown as reference:t 1/2is the recombination lifetime deduced from the fwhm of the decay,and is the exponential factor obtained from the stretched exponential

(see text for details).

Figure 8.Schematic energy diagram of carrier photogeneration,

transfer,and recombination in (a)QD/TiO 2and (b)dye/QD/TiO 2.Arrows indicate the main processes occurring in sensitized electrodes after light illumination.The thickness of the arrows shows qualitatively the strength of the process.After light illumination electron -hole pairs are photogenerated,process 1.This pair can recombine internally in the QD before any carrier is transferred outside the QD,process 2.This internal recombination can be nonradiative or radiative,the radiative recombination results in the PL signal detected.In addition photogenerated electrons can be transferred to TiO 2,process 3,and they will recombine with the holes left in the QD,process 4.When the dye is attached to the QD the internal recombination,process 2,is strongly reduced (PL quenching),due to the fast hole injection from QD into TiO 2,process 5.In this situation,the recombination of photoinjected electrons in the TiO 2with photoinjected holes in the dye,process 6,is sensibly slower than the recombination process QD/TiO 2as has been characterized by TAS measurements.

6760J.Phys.Chem.C,Vol.114,No.14,2010Mora-Sero ′et al.

ruthenium molecular dyes used successively as sensitizers of mesoporous TiO 2?lms by means of photoluminescence,resonance Raman,and transient absorption spectroscopy,and observed a strong interaction between both of them.Our results indicate the following:(i)Distinct differences in the emission intensity between QDs anchored on TiO 2electrodes by DA and LA suggest that the absence of a mediating molecular bridge in the former anchoring mode strengthens the coupling and the concomitant electron injection from QDs to TiO 2.(ii)ZnS coating on the QD/TiO 2electrodes enhances the PL yield acting as a passivation layer of the CdSe QD surface states,as in colloidal core -shell semiconductor nanocrystals.(iii)Most importantly,cosensitization with a ruthenium molecular dye,commonly employed in dye-sensitized solar cells,leads to marked PL quenching,most pronounced in the case of uncoated,directly adsorbed QDs on TiO 2,though clearly sustained even in the presence of ZnS intervening layers.The underlying mechanism is attributed to the fast photoinduced hole transfer from QDs to the dye molecules that act as regenerating agents of the QD sensitizers and promote charge separation in the dye/QD/TiO 2system.These results could have important implica-tions for the development of QDSC photovoltaic devices exploiting the synergistic function of composite heterostructures consisting of QDs and molecular dyes.

Acknowledgment.This work was partially supported by the Ministerio de Educacio ′n y Ciencia of Spain under the project HOPE CSD2007-00007(Consolider-Ingenio 2010),MAT2007-62982,and by Generalitat Valenciana project PROMETEO/2009/058.S.G.,J.A.,and E.M.F.acknowledge the Spanish Ministry of Science and Technology for its ?nancial support through the Ramo ′n y Cajal,Torres-Quevedo,and Juan de la Cierva programs,respectively.Prof.Palomares also thanks the ICIQ and ICREA for ?nancial support,and the European Research Council for the ERC fellowship PolyDot.The authors want to acknowledge Dr.Roberto Go ′mez and his group from University of Alicante (Spain)for providing colloidal QDs.References and Notes

(1)Yu,P.;Zhu,K.;Norman,A.G.;Ferrere,S.;Frank,A.J.;Nozik,A.J.J.

Phys.Chem.B 2006,110,25451.

(2)Vogel,R.;Hoyer,P.;Weller,H.J.Phys.Chem.B 1994,98,3183.(3)Kamat,P.V.J.Phys.Chem.C 2008,112,18737.(4)

Klimov,V.I.J.Phys.Chem.B 2006,110,16827.

(5)Nozik,A.J.Phys.E (Amsterdam,Neth.)2002,14,115.(6)O’Regan,B.;Gratzel,M.Nature 1991,353,737.(7)Gime ′nez,S.;Mora-Sero ′,I.;Macor,L.;Guijarro,N.;Lana-Villarreal,T.;Go ′mez,R.;Diguna,L.J.;Shen,Q.;Toyoda,T.;Bisquert,J.Nano-technology 2009,20,295204.

(8)Guijarro,N.;Lana-Villarreal,T.;Mora-Sero ′,I.;Bisquert,J.;Go ′mez,R.J.Phys.Chem.C 2009,113,4208.

(9)Lee,H.J.;Yum,J.-H.;Leventis,H.C.;Zakeeruddin,S.M.;Haque,S.A.;Chen,P.;Seok,S.I.;Gra ¨tzel,M.;Nazeeruddin,M.K.J.Phys.Chem.C 2008,112,11600.

(10)Leschkies,S.K.;Divakar,R.;Basu,J.;Enache-Pommer, E.;Boercker,J.E.;Carter,C.B.;Kortshagen,U.R.;Norris,D.J.;Aydil,E.S.Nano Lett.2007,7,1793.(11)Mora-Sero ′,I.;Gime ′nez,S.;Moehl,T.;Fabregat-Santiago,F.;Lana-Villareal,T.;Go ′mez,R.;Bisquert,J.Nanotechnology 2008,19,424007.(12)Robel,I.;Subramanian,V.;Kuno,M.;Kamat,P.V.J.Am.Chem.Soc.2006,128,2385.(13)Gime ′nez,S.;Lana-Villarreal,T.;Go ′mez,R.;Agouram,S.;Mun ?oz-Sanjose ′;Mora-Sero ′,I.2010.Submitted for publication.(14)Mart?′nez-Ferrero, E.;Mora-Sero ′,I.;Albero,J.;Gime ′nez,S.;Bisquert,J.;Palomares,E.Phys.Chem.Chem.Phys.2010,12,2819.(15)Mora-Sero ′,I.;Gime ′nez,S.;Fabregat-Santiago,F.;Go ′mez,R.;Shen,Q.;Toyoda,T.;Bisquert,J.Acc.Chem.Res.2009,42,1848.(16)Yin,Y.;Alivisatos,A.P.Nature 2005,437,664.

(17)Cho,K.-S.;Lee,E.K.;Joo,W.-J.;Jang,E.;Kim,T.-H.;Lee,S.J.;Kwon,S.-J.;Han,J.Y.;Kim,B.-K.;Choi,B.L.;Kim,J.M.Nat.Photonics 2009,3,341.

(18)Medintz,I.L.;Uyeda,H.T.;Goldman,E.R.;Mattousi,H.Nat.Mater.2005,4,435.(19)Mora-Sero ′,I.;Gross,D.;Mittereder,T.;Lutich,A.A.;Susha,A.;Dittrich,T.;Belaidi,A.;Caballero,R.;Langa,F.;Bisquert,J.;Rogach,A.L.Small 2009,6,221.

(20)Kongkanand,A.;Tvrdy,K.;Takechi,K.;Kuno,M.;Kamat,P.V.J.Am.Chem.Soc.2008,130,4007.

(21)Dibbell,R.S.;Watson,D.F.J.Phys.Chem.C 2009,113,3139.(22)Shen,Q.;Kobayashi,J.;Diguna,L.J.;Toyoda,T.J.Appl.Phys.2008,103,084304.

(23)Sharma,S.N.;Pillai,Z.S.;Kamat,P.V.J.Phys.Chem.B 2003,107,10088.

(24)Sykora,M.;Petruska,M.A.;Alstrum-Acevedo,J.;Bezel,I.;Meyer,T.J.;Klimov,V.I.J.Am.Chem.Soc.2006,128,9984.

(25)Lee,H.J.;Leventis,H.C.;Moon,S.-J.;Chen,P.;Ito,S.;Haque,S.A.;Torres,T.;Nu ¨esch,F.;Geiger,T.;Zakeeruddin,S.M.;Gra ¨tzel,M.;Nazeeruddin,M.K.Ad V .Funct.Mater.2009,19,2735.(26)Mora-Sero ′,I.;Dittrich,T.;Susha,A.S.;Rogach,A.L.;Bisquert,J.Thin Solid Films 2008,516,6994.

(27)Likodimos,V.;Stergiopoulos,T.;Falaras,P.;Ravi Harikisun,R.;Desilvestro,J.;Tulloch,G.J.Phys.Chem.C 2009,113,9412.(28)Pe ′rez Leo ′n,C.;Kador,L.;Peng,B.;Thelakkat,M.J.Phys.Chem.B 2006,110,8723.

(29)Stergiopoulos,T.;Bernard,M.-C.;Hugot-Le Goff,A.c ?.;Falaras,P.Coord.Chem.Re V .2004,248,1407.

(30)Baranov,A.V.;Rakovich,Y.P.;Donegan,J.F.;Perova,T.S.;Moore,R.A.;Talapin,D.V.;Rogach,A.L.;Masumoto,Y.;Nabiev,I.Phys.Re V .B 2003,68,165306.

(31)Rolo,A.G.;Vasilevskiy,M.I.J.Raman Spectrosc.2007,38,618.(32)Wang,Q.;Pan,D.;Jiang,S.;Ji,X.;An,L.;Jiang,B.J.Cryst.Growth 2006,286,83.

(33)Nazeeruddin,M.K.;Humphry-Baker,R.;Liska,P.;Gra ¨tzel,M.J.Phys.Chem.B 2003,107,8981.

(34)Dabbousi,B.O.;Rodriguez-Viejo,J.;Mikulec,F.V.;Heine,J.R.;Mattoussi,H.;Ober,R.;Jensen,K.F.;Bawendi,M.G.J.Phys.Chem.B 1997,101,9463.

(35)Meulenberg,R.W.;Jennings,T.;Strouse,G.F.Phys.Re V .B 2004,70,235311.

(36)Dzhagan,V.M.;Valakh,M.Y.;Raevskaya,A.E.;Stroyuk,A.L.;Kuchmiy,S.Y.;Zahn,D.R.T.Nanotechnology 2007,18,285701.(37)Scamarcio,G.;Spagnolo,V.;Ventruti,G.;Lugara ′,M.;Righini,G.C.Phys.Re V .B 1996,53,R10489.

(38)Alivisatos,A.P.;Harris,T.D.;Carrol,P.J.;Steigerwald,M.L.;Brus,L.E.J.Chem.Phys.1989,90,3463.

(39)Lange,H.;Artemyev,M.;Woggon,U.;Niermann,T.;Thomsen,C.Phys.Re V .B 2008,77,193393.(40)Pe ′rez Leo ′n,C.;Kador,L.;Peng,B.;Thelakkat,M.J.Phys.Chem.B 2005,109,5783.

(41)Clifford,J.N.;Palomares,E.;Nazeeruddin,M.K.;Gra ¨tzel,M.;Nelson,J.;Li,X.;Long,N.;Durrant,J.R.J.Am.Chem.Soc.2004,126,5225.

JP100591M

Figure https://www.360docs.net/doc/ad4992484.html,parison of the TAS measurements for the TiO 2-(LA-ZnS)-dye and ZrO 2-(LA-ZnS)-dye ?lms excited at λexc )440nm and recorded at λprobe )780nm.

Fast Regeneration of CdSe Quantum Dots J.Phys.Chem.C,Vol.114,No.14,20106761

量子点与生物标记

量子点与生物标记 应化1002班王艳 荧光分析法是生物学研究中十分重要的方法之一,其检测灵敏度很大程度上取决于标记物的发光强度和光化学稳定性。目前使用的大多数荧光试剂如有机荧光染料等存在着光学稳定性较差、激发光谱范围窄、发射光谱较宽、与生物分子的背景荧光难以区分等不可忽视的弱点,导致应用中灵敏度下降。量子点作为一种新型的荧光纳米材料,弥补了有机染料的上述缺点,引起分析化学和生命科学领域的广泛关注。 量子点即半导体纳米粒子,也称半导体纳米晶,是指半径小于或接近于激子玻尔半径的半导体纳米晶粒。它们由n-VI族或n l-V族元素组成,性质稳定,能够接受激发光产生荧光,具有类似体相晶体的规整原子排布。在量子点中,载流子在三个维度上都受到势垒的约束而不能自由运动。需要指出的是,并非小到100nm以下的材料就是量子点,真正的关键尺寸取决于电子在材料内的费米波长。只有当三个维度的尺寸都小于一个费米波长时,才称之为量子点。 量子点独特的性质基于它自身的量子效应,当颗粒尺寸进入纳米量级时,尺寸限域将引起库仑阻塞效应、尺寸效应、量子限域效应、宏观量子隧道效应和表面效应,从而派生出纳米体系具有常观体系和微观体系不同的低维物性,展现出许多不同于宏观材料的物理化学性质 作为荧光探针,量子点的光学特性比在生物荧光标记中常用的传统有机染料有明显的优越性: (l)宽的激发波长范围及窄的发射波长范围,可以使用小于其发射波长的任意波长激发光来激发,并且可以通过改变QDs的物理尺寸对荧光峰位进行调控。这样就可以使用同一种激发光同时激发多种量子点,从而发射出不同波长的荧光,进行多元荧光检测。相反多种染料的荧光(多种颜色)往往需要用多种激光加以激发,这样不仅增加了实验费用,而且使分析系统变得更加复杂。此外,由于QDs的这种光学特性,可以在其连续的激发谱中选取更为合适的激发波长,从而使生物样本的自发荧光降到最低点,提高分辨率和灵敏度。 (2) 量子点具有较大的斯托克斯位移(stokes shift),能够避免发射光谱与激发光谱的重叠,从而允许在低信号强度的情况下进行光谱学检测。生物医学样本通常有很强的自发荧光背景,有机荧光染料由于其Stokes位移小,检测信号通常会被强的组织自发荧光所淹没,而Q Ds的信号则能克服自发荧光背景的影响,从背景中清楚地辨别检测信号。QDs的荧光发射光谱相对狭窄,因此能同时显现不同颜色而无重叠,这样就能在实验中同时进行不同组分的标记。 (3) 量子点的发射峰窄而对称,重叠小,相互干扰较小,在一定程度上克服了光谱重叠所带来的问题。 (4) 量子点的发射波长可通过控制其大小和组成调节,因而有可能任意合成发射所需波长的量子点,大小均匀的量子点谱峰为对称的高斯分布; 此外,量子点hiP、InAs能够发射700~1500nm多种波长的荧光,可以填补普通荧光分子在近红外光谱范围内种类很少的不足。对于一些不利于在紫外和可见区域进行检测的生物材料,可以利用半导体量子点在红外区域染色,进行检测,完全避免紫外光对生物材料的伤害,特别有利于活体生物材料的检测,同时大幅度降低荧光背景对检测信号的干扰。 (5) 量子点的抗光漂白能力强,有高度光化学稳定性,是普通荧光染料的100

半导体超晶格

半导体超晶格 材料的制造、设计是以固体能带结构的量子力学理论为基础的,也 就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格 结构材料。半导体超晶格材料具有一般半导体材料不能实现的许 多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理 论相结合而出现的第三种类的半导体材料。利用这种材料,不仅可 以显著提高场效应晶体管和半导体激光器等的性能,也可以制备 至今还没有的功能更优异的新器件和发现更多的新物理现象,使 半导体器件的设计和制造由原来的“杂质工程”发展到“能带工 程”。因此,半导体超晶格是属于高科技范畴的新型功能材料。 电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。(曾用名:电子亲和能EA)单位是kJ/mol或eV。电子亲和势的常用符号恰好同热力学惯用符号相反。热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。而氟的电子亲和势(EA)被定义为322kJ/mol。为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。两者所用符号就趋于统一。可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。根据电子亲和势数据可以判断原子得失电子的难易。非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。在同一族中,元素的电子亲合势没有明显的变化规律。当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。在常见氧化物和硫化物中含有-2价阴离子。从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。即O-(g)+e→O2-(g),△H=780kJ/mol;S-(g)+e→S2-(g),△H=590kJ/mol。这些能量能从形成氧化物或硫化物晶体时放出的晶格能得到补偿。 电子亲和势与原子失去电子需消耗一定的能量正好相反,电子亲和势是指原子获得电子所放出的能量。 元素的一个气态原子在基态时获得一个电子成为气态的负一价离子所放出的能量,称为该元素的第一电子亲和势(First electron affinity)。与此类推,也可得到第二、第三电子亲和 势。第一电子亲和势用符号“E”表示,单位为kJ·mol·L,如: Cl(g) +e → Cl(g)E= +348.7 kJ·mol·L 大多数元素的第一电子亲和势都是正值(放出能量),也有的元素为负值(吸收能量)。这说明这种元素的原子获得电子成为负离子时比较困难,如: O(g) +e → O(g)E= +141 kJ·mol·L O(g) +e → O(g)E= -780 kJ·mol·L 这是因为,负离子获得电子是一个强制过程,很困难须消耗很大能量。

16式太极拳

十六式太极拳 一、(武术段位制“二段”太极拳规定考评技术) 一、动作名称 预备势 第一段 1 、起势 2 、左右野马分鬃 3 、白鹤亮翅 4 、左右搂膝拗步 5 、进步搬拦捶 6 、如封似闭 7 、单鞭 8 、手挥琵琶 第二段 9 、倒卷肱 10 、左右穿梭 11 、海底针 12 、闪通背 13 、云手 14 、左右揽雀尾 15 、十字手 16 、收势 二、动作说明及要领讲解 【动作说明】 预备势 身体自然直立,两脚并拢,头颈正直,下颌内收,胸腹放松,肩臂松垂,两手轻贴于大

腿外侧;精神集中,眼向前平视,呼吸保持自然。 第一段 1 、起势 ( 1 )左脚向左轻轻分开半步,与肩同宽,脚尖向前。 ( 2 )两手慢慢向前平举,手心向下,与肩同高,两臂横向距

离约同肩宽,肘微下垂。 ( 3 )上体保持正直,两腿缓慢屈膝半蹲,同时两掌轻轻下按,落至腹前,手心向下,掌与膝相对。 【练习要点】沉肩、垂肘,松腰屈膝,臀部不可凸出,身体重心落于两腿中间;手指

自然微屈,两臂下落要与身体的下蹲动作协调一致。 2 、左右野马分鬃 ( 1 )上体微向右转,身体重心移至右腿上;同时右臂收于胸前平屈,手心向下;左臂外旋,左手经体前向右划弧合于腹前,手心向上,两手心相对成抱

球状;左脚随即收到右脚内侧,脚尖点地;眼看右手。 ( 2 )上体微向左转,左脚向左前方迈出,脚跟着地,随即右腿蹬地,上体继续左转,左腿前弓,成左弓步;同时左右手随转体慢慢分别向左上、右下分开,左手高与眼平,肘微屈,手心斜向上;右手落于右胯旁,肘也微屈,手心向下,指尖向前;眼看左手。 ( 3 )左脚蹬地,上体慢慢后坐,身体重心移至右腿,左脚尖翘起;身体左转,右腿屈膝以脚前掌蹬碾地面,左腿随身体左转向外摆脚约45 °,随后全脚踏实,左腿慢慢屈

ENAS云存储(网盘+文档云)管理系统解决方案

易存云存储系统平台建设 项目方案 北京易存科技 2016-1-25 目录 一、方案概述....................................... (03) 二、方案要求与建设目标.................................0 4 2.1 客户需求分析..................................04 2.2 系统主要功能方案..............................05 三、系统安全方案.................................... (19) 3.1 系统部署与拓扑图...............................19 3.2 文件存储加密...................................21 3.3 SSL协议........................................22 3.4 二次保护机制............................. (23)

3.5 备份与恢复.....................................23 四、系统集成与二次开发.................................24 4.1 用户集成.......................................24 4.2 文件集成.................................... (2) 7 4.3 二次开发.................................... (2) 9 五、典型成功案例.......................................29 六、售后服务体系.................................... (30) 6.1公司概况.......................................30 6.2 服务内容与响应时间............................. 31 一、方案概述 随着互联网时代的到来,企业信息化让电子文档成为企业智慧资产的主要载体。信息流通的速度、强度和便捷度的加强,一方面让我们享受到了前所未有的方便和迅捷,但另一方面也承受着信息爆炸所带来的压力。 传统的文件管理方式已经无法满足企业在业务的快速发展中对文件的安全而高效流转的迫切需求。尤其是大文件的传输与分享,集团公司与分公司,部门与部门之间,乃至与供应商或客户之间频繁的业务往来,显得尤其重要。 文件权限失控严重,版本混乱,传递效率,查找太慢,文件日志无法追溯,历史纸质文件管理与当前业务系统有效整合对接等一系列的问题日渐变的突出和迫切。 该文档描述了北京易存科技为企业搭建文档管理系统平台的相关方案。从海量文件的存储与访问,到文件的使用,传递,在线查看,以及文件的流转再到归档

量子点总结

1.前言 在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年, Alivisatos和Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题, 他们利用MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。 与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。 由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。 现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS[39], CdSe/ZnSe[40])。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。 2.在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250~300℃的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。 2.1 单核量子点的制备1993 年,Murray 等采用有机金属试剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(±5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌的350℃TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240℃以阻止CdSe 纳米颗粒继续成核,随后升温到260~280℃并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60℃。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将粒径控制在2.4~13nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件,将两组体积不同,配比一定的Cd (CH3) 2、Se、TOP 的混合溶液先后快速注入高温TOPO 中的方法制得了棒状的CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种

超晶格(GaAs)_n(InAs)_1(001)的光学性质

第20卷第10期半 导 体 学 报V o l.20,N o.10  1999年10月CH I N ESE JOU RNAL O F SE M I CONDU CTOR S O ct.,1999超晶格(GaA s)n (I nA s)1(001)的光学性质3 李开航 黄美纯 张志鹏 朱梓忠 (厦门大学物理系 厦门 361005) 摘要 采用L inearized2M uffin2T in2O rb ital(LM TO)能带方法对应变超晶格(GaA s)n (InA s)1 (001)进行自洽计算.在得到较准确能带结构和本征波函数的基础上,计算该超晶格的光学介电 函数虚部Ε2(Ξ)、折射率和吸收系数.结果表明,该超晶格表现出的光学性质和GaA s体材料不 相同,在115~215eV能量范围的吸收系数增大,且该超晶格在较宽的能量范围内有较好的光谱 响应. PACC:7865,7360,7125T 1 引言 近年来人们对嵌入InA s单分子层的超晶格(GaA s)n (InA s)1的研究兴趣日趋浓厚,并且随着各种外延生长技术的不断发展,生长具有突变界面的高质量超晶格(GaA s)n (InA s)1(001)成为可能[1~3].嵌入的InA s单分子层能够有效地限制量子阱中电子和空穴的运动.从实验上能够观察到2K温度下超晶格产生很强且尖锐的光致发光(PL)谱峰,PL谱峰能量位置比GaA s体材料低40m eV,并且谱峰的强度比GaA s体材料的谱峰强度高[1~3].超晶格(GaA s)n (InA s)1(001)属于 型异质结系统,有利于其在高速和光电器件中的开发应用.因此从理论和实验上探索该超晶格的各种物理特性具有实际意义,特别是了解和掌握半导体材料的折射率和吸收系数对于设计和分析异质结量子阱激光器及光波导器件来说是十分重要的.因此,本文从第一原理出发,用LM TO2A SA能带方法[4]计算超晶格(GaA s)n (InA s)1(001)的能带结构,在得到能量本征值和本征波函数的基础上计算该超晶格的光学介电函数Ε(Ξ),折射率n和吸收系数,为该超晶格的开发应用提供理论参数. 2 计算方法 在计算超晶格(GaA s)n (InA s)1(001)能带结构之前,我们先要确定其原胞结构.在GaA s衬底上外延生长(GaA s)n (InA s)1(001)短周期超晶格时,由于InA s和GaA s的晶格  3国家高技术(863)新材料领域(8632715210)课题资助 李开航 男,1967年出生,博士,现任讲师,目前主要从事半导体超晶格材料的光学性质研究工作 黄美纯 男,1937年出生,教授,博士生导师,目前主要从事低维半导体材料和半导体光电子器件的教学与研究1998205203收到,1998211224定稿

陈式太极拳的内功教程

陈式太极拳的内功教程 简述 一、太极拳教程之混元桩时间为30分钟。 1、起式,双足平行分开与肩同宽或略宽于肩,两膝微屈,上身自然直立,不偏不倚;两 手自然下垂,手不贴身。 2、将双手慢慢抬起,至胸前呈抱球状似两手抱住一个气球,胸部开阔但切忌有意挺胸、肩要放松、腋下含空,双手距胸部尺许略远,掌心向内,指尖相对,双手之间距离为二至三拳。双手五指自然微张即可。臀部微有下坐之意似坐于高凳上,背部、腰部似微身后的大树或 墙上,似非,体重大部分落于脚跟。 3、练太极拳内功时,面部表情自然微笑,双目平视前方,不要仰头或低头,练功时也可 闭眼去练。呼吸自然,周身放松,忌用拙力。只要能使身体自然直立,手臂抬起的姿式正确, 即为达到站桩的要求。 4、放松训练,意识从上到下,反复放松三次。顺序:头部、颈部、肩部、臂部、两手、胸部、腹部、腰部、胯部、大腿、小腿、脚掌。放松的正确做法就是:避免无意识的肌肉 紧张用力,恢复自然状态。 5、不需要特定的意念,不需要刻意入静。 6、收式,两手放下,轻轻交叠抱盖在肚脐部位,静养1──3分钟。然后两手搓热,轻 轻搓面部几次到几十次参考辅助内容里的按摩法。 太极拳内功说明: 1、每次练习时间从10分钟开始,间隔5分钟再练习,共两次。以后逐渐增加到一次30分钟以上,则只需练习一次。 2、站桩前应稍微活动一下各关节各种体操动作均可;结束后可以散步3-5分钟。 3、地点的选择:室内注意空气流通但不要正当风口,或空气清新但无明显风的室外。 树林里的空地是最佳地点。 4、两脚一般要求平行,但略成外八字也可以。 5、形体调整的要领:头顶似有一线把身体悬吊起来,则脊椎骨由于重力作用自然节节 下垂拉开。 二、太极拳内功教程之混元开合式时间10分钟

太极拳内劲功力训练法

太极拳内劲功力训练法刘嗣传 一代太极大师陈照奎先生曾说:“没功夫,技巧也是空的;功夫不出,什么技巧也不顶用,关键是出功夫。”这里讲的“功夫”就是内劲功力。从所周知太极拳除养生外,还具有较强的技击作用。技击正是靠内劲功力来达到其目的的。像张三丰祖师名垂千古,杨氏三代在近代威显武林,陈家沟也不乏继往开来之人,这都是靠内劲功力显名创派,提高知名度的。因此太极拳讲究功夫与技巧,功力是技术的基础,而技巧又是内劲功力发挥得恰到好处的保证。所以我们练习太极拳技击,必须培植内劲功力。如果训练内劲,达到具有随心所欲的高强功力,加之配合以无极和太极的神奇技巧,便是所向披靡的拳 技。 太极拳内劲功力是考查一个拳手的必检之课,是衡量一个太极技击家功夫高低的重要标志。一个太极拳手必须精通一门(一式)太极拳,并融合多式太极拳或其他拳术之精华,互相吸收,方能成为高手。任何一位卓有成就的太极拳家不只熟悉一门拳术,他触类旁通,把其他拳术都溶合在自己的拳技中了。所以我们不能简单地、机械地把他划归为哪一类太极拳。在练习太极拳时各自会形成一个独特风格,这样就产生出陈、杨、吴、武、孙等多式太极拳,还包括现在整理的赵堡太极及武当太极。太极拳的演变绝不是孤立的存在的,它们互相溶合渗透,吸收变通以至改造创新。正因为如此,太极拳的发明是历史文化(传统武术)积淀后,经智者、高手、贤哲们编创,把太极阴阳学说全面地结合于人身、肢体的运动。太极拳内劲在内不在外,它是在长期通过意识统率下,使呼吸与动作相结合锻炼,在精神意念贯注之中,体内形成的一种既沉重又轻灵,既刚硬又柔软的劲力。也就是说,太极拳的内劲是通过技击性专项训练,即在技击攻防意识的指挥下,配合呼吸,全身做各种调和有序动作,动作曲伸有一定方向和作用点、线,在不同情况下,能快能慢,空间路线可长可短(通常是走圆弧形),动作幅度可大可小体位或正或斜,均可整劲骤发。这种可刚可柔的太极内劲,练时运劲柔和,而发落到点则刚强。因此,太极拳的内劲带有刚的一面,这是太极拳的内劲带有刚的一面,这是太极拳内劲质量的刚,不是硬、蛮、呆的无变化的拙力之刚,是积柔成刚,刚柔相济。正如《拳经》曰:“看似至柔,其实至刚,看似至刚,其实至柔。”此“刚”是随机随势迅速地将隐蓄于体内的全身之力聚于一点,在刹那间迅如奔雷地爆发出来,这种力不是发后断劲的,而是变柔和之力继续运动。 太极拳的这种内劲是在内力松柔的基础上,经过有规律的长期训练获得。当具有了一定的刚力基础,再把内劲功力过渡到动作自然、轻松的技巧之中。长时间的习练柔化运动,久而久之便练得棚劲弹力随心用,胸腰叠化随气行。 我们再看看武术的一般劲力。它也是通过肢体的运动表现出来的一种力。这种力量也是在意识支配下,通过气息吐纳和肌肉舒缩有序化的配合而产生的。意识支配是指神经呼吸和肌肉的控制,有序化的配合是指对气息吐纳和肌肉舒缩按照武术技击动作的一定顺序和规格,同时起动同步运行,同时到达一定部位。太极拳的内劲,正是按照这一劲力原理,通过由内及外的训练培养出来的,它不同于外家拳由刚硬、直出、快猛、吐气开声等训练方式而获得的劲力。太极拳是由缓慢、轻松、柔和、曲旋,并通过走螺旋、划圆疑难、腕缠丝、胸腰伸长叠化而由内到外产生劲力。太极内劲特别注重内中意识的锻炼,主张“用意不用力”,意念神经的指导又有独特的运行路线,再配以肢体的圆运动,练就一种混圆一体的圆匀力场。活动在这个圆匀力场内的身体就是一个不凹不凸的太极体,且是应付一切外来侵入的变化无端的圆形体。时时慢练心悟,突出以柔化、借力、粘走化发的攻防意识,形成以棚、履、挤、按、采、挒、肘、靠、进、退、顾、盼、定为主要特色的劲路,加以灵活多变的和、眼、身劲、步的同步习练,从而显示出太极拳独到的攻防技击特色。 太极拳内劲中的刚发,是在得机得势时,即“中实”之后的突发,这时内劲的来源是靠

谈谈云存储

谈谈云存储 本本伴随我至今已有8个年头了,因为我到哪都喜欢带着它,尽管在别人眼里就跟一个古董似的,但我一直不舍得换新的,可能是“日久生情”吧,勉强用着先。毕竟为了适应这个信息技术的发展,除了CPU、主板这些核心的配件,其他基本上也都换过一遍了,但仍然是捉襟见肘,最近就碰到了存储容量的问题。4年前把硬盘从原配的80G 换了个250G的,忽然发现又不够用了,现在的文件、软件真是越做越大,比如某数值计算软件,装上就是3个G,虽然功能强大,估计我自己用的也就一两百M的功能;某数据库系统强行就占了5个G,还不能直接删除,相当烦人;某图像处理软件,新版本占用空间越来越大,搞得我现在还在用8年前的版本,另外打算存几个高清图片、视频的想法还是不要有了。无奈之下,我只好打开常用的360浏览器,把免费的云盘空间翻了出来。 关于“云”这个概念,前几年确实火了一阵,像我这样现在才使用的人应该是比较out了吧(谁叫我一直没有这个需求,呵呵)。第一次用,惊喜还是有的,也许是我经常使用360浏览器的缘故,登录以后就得到了36T的空间,刚开始还真有点小激动,还好马上就想明白了,这就是一种营销手段,对于我来说,也或许是大多数人,以目前的计算机水平,就算再怎么喜欢收集电影、软件之类的占空间的东西,充其量也就10T左右吧,不管是给你36T甚至到无限使用的空间也好,也不就是一个数字而已,和10T没有多大分别,别人做云盘就是要抓住我们这种不想花钱又想得到超大存储空间的心理。好了,话

又说回来,既然云盘服务都这么慷慨,几十个T的存储空间随便给,总得有个“后台”吧,那就是云存储的技术支撑,虽然我没研究过这方面的理论,只是想感性地谈谈,至少得需要这么几个方面的技术。 容量。云存储吸引人的特点就是大容量,之所以能这么做,关键就是把网络上的存储资源都整合到了一起,这么大的存储资源一家公司买不起,也没必要花重金购买,只需要廉价租用网络资源就行了。而互联网发展到今天,网络上有很多服务器,也有很多闲臵的存储资源,他们更愿意把闲臵的资源租出去,获取利润。就有点像我们用余额宝,自己的小钱存在银行里利息低得不忍直视,而且存定期也不方便,这时聪明的老马跳出来,发明了余额宝,把大家的钱忽悠过来,用大钱跟银行谈大额存单,获取高利润,再把一部分高利润返还给用户们,而且还通过基金管理、收益预支等方式,让大家随时可以存取,自然深得人心。云存储自然也是用了这么一个“聚少成多”的原理。 管理。这是云存储的核心技术,百度一下就能看到很多专业的术语,那么讲得通俗一点就是解决文件的存放、查找和读取的问题。这里我只想讲一个词——索引。为每个文件基于内容产生出一个唯一的索引值,类似于去图书馆找书,每一本书上都有一个唯一的编号。这样做至少有两个好处,一个就是方便查找,云存储的管理者只要构建一个数据库来存储文件的索引值,然后通过索引值映射到网络存储空间,通过这种方式就能对网络上的文件进行存储和读取,因为索引值远远要比文件所占空间要小得多,有利于通过数据库进行管理;另一个好处就是节省空间,也许你会想,产生一个多余的索引值不就增加

(完整word版)量子点LED

量子点LED专题报告 一、什么是量子点LED? 量子点LED是把有机材料或者LED芯片和高效发光无机纳米晶体结合在一起而产生的具有新型结构的量子点有机发光器件。相对于传统的有机荧光粉,量子点具有发光波长可调(可覆盖可见和近红外波段)、荧光量子效率高(可大于90%)、颗粒尺寸小、色彩饱和度高、可 低价溶液加工、稳定性高等优点,尤其值得注意的是高色纯度的发光使得其色域已经可以超过HDTV标准色三角。因此基于量子点的发 光二极管,有望应用于下一代平板显示和照明。

表征量子点的光电参数: 1、光致发光谱(PL谱):光致发光谱反映的是发射光波长与发光强度的关系。从PL谱上可以得到发光颜色的单色性、复合发光的机制、量子点的颗粒尺寸大小及分布均匀性、本征发射峰波长等基本光学信息。量子点光致发光谱的半高宽越窄,说明量子点的发光单色性越好,器件的缺陷和杂质复合发光越少。 2、紫外可见吸收谱:量子点的紫外可见吸收谱反映的是量子点对不同波长光的吸收程度,从谱中吸收峰的位置可计算出量子点的禁带宽度。量子点吸收谱的第一吸收峰与光致发光谱的发射峰的偏移是斯托

克斯位移,斯托克斯位移越大,量子点的自吸收越弱,量子点的荧光强度越高。 3、光致发光量子产率:量子点溶液的光致发光量子产率是通过与标准荧光物质(一般用罗丹明6G)的荧光强度对比而测出。量子点高的量子产率能有效提升器件的发光效率,但纯核量子点沉积成薄膜后量子产率将比在溶液中的量子产率下降1到2个数量级。量子点也存在荧光自淬灭现象,这是由存在于不均匀尺寸分布的量子点中的激子通过福斯特能量转移到非发光点进行非辐射复合所引起。 二、量子点LED在照明显示中的应用方案 量子点的发射峰窄、发光波长可调、荧光效率高、色彩饱和度好,非常适合用于显示器件的发光材料。量子点LED在照明显示领域中的应用方案主要包括两个方面:a、基于量子点光致发光特性的量子点背光源技术(QD-BLU,即光致量子点白光LED);b、基于量子点电致发光特性的量子点发光二极管技术(QLED)。

陈式太极拳一路83式口诀

陈式太极拳一路83式口诀 A、陈式太极有渊源,王庭先祖传在前,陈鑫品三留真传,发科前辈创新拳。 B、松活弹抖刚柔济,螺旋缠绕妙无比,动作舒展手法细,闪展腾挪无僵力。 01(一) 02

D、连贯圆活虚实明,阴阳开合记在心,松而不懈是关健.有弊须在腰间寻。 E、阴阳无绐又无终,动则生阳静生阴,一手一运一太极,一动一静互为根。 F、行拳须明缠丝劲,不明此理不明拳,劲以积日而有益,功以久练而后成。 G H 一)熟练套路明确姿势 所谓“套路”是指太极拳的整套架式。所谓“姿势”是指每个架式的动作结构。初学时主要重于套路熟练,方位正确。同时适当注意姿势的规范。经过一段时间练习后,套路已熟练,这时就必须侧重于姿势的正确,这样才能产生内气,发挥健身及技击上的效果。现分两个方面,谈谈这一阶段的练习方法及注意事项。 1.动寓静之内,静寓动之中。练陈氏太级拳必须保持思想上的清静,排除一切内外干扰。只有这样才利于收敛内气,引动鼓荡。《拳论》说:“静养灵根气养神”。所谓养根的“根”,就是根本,也就是肾脏。中医学认为“肾为先天之根”,内藏元阴元阳,是人体生命活动的原动力。“静则养根”,也就是说,只有在意识清净的条件下,才能有助于肾气的旺盛与收藏,从而使五脏健运,内气充沛,神得所养,动作矫健。 2.注意身法。初练太极拳,不应要求过高,操之过急,就和初学写字一样,能写成横平、竖直、点、钩等笔划,组合成方块就行。初学练拳,身法上只要求头部自然端正,立身中正,不偏不倚。步法上只要能做好弓步、虚步、开步和收步,知道方位即可,至于不可避免出现的毛病,像挑肩架肘、横气填胸、呼吸发喘、手足颤抖等现象,不宜深究。但运行方位、角度、顺序必须绝对正确,力争做到姿势柔软、大方顺随。 每天坚持练10遍左右,两个月即可将套路练熟。这时要进一步考虑动作要求,从头至足,一招一势进行纠正。在动作速度上尽量放慢,以利于揣摩思考动作的正确与否。每天坚持10遍拳,再练习一个时期,就可以通过这一阶段而进入第二阶段了。 (二)调整身法周身放松 所谓“身法”,是指练拳时对周身各部位要求的原则。要调整身法,首先必须在放松上下功夫。为了使骨节松开,伸筋拔骨,可选练些动作,如“金刚捣碓”、“掩手肱拳”、“摆脚跌叉”等,但要尽量放松,不要用拙力。 这一阶段练习出现的主要毛病是立身不正,横气填胸,挑肩架肘等,产生这些毛病主要原因有两个:一是对“放松”这个含意理解不够;二是腿的支撑力不足,难以放松。《拳论》说:“身必以端正为本。以周身自然为妙。”也就是说套路架式的练习,身法上要以立身中正为根本。所说的“端正”,也有两种含意:一是指躯干四肢及头的位臵中正,即身体不偏不倚之意;另一种是身体在歪斜情况下,保持相对平衡,如开步时的上引下进动作。所谓“放松”就是说在腿的支撑下,全身各部自然协调地松下,气沉丹田。初学时由于对这些问题没有理解和注意,加上功力浅薄,所以不可避免地会发生上述毛病。可通过增加练拳遍数放低身法,加大运动量,并且做一些单腿或双腿下蹲运动及站桩功来克服上述毛病。同时注意松胯、曲膝、圆裆,保持立身中正。随着腿部力量的增长,

太极拳真谛

太极拳真谛 作者:冯志强 寓太极理论于拳术之中,故名为太极拳。欲练好太极拳,于理则须明无极、的指导太极的含义;于拳则又需在理的指导下运动手足,经过长时间的锻炼,方能成功。我青年时从太极拳陈公发科学艺,即深爱此拳理精法密,本于太极正理。四十年来,虽每日细玩太极图,犹觉“太极”二字奥秘难穷,故我与太极拳之点滴认识,甚觉肤浅,仅为太极拳之皮毛耳。在此公诸于众,诚恐贻笑大方,尚祈有识个中真窍之同道不吝赐教是幸。 首先,要练好太极拳必须明白太极拳是怎样一种拳术?它具有什么样的内涵和性质?我认为,概括为一句话:太极拳是一种性命双修的内功拳术。性命双求也可称为心肾双求,心主性,肾主命;心象火,肾象水。性命双修就是要通过练习太极拳达到身体内部水火既济,阴阳调和从而健康长寿的目的。 太极理论,可以说是东方哲学中的一种极具代表性的理论。在我国,从它出现到现在的二十多个世纪中,吸引了无数学者对之进行研究,使这个理论日趋完善而严密。太极拳的创造者,也正是引用了前人的研究成果,加以延伸和推广,使它和武术运动相结合;使练武者通过练习这种拳术既可以防身自卫又可以祛病延年。 太极者,无极而生,阴阳之母也。无极之义,空空洞洞,混混沌沌,无一物而包万物。由无极而现有极,遂太极生焉,阴****焉。所形象喻,太极为一大皮囊,内中阴阳旋转,互相调济以生万物。古之学者形诸于图,即太极图的由来。古代的求道之士,又以无极太极之理而象诸于人身,则人体亦为一太极;既为太极必有阴阳,而阴阳的代表即为心、肾。心属阳,阳中有阴,肾属阴,阴中有阳,上为阳,下为阴,阴阳相济,太极为真,人始得以长寿。 宇宙中阴阳相生以至生生不息。阴阳互调又生三才,三才者:天、地、人也。上天下地人居其间,行之于人体则有三身,三身的含义即为精、气、神。精气神之舍为三丹田,上为天门(百会穴),下为地户(会阴穴),中为气海(丹田穴)。天门主神,地户藏精,气海蕴气。精气神充足,即为性命之根,造化之源,生死之本。 明白了这些含义,练太极拳时必先求无极。“拳诀”云:“练拳先从无极始,阴阳开合认真求。”学者练拳之先必站无极势,使自己心定神安,空洞无物,以至绝象觉明,复有一点灵犀生于气海之中,则太极生焉。随则两仪、四象、八卦、三才、五行皆在于其中。动则为阳,静则为阴,一动一静,一开一合之间拳术已具。开始练习时,尤要以心行气,以气运身,以达练精化气,练气化神,练神还虚,虚至虚灵的效果。精气神为人身至室,习练得法功必大进,实为练拳之最紧要处! 其次,练好太极拳还必须明白拳术的法则。过去有句话叫“宁传十手,不传一口。”由此可见拳术理法的重要。练拳者千千万,大成者实寥寥无几,其不成者多为不明理法之故。孟子说:“大匠诲人,必以规矩。”“无规矩不成方圆”,拳虽小道,亦本乎正理。学者练

陈式太极拳拳谱全集

陈式太极拳拳谱全集 标签:金刚玉女一枪太极陈式2010-12-13 11:16 陈式太极拳拳谱全集 陈式太极拳基本功(养生功) 预备式:压腿 第一部分:关节放松 1、手指交叉手腕摇摆放松 2、手臂肘部摇摆放松 3、肩部摇摆放松 4、手臂伸展侧身摇摆放松 5、腰部转动手臂摇摆放松 6、手按腰部腰部转动放松 7、手按膝关节转动放松 8、手臂侧摇摆伸腿放松9、脚关节摇摆放松 第二部分:缠丝劲 1、逆缠 2、顺缠 3、上缠 4、下缠 5、左缠 6、右缠 7、前缠 8、后缠 第三部分:静养功 1、采气 2、 3、丹田内转运气功 4、盘坐养生功 5、平坐养生功 6、太极浑元桩陈氏太极拳老架一路 1. 太极初式 2. 金刚捣椎 3. 懒扎衣 4. 六封四闭 5. 单鞭 6. 金刚捣椎 7. 白鹤亮翅 8. 斜行 9. 搂膝10. 上三步 11. 斜行12. 搂膝13. 上三步14. 掩手肱拳15. 金刚捣锥 16. 撇身捶17. 青龙出水18. 双推手19. 肘底看拳20. 倒卷肱 21. 白鹤亮翅22. 斜行23. 闪通背24. 掩手肱拳25. 六封四闭 26. 单鞭27. 运手28. 高探马29. 右擦脚30. 左擦脚 31. 左蹬一跟32. 上三步33. 击地捶34. 翻身二起脚35. 护心捶

36. 旋风脚37. 右蹬一跟38. 掩手肱拳39. 小擒打40. 抱头推山 41. 六封四闭42. 单鞭43. 前招44. 后招45. 野马分鬃 46. 六封四闭47. 单鞭48. 玉女穿梭49. 懒扎衣50. 六封四闭 51. 单鞭52. 运手53. 摆莲脚54. 跌岔55. 金鸡独立 56. 倒卷肱57. 白鹤亮翅58. 斜行59. 闪通背60. 掩手肱拳 61. 六封四闭62. 单鞭63. 运手64. 高探马65. 十字脚 66. 指裆捶67. 猿猴探果68. 单鞭69. 雀地龙70. 上步七星 71. 下步跨虎72. 转身摆莲脚73. 当头炮74. 金刚捣锥75. 太极收势 陈氏太极拳老架二路(炮捶) 1. 太极初势 2. 金刚大捣锥 3. 懒扎衣 4. 六封四闭 5. 单鞭 6. 护心拳 7. 斜行 8. 回头金刚捣锥 9. 撇身拳10. 指裆斩手 11. 翻花舞袖12. 掩手肱拳13. 腰拦肘14. 大肱拳15. 小肱拳 16. 玉女穿梭17. 倒骑龙18. 掩手肱拳19. 裹身鞭20. 兽头势 21. 披架子22. 翻花舞袖23. 掩手肱拳24. 伏虎25. 抹眉肱 26. 黄龙三搅水27. 左冲右冲28. 掩手肱拳29. 扫蹚腿30. 掩手肱拳 31. 全炮捶32. 掩手肱拳33. 捣岔捣岔34. 左二肱右二肱35. 回头当门炮 36. 变式大捉炮37. 腰拦肘38. 顺拦肘39. 窝底炮40. 回头井拦直入 41. 金刚捣锥42. 太极收势 陈氏太极拳小架一路 1. 金刚捣锥 2. 懒扎衣 3. 六封四闭 4. 单鞭 5. 金刚捣锥 6. 白鹤亮翅 7. 搂膝拗步 8. 初收 9. 上三步10. 斜行拗步 11. 再收12. 上三步13. 掩手肱拳14. 金刚捣锥15. 撇身拳 16. 青龙出水(出手花) 17. 肘底看拳(叶底花) 18. 倒卷肱(珍珠倒卷帘) 19. 白鹤亮翅20. 搂膝拗步

习练太极拳的一点感悟

学练太极拳的感悟 多年来对拳艺极虑求精,搜寻探索,偶有些粗浅体会。以下系本人初窥太极拳门径的一孔之见,体悟肤浅,仅供太极拳初学者参考。 1、学习太极拳,是一个漫长的过程,永无止境。 须渐修方能顿悟。但一层功夫一层理,不到一定的境界,凭现有的体会去揣摩太极拳理论,必有隔阂。功夫不到,耳食为知,终属虚妄。 2、太极拳爱好者选择老师学拳就极为重要。 太极拳学习主要是以传统的言传身教方式,所以,正所谓:老师(传统称呼为“师父”)领进门,修行靠个人。可见老师想不想、能不能把你领进门具有决定意义。在这里要提醒太极拳爱好者,不要迷信哪一派的“正宗传人”或“什么大师”、“嫡传弟子”等宣传,太极拳是活着的文化与技艺,是不能像古董、金钱一样继承、传递的。所以说:选择老师学拳首先是明师(明白拳理拳法的“明”和开明不保守的“明”),再是严师,加上名师当然更好。还要具体看看继承人的武德、功夫、综合修养如何。 3、对文字、图谱、影像、视频的看法: 书本图谱形式的缺点是图形静止,无法表现拳术运劲及神态。视频影像形式则没有图谱形式的缺点,老师向学生言传身教,自学者似乎是在旁听。其实,没有老师在旁边校正动作,是图谱和影像形式自学时的共同缺点。再说,图谱影像上的示范者,都是经过由简单到复

杂、由基本功到套路,由套路到对练,经过体悟身知的老师,图谱影像等载体无法把这个过程反应出来。从这个意义上说,图谱、影像只是供训练有素者所用。非此类自学者,若以自己的理解按图索骥,十之八九的结果是南辕北辙。如果一味地坚持自学,由此而形成错误练法。理论性学问可以文字形式记录下来,只要理解了,就算掌握了。而太极拳则是身体力行的技艺,语言、文字、图像都无法确切地记录身体力行的感觉,这就决定了“复制学习”太极拳的长期性与复杂性是太极拳难以普及之处,也是中华古老文明宝贵之处。 4、练习太极拳要想具有技击实战能力,首先要出功夫。 如何才能出功夫呢?首先要选择正确的练习方法。那么什么才是正确的练习方法呢?以我个人练习太极拳的经验来说,太极拳的内容应包括:一是基本功的训练;二是套路的练习;三是桩功的练习;四是辅助功法的练习;五是内功的修炼;六是各种推手的练习;七是散手实战训练。 5、慢与快 由于诸多原因,现在的很多太极拳爱好者只知道杨式太极拳唯有慢练的传统拳架,不知道还有快练的传统拳架。“慢”好像是杨式太极拳的代名词,以至忽视了慢的实质和快的一面,甚至有人提出“如把太极拳练快,别人就不相信你练的是太极拳了”,客观否定了快的重要性,盲目为了“慢”而慢练,最终将喜欢技击的太极拳练习者引入了“枉费功夫贻叹息”的误区。殊不知慢是为了给快打基础,慢是练功的手段方法,而不是目的,正如拳谚的“慢如抽丝,疾如电挚”。

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

陈式太极拳谱大全

陈式太极拳谱大全 - - - 一、陈氏太极缠丝功 陈氏太极功法主要是让初学者对太极功法有一个初步的了解,同时提高对太极拳中呼与吸的认识,加强对拳理拳法的理解,另外,这套功法中是太极功法中最低层的展现。层次越高,其外形反而不显。也就是说“有意不露其形”。望各位爱好者提高认识,用科学自然的方法练习,不然就会有“走气”之说,甚至会出现气闷、横气填胸、头晕等症状。 陈氏太极功法动作名称 1无极桩 2正面单手缠丝 3侧面单手缠丝 4正面上下缠丝绸 5正面里外缠丝 6正面里外侧面缠丝 7正面里外上下缠丝 8正面双手缠丝 9正面双手上下缠丝 10正面双手开合缠丝11斜步上下缠丝 12斜步双手缠丝 13斜步左右缠丝 14前后缠丝 15大小缠丝 单腿的缠丝:1开合缠丝 2上下缠丝 3上步缠丝绸 4倒步缠丝 5拗步缠丝 6定步缠丝二、陈氏太极拳十九势 十九势是当代陈氏第十九世太极拳掌门人陈小旺大师结合老架、新架、小架于一身所创的陈氏简化太极套路之一。陈小旺大师为了让更多的人了解陈氏太极拳,更好的弘扬陈氏太极拳,创编的这套陈氏太极拳十九势,短小精辟,并且不失陈氏太极拳的风格及特点,是初学者的良师益友。 陈式太极拳十九势动作名称: 1预备势 2金刚出庙 3懒扎衣 4上步斜行 5上三步 6左掩手肱拳 7双推手 8倒卷肱 9闪通背 10右掩手肱拳 11六封四闭 12运手 13高探马 14右蹬一跟 15左蹬一跟 16野马分鬃 17玉女穿梭 18金刚捣碓 19收势 三、陈氏太极拳三十八势 陈氏太极拳三十八势是当代陈氏第十九世太极拳掌门人陈小旺大师根据陈氏太极拳新架套路中的基本要领和运动规律删略重复动作简化而出,此套路架式宽大,低沉稳重,螺旋缠丝劲别具一格,初学新架者习此可起到抛砖引玉的作用。 陈式太极拳三十八势动作名称: 1预备势 2金刚捣碓 3白鹤亮翅 4上三步 5斜行 6搂膝 7前蹚拗步 8掩手肱拳 9撇身捶10双推手 11三换掌 12肘底捶 13倒卷肱 14退步压肘 15白蛇吐信 16闪通背 17前蹚拗步 18左青龙出水 19击地捶 20二起脚 21护心拳22前招 23后招 24右蹬一跟 25左蹬一跟 26玉女穿梭 27懒扎衣 28六封四闭29单鞭 30雀地龙 31上步七星 32小擒打 33运手34高探马 35双摆莲 36当头炮 37金刚捣碓 38收势 四、陈氏太极拳老架一路 陈氏太极拳老架系陈家沟陈氏第十四世祖陈长兴根据祖传拳术的基础上,由博归约创编了流传至今的老架一路、二路。老架一路以柔为主,柔中有刚,动作舒展大方,连绵不断,节节贯串,沉着稳健,一动无有不动,运动如行云流水,发劲时要处处运用螺旋劲,以行引气,以气催行,呼吸要自然,虚实要分明,含胸塌腰,蓄发相变,快慢相间,达到全身浑然一体 陈式太极拳老架一路动作名称: 1预备势 2金刚捣碓 3懒扎衣 4六封四闭 5单鞭 6金刚捣碓 7白鹤亮翅 8斜行 9搂膝 10上三步 11斜行 12搂膝 13上三步

相关文档
最新文档