Multicolor Flow Cytometry-荧光染料

Multicolor Flow Cytometry-荧光染料
Multicolor Flow Cytometry-荧光染料

https://www.360docs.net/doc/a95479034.html,/research/multicolor/spectrumguide/index.jsp#search=(spectrum view) Multicolor Flow Cytometry

Spectrum Guide

When making decisions about which fluorochromes to use in your experiments, you'll want to know their relative emission spectra. Simply mouse over the spectrum on the left side to view

histograms that represent the absorption and emission spectra for each BD? fluorochrome.

Brilliant Violet? 421 (Ex

-Max 407 nm/Em-Max 421 nm)

is a polymer-based dye excited by the

violet laser and is one of the brightest fluorochromes offered by BD Biosciences. Conjugates are

typically 10 times brighter than Pacific

Blue? conjugates and are often as bright as or brighter than

PE conjugates. Due to nearly identical excitation and emission properties but different spillover

characteristics, Brilliant Violet 421, Pacific Blue?, and BD Horizon V450? cannot be used

simultaneously.

BD Horizon? V450 (Ex-Max 404 nm/Em-Max 448 nm) is a coumarin dye excited by the violet laser that exhibits spectral properties similar to Pacific Blue?. Conjugates are typically as bright or brighter than comparable reagents conjugated to Pacific Blue?. Due to nearly identical excitation and emission properties but different spillover characteristics, Brilliant Violet 421, Pacific Blue?, and BD Horizon V450 cannot be used simultaneously.

Pacific Blue? (Ex-Max 401 nm/Em-Max 452 nm) is based on the 6,8-difluoro-7-hydroxycoumarin fluorophore, and is strongly fluorescent, even at neutral pH. Due to nearly identical excitation and emission properties but differe nt spillover characteristics, Brilliant Violet 421, Pacific Blue?, and BD Horizon V450 cannot be used simultaneously.

AmCyan (Ex-Max 457 nm/Em-Max 491 nm) is a 108-kDa protein derived from Anemoniamajano. With an excitation peak of 458 nm and an emission peak of 491 nm, it can be used on violet

laser–equipped flow cytometers in combination with Brilliant Violet 421, BD Horizon V450, or Pacific Blue?, but not BD Horizon V500.

BD Horizon? V500 (Ex-Max 415 nm/Em-Max 500 nm) is a novel organic dye excited by the violet laser. This dye offers improved brightness over Pacific Orange? and reduced spillover into the FITC channel when compared to AmCyan. BD Horizon V500 cannot be used simultaneously with AmCyan or Pacific Orange?.

Alexa Fluor? 488 (Ex-Max 495 nm/Em-Max 519 nm) conjugates are highly photostable and remain fluorescent over a broad pH range. The excitation and emission maxima are nearly identical to those of FITC. However, Alexa Fluor? 488 tends to be brighter and more optimal for intracellular applications. Due to nearly identical excitation and emission properties but different spillover characteristics, FITC and Alexa Fluor? 488 cannot be used simultaneously. Alexa Fluor? 488 exhibits extraordinary photostability, which makes it highly suitable for fluorescence microscopy.

FITC (Ex-Max 494 nm/Em-Max 520 nm), fluorescein isothiocyanate, is a fluorochrome with a molecular weight of 389 Da. FITC is sensitive to pH changes and photobleaching. Due to nearly identical excitation and emission properties but different spillover characteristics, FITC and Alexa Fluor? 488 cannot be used simultaneously. FITC is relatively dim and should be reserved for highly expressed markers whenever possible.

PE (Ex-Max 496 nm/Em-Max 578 nm), R-phycoerythrin (PE) is an accessory photosynthetic pigment found in red algae. It exists in vitro as a 240-kDa protein with 23 phycoerythrobilinchromophores per molecule. This makes PE the brightest fluorochrome for flow cytometry applications but its photobleaching properties make it unsuitable for fluorescence microscopy.

BD Horizon? PE-CF594 (Ex-Max 496 nm/Em-Max 612 nm) is a tandem conjugate, developed

exclusively by BD Biosciences, that combines PE and CF594. PE-CF594 is a brighter alternative to PE-Texas Red?, with improved spectral characteristics. PE-CF594 reagents exhibit very consistent

spillover values lot-to-lot, making them an ideal choice for the PE-Texas Red? detector (610/20

nm).

APC (Ex-Max 650 nm/Em-Max 660 nm)

, allophycocyanin (APC), is an accessory photosynthetic

pigment found in bluegreen algae. Its molecular weight is approximately 105 kDa. APC has six

phycocyanobilinchromophores per molecule, which make it a very bright fluorochrome that is highly suitable for flow cytometry applications. Due to nearly identical excitation and emission

properties but different spillover characteristics, APC and Alexa Fluor? 647 cannot be used

simultaneously.

PE-Cy?5 (Ex-Max 496 nm/Em-Max 667 nm) is a tandem conjugate that combines phycoerythrin and a cyanine dye. Because of its broad absorption range and the fact that its emission spectra are equivalent to APC, PE-Cy5 is not recommended for simultaneous use with APC. The Cy5 molecule has been shown to exhibit nonspecific binding to Fc receptors, which is most apparent on monocyte populations. PE-Cy5 is not recommended for fluorescence microscopy because it is subject to photobleaching.

Alexa Fluor? 647 (Ex-Max 650 nm/Em-Max 668 nm) conjugates are highly photostable and remain fluorescent over a broad pH range. The excitation and emission maxima are nearly identical to those of APC. However, APC tends to be brighter while Alexa Fluor? 647 is more optimal for intracellular applications. This fluorochrome exhibits uncommon photostability, making it an ideal choice for use in fluorescence microscopy. Due to nearly identical excitation and emission properties but different spillover characteristics, APC and Alexa Fluor? 647 cannot be used simultaneously.

PerCP (Ex-Max 482 nm/Em-Max 678 nm) is a component of the photosynthetic apparatus found in the dinoflagellate Glenodinium. PerCP is a protein complex with a molecular weight of approximately 35 kDa. Due to its photobleaching characteristics, PerCP conjugates are not recommended for use on flow cytometers with high-power lasers (>25 mW).

PerCP-Cy?5.5 (Ex-Max 482 nm/Em-Max 695 nm) is a tandem conjugate that combines PerCP with a cyanine dye. PerCP-Cy5.5 is not subject to photobeaching like PerCP and can be used with stream-in-air flow cytometers. It has less Fc receptor-mediated nonspecific staining than PE-Cy5. Additionally, the PerCP-Cy5.5 tandem conjugate is not as susceptible to fixative or light instability compared to APC-Cy7 and PE-Cy7.

Alexa Fluor? 700 (Ex-Max 696 nm/Em-Max 719 nm) is a far-red dye that can be excited with a 633–640-nm laser. This enables multicolor analysis in conjunction with APC or Alexa Fluor? 647 and APC-H7 or APC-Cy7 reagents.

APC-Cy?7 (Ex-Max 650 nm/Em-Max 785 nm) is a tandem fluorochrome that combines APC and a cyanine dye (Cy7). Special precautions must be taken with APC-Cy7 conjugates, and cells stained with them, to protect the fluorochrome from long-term exposure to light. Some APC-Cy7 conjugates show changes in their emission spectra with prolonged exposure to paraformaldehyde. Fixed cells should be analyzed within 4 hours of fixation in paraformaldehyde or transferred to a paraformaldehyde-free buffer for overnight storage. Due to nearly identical excitation and emission properties but different spillover characteristics, APC-Cy7 and APC-H7 cannot be used simultaneously.

APC-H7 (Ex-Max 650 nm/Em-Max 785 nm) is an APC-cyanine tandem fluorochrome, which uses an analog of Cy7 and has similar spectral properties to APC-Cy7. APC-H7 conjugates provide greater stability in light and paraformaldehyde fixatives and have less spillover into the APC channel than APC-Cy7 conjugates. APC-H7 conjugates are typically 75% as bright as equivalent

APC-Cy7 conjugates. Due to nearly identical excitation and emission properties but different

spillover characteristics, APC-Cy7 and APC-H7 cannot be used simultaneously.

PE-Cy?7 (Ex-Max 496 nm/Em-Max 785 nm) is a tandem fluorochrome that combines PE and a

cyanine dye. PE-Cy7 conjugated reagents are as bright as PE conjugates. PE-Cy7 is particularly

sensitive to photo-induced degradation, resulting in loss of fluorescence and changes in

fluorescence spillover. Extreme caution must be taken to avoid light exposure and prolonged

exposure to paraformaldehyde fixative. Fixed cells should be analyzed within 4 hours of fixation in

paraformaldehyde or transferred to a paraformaldehyde-free buffer for overnight storage.

Name Excitation

(nm)

Peak

Emission

(nm)

Relative

Intensity

(1 =

Lowest,

5 =

Highest)

Uses

Alexa Fluor? 532532 554 3 Detected in channel with appropriate filter set

arrangement for the instrument.

Photostable and pH independent.

An excellent choice for fluorescence microscopy.

R-PE (R-Phycoerythrin)532 - 561

nm

578 5 Detected in FL2 channel on most instruments.

High quantum yield (ideal for detection of low density

antigens).

Subject to photobleaching.

PE-Texas Red

(Not available from eBioscience)

532 - 561

nm

615 3 Detected in FL3 on single laser instruments.

PE-Cy5532 - 561

nm

667 4 Detected in FL3 or FL4 on most instruments.

Tandem dye, resonance energy transfer from PE

molecule to the cyanine dye Cy5.

When used with APC on dual laser machines, needs

a cytometer capable of interlaser compensation. See

PE-Cy5.5 for dual laser instruments.

PE-Cy5.5532 - 561

nm

695 3 to 4 Detected in FL3 or FL4 on most instruments.

Tandem dye, resonance energy transfer from PE

molecule to cyanine dye Cy5.5.

When used with APC on dual laser machines, needs a cytometer capable of interlaser compensation. Better choice for dual laser instruments than PE-Cy5.

PE-Cy7532 - 561

nm 785 3 Detected in channel with appropriate filter set

arrangement for the instrument.

Tandem dye, resonance energy transfer from PE

molecule to cyanine dye Cy7.

Minimal cross-beam compensation required when

used simultaneously.

常用抗体标记荧光染料的特性及其应用

常用抗体标记荧光染料的特性及其应用 1、FITC:激发波长488nm,最大发射波长525nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)可用于荧光显微镜技术 4)荧光强度易受PH值影响,PH值降低时其荧光强度减弱。 2、Alexa Fluor 488:激发波长488nm,最大发射波长519nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)具有超乎寻常的光稳定性,非常适用于荧光显微镜技术; 4)在较宽的PH值范围内保持稳定(PH4~10)。 3、Cy3:激发波长488nm,最大发射波长570nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)适用于荧光显微镜技术; 4)为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于P E。 4、Cy5:激发波长633/635nm,最大发射波长670nm。 1)其标记的抗体适用于所有配备633nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL4通道检测;

3)适用于荧光显微镜技术; 4)同样为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于APC。 5)与单核和粒细胞非特异性结合多,易出现假阳性结果。 5、PE:激发波长488nm,最大发射波长575nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)其荧光泯灭性强,不适用于传统的荧光显微镜技术,但适用于激光共聚焦显微镜技术。 6、PE-TR:激发波长488nm,最大发射波长615nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 7、PE-Alexa Fluor 610:激发波长488nm,最大发射波长628nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)荧光强度高; 3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 8、PE-Alexa Fluor 647:激发波长488nm,最大发射波长668nm。 1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测; 2)不易湮灭;

分子生物学常用荧光核酸染料

由于只需简单温和的物理方法(光照)激发和检测,荧光染料是研究生物学微观世界特别是核酸时最常用的示踪工具之一。这里的荧光核酸染料主要指能特异结合核酸并改变发光特性的化合物,DNA电泳后检测凝胶的EB大概是最为人熟知的荧光核酸染料吧。除了染胶,荧光核酸染料还可用于荧光原位杂交中作为常见的复染剂,它们能以非共价键的方式与DNA/RNA结合从而显示原位杂交中的细胞背景信息。根据它们能否穿透细胞膜进入活细胞体内,还可分为两大类:通透性核酸染料和非通透性核酸染料。生物通在此简单比较一下在分子生物学实验和细胞学实验中常用的荧光染料。 分子生物学常用荧光核酸染料 荧光核酸染料在分子生物学最常见的应用无疑是电泳凝胶染色,以及定量PCR。 EB EB(溴化乙锭)本身在紫外下不发光,能与单链、双链甚至三链DNA高效结合并发出明亮的橙色荧光。因其廉价且灵敏度高,一直是琼脂糖核酸电泳最常用的荧光染料。EB的使用非常简单方便,电泳结束后染色可获得最佳效果,也可以在制胶时加入进行前染。前染有利于节约时间,但是易出现条带变形拖尾等问题。EB-DNA结合物会导致染料的光漂白和DNA单链断裂,且具有潜在的诱变作用。虽说以前的实验室里总会有个别做起实验来“精神可嘉,行为可怕”的家伙,一时找不到手套他们敢徒手拿EB胶,但大多数人对EB还是“敬而远之”的,没事谁都不愿靠近实验室里跑胶、看胶那一块地方。偏偏对于搞分子生物学的人来说,跑胶就像吃饭一样平常,于是大家只能硬着头皮天天和EB打交道,盼望EB的替代品早点出现在实验室。生物通在此简单回顾一下这几年纷纷登场的EB替代品。 SYBR系列染料 说到EB的替代物,首先想到的是Invitrogen旗下Molecular Probes专利持有的SYBR系列。自1993年SYBR核酸染料推出以来,就因其灵敏度和易用性而迅速大受欢迎,成为明星产品之一。这一系列包括4种染料:SYBR Safe、SYBR Gold、SYBR Green I和SYBR Green II。

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

常用荧光染料的激发和发射波长

常用荧光染料的激发和发射波长 Fluorescent Dye (荧光染料)Excitation (激发波长, nm ) Emission (发射波长, nm ) Cy2 489 506 GFP(Red Shifted) 488 507 YO-PRO -1 491 509 YOYO -1 491 509 Calcein 494 517 FITC 494 518 FluorX 494 519 Alexa 488 490 520 Rhodamine 110 496 520 ABI,5-FAM 494 522 Oregon Green 500 503 522 Oregon Green 488 496 524 RlboGreen 500 525 Rhodamine Green 502 527 Rhodamine123 507 529 Magnesium Green 506 531 Calcium Green 506 533 TO-PRO -1 514 533 TOTO-1 514 533 ABI,JOE 520 548 BODIPY 530/550 530 550 Dil 549 565 BODIPYR 542 568 BODIPY558/568 558 568 BODIPY564/570 564 570 Cy3 550 570 Alexa 546 555 570 TRITC 547 572 Magnesium Orange 550 575 Phycoerythrin,R & B 565 575 Rhodamine Phalloidin 550 575 Calcium Orange 549 576 Pyronin Y 555 580 Rhodamine B 罗丹明555 580 ABI,TAMRA 560 582 Rhodamine Red 570 590 581 596

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

关于荧光染(资料集合)

关于荧光染料(资料集合) ●人肉眼对光源波长的颜色感觉 红色770-622 nm 橙色622~597 nm 黄色597~577 nm 绿色577~492 nm 蓝靛色492~455nm 紫色455~350nm ●理想的荧光染料一般具有以下几个特点: 1.具有高的光子产量,信号强度高; 2.对激发光有较强的吸收,降低背景信号; 3.激发光谱与发射光谱之间距离较大,减少背景信号的干扰; 4.易与被标记的抗原、抗体或其他生物物质结合而不影响被标记物的特异性; 5.稳定性好,不易受光、温度、PH、标本抗凝剂和固定剂的影响。 ●染料在生物化学中最早的应用是直接对切片进行染色,然后进行观察。随着生物技术、计算机技术以及荧光光谱测定技术的不断发展,许多染料尤其是荧光染料在细胞检测、肿瘤基因蛋白分析、毒物分析、临床医疗诊断等方面得到了广泛的应用。 荧光染料泛指吸收某一波长的光波后能发射出另一大于吸收光波长的光波的物质。利用荧光染料进行抗体标记分析在现代生物免疫学领域中应用广泛,并逐步显示出明显的优越性。 下面简要介绍应用于标记抗体的荧光染料及其种类: 1.荧光素类染料,包括异硫氰酸荧光素(FITC)、羟基荧光素(FAM)、四氯荧光素(TET)等及其类似物。这是一类具有较多苯环的化合物。应用最广泛的是FITC(如图为FITC标记的组织荧光图),在488nm 处由氩离子激光激发,发射525nm的蓝绿色荧光。FITC能够与各种抗体蛋白结合,并在碱性溶液中稳定呈现蓝绿色荧光。 2.罗丹明类染料,包括红色罗丹明(RBITC)、四甲基罗丹明(TAMRA)、罗丹明B(TRITC)等。TRITC在550nm处被激发可发射出570nm的黄色荧光。 3.Cy系列菁染料,菁染料通常有两个杂环体系组成,包括Cy2、Cy3、Cy3B、Cy3.5、Cy5、Cy5.5、Cy7及其类似物。 4.Alexa系列染料,它是由MolecularProbes开发的系列荧光染料。其激发光和发射光光谱覆盖大部分可见光和部分红外线光谱区域,应用广泛。以高亮度、稳定性、仪器兼容性、多种颜色、pH值不敏

荧光染料

荧光染料简介 荧光定义 荧光染料会发出荧光,所谓荧光是指物质分子吸收紫外光后发出的可见光荧光以及吸收波长较短的可见光后发出的波长较长的可见光荧光。 荧光发生机理 每个分子具有一系列严格的分立能级,室温下物质分子大部分处于"基态",当这些物质在光的照射下吸收光能后,进入新的状态,称为"激发态"。处于"激发态"的分子是不稳定的,它可以通过以10-9-10-7秒的极短时间内发射光量子回到基态。这一过程称为荧光发射, 也就是发光。 激发光谱和发射光谱 任何发荧光的物质分子都具有两个特征光谱--激发光谱和荧光发射光谱。 在测定时,用以激发荧光的吸收光谱,一般称为荧光物质的激发光谱,它是指相对于不同激发波长的辐射所引起物质发射某一波长荧光的光谱。 荧光发射光谱简称为发射光谱,是指某一波长激发光引起物质发射不同波长荧光的光谱。 荧光效率和荧光强度 分子能产生荧光必须具备两个重要的条件,一是物质的分子必须具有吸收一定频率光能的基团--生色团,二是必须具有能产生一定光量子的荧光团。 而物质发射荧光的能力用荧光效率表示。荧光效率为荧光团发射荧光的光量子数与生色团吸收的光量子数的比值称。 荧光效率往往小于1。如罗丹明B的乙醇溶液的荧光效率为0.97;荧光素的水溶液的荧光强度为0.65,荧光效率与物质结构有关,还与所处的环境紧密相关。而对于某种荧光 物质在特定的环境下它的荧光效率是固定的。 在一定范围内,激发光越强,荧光也越强。即荧光强度(发射荧光的光量子数)等于吸收光强度乘以荧光效率。 提高荧光强度的根本方法 选择适当强度的光源作为荧光物质的激发光源,和选择适合于被检荧光物质选择性吸收的光谱滤光片作为激发滤光片,是提高荧光强度的根本方法。许多染料的最大吸收峰并不是 紫外光,而是在400nm-500nm的蓝绿光,所以紫外光不是这些染料的最佳激发光源,可 见光才是这些染料的最佳光源。 常用荧光色素波长

流式细胞所用试剂配置及荧光特性

、流式细胞术常用试剂 1、10%NaN 3:将 10gNaN3 溶解于 100ml 蒸馏水中,室温保存;活体实验或在辣根过氧化 酶反应中可不使用 NaN 3。 2、 3% BSA/PBS : 100ml PBS 中加入 3g BSA ,使之溶解,再加入 0.2ml 10%的 NaN 3。 3、500mmol/L EDTA :将 186g EDTA?Na 2?2H 2O 溶解于 400ml 蒸馏水中,用 NaOH 将 PH 调 至 8.0 ,补充蒸馏水至 500ml ,分装,高压灭菌,室温保存。 4g 多聚甲醛溶于100ml PBS ,加入数滴 NaOH ,在通 PH 至 7.4,使用前新鲜配制。 5、消化液: 0.25%胰蛋白酶(用培养液或 PBS 配制)或 0.25%胰蛋白酶与 0.02% EDTA 的 混合液。 6、红细胞裂解液: NH 4CI 4.16g , KHCO 3 0.5g , EDTA?2Na 0.02g ,溶于 100ml 水中,调 PH 至 7.2,补充蒸馏水至 500ml , 4 度储存,使用时需恢复至室温。 7、流式细胞抗体稀释剂: 0.1mmol/L PBS 液(PH 7.4)+ 1 % BSA + 0.1% Na 2N 3。 8、常用细胞破膜 剂: PBS 液(PH 7.4) + 1% FBS (或 BSA ) + 0.1% NaN 3+ 0.1% saponin (Sigma 的效果不错) 。 9、流式细胞染色洗涤液:含 2%的 BSA 、 0.1%NaN3 的 PBS (PH 7.4)。 10、PI 染液(保存液,10务用于细胞周期和凋亡检测):10mg PI 溶于10ml PBS ,加入2mg 无DNA 酶的RNA 酶,4度保存备用。应用时,10倍稀释,每管加 0.3ml ?0.5ml PI 染液。 11、Hanks 液的配制(BSS ,主要用于培养液、稀释剂和细胞清洗液,不能单独作为细胞、 组织培养液) 原液 A NaCl 160g MgSO 4?7H 2O 2g KCl 8g MgCl?6H 2O 2g CaCl 2 2.8g 溶于 1000ml 双蒸水 原液 B 1) N a 2HPO 4?12H 2O 3.04g KH 2PO 4 1.2g 葡萄糖 20.0g 溶于 800ml 双蒸水 2) 0.4%酚红溶液:取酚红 0.4g 置玻璃研钵中,逐滴加入 0.1N NaOH 并研磨,直至完全溶 解,约加入 0.1N NaOH 10ml 。将溶解的酚红吸入 100ml 量瓶中,用双蒸水洗下研钵中残留 的酚红4、4%多聚甲醛:在磁力搅拌下,将 风柜中于 60 度加热,使其溶解,调整

常用染料的激发与发射

常用染料的激发与发射 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

常用荧光染料的激发和发射波长

荧光染料的使用 吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。EB:染色DNA和RNA 荧光素双醋酸酯(FDA):FAD本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。荧光染料Ho33342和若丹明123:活细胞双荧光染色观察细胞核和线粒体。一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才

能进入细胞内。但有些活体染料能进入活细胞,并对细胞不产生毒性作用。荧光染料Ho33342和若丹明123都是活体染料。Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。 荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降, 这是由于荧光分子间的缔合而使自身荧光猝灭所致。

生物化学与分子生物学进展(基础)期末考试总结

生物化学与分子生物学进展(基础) 概论、目的基因 分子克隆的载体 核酸序列分析 聚合酶链反应(自学) 分子克隆技术常用的工具酶(自学) 肿瘤转移的分子机制 新生血管研究与转化医学 细胞周期与细胞增殖 基因打靶的设计与实现 细胞分化的分子机制 医学系统生物学和蛋白质组学 细胞信号转导 一、1.操纵子那张图 以乳糖操纵子为例,其组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I 存在诱导物(乳糖)时,mRNA得到转录;不存在诱导物时,mRNA无法转录。 (1)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。(2)CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 2.概念 (1)基因诊断:利用分子生物学技术,通过检测基因及基因表达产物的存在状态,对人体疾病作出诊断的方法。基因诊断检测的目标分子是DNA、RNA,也可以是蛋白质或者多肽。(2)基因治疗:指将目的基因通过基因转移技术(病毒载体介导或者非病毒载体介导的基因转移技术)导入靶细胞内,目的基因表达产物对疾病起治疗作用。包括直接导入外源正常基因、采用适当的技术抑制细胞内过度表达的基因、将特定的基因导入非病变细胞等。(3)pBR322:大小为4.36kb的环状双链DNA,其碱基序列已经全部清楚,是最早应用于基因工程的大肠杆菌质粒载体之一,有过百个限制性内切酶切点,一种限制性内切酶只有单一切口的位点也多达数十个。 (4)pUC质粒系列:是在pBR322基础上改建成的。大小约2.69kb,去除了pBR322的抗四环素区段,含LacZ基因及其启动子的操纵基因、M13的多聚接头polylinker。含有易于检测是否有外源DNA插入的标记基因LacZα,可利用α互补原理进行蓝白筛选。 3.分子医学的主要研究内容 分子医学是指从基因的角度重新认识疾病,运用基因技术预防、诊断和治疗疾病。研究内容主要包括疾病的分子机理、基因诊断、基因治疗和基因预防这四个方面。 (1)疾病的分子机理:探索疾病的原因,是有效治疗疾病的前提。基因科学的发展,为人类从细胞内部的微观生理学和分子生物学水平上寻找病因提供了新的思路。以尿黑酸症为例,

常见细胞核荧光染料

细胞核常用荧光染料有: 吖丫啶橙(Acridine Orange , AO )、溴化乙锭(Ethidium Bromide , EB )和碘化丙啶(Propidium Iodide , PI ) , DAPI 、Hoechst 染料、EthD III 、7-AAD 、RedDotl 、 2等等。 透膜的染料如下: AO :具有膜通透性,能透过细胞膜,将核 DNA 和RNA 分别染成绿色和红色,因此使细胞核呈绿色或黄绿色荧光。 EB : —种高度灵敏的荧光染色剂,在标准 302nm 处激发出橙红色信号。 DNA 的染色灵敏度要高于EB 和PI ,荧光强度比Hoechst 低,但光稳定性高于Hoechst Hoechst 染料:蓝色一类在显微观察中标记 DNA 的荧光染料,最常见的两种是 Hoechst33342和Hoechst33258。这两种染料都在紫外350nm 处被激发,在 461nm 处最大发射光附近发射青/蓝色荧光。与DAPI 相比,Hoechst33342加有乙基,具有更强的亲脂性,因此能更好的透过完整的细胞膜,并且细胞毒性更 小。 RedDot 1染料:红色,超强的细胞核选择性,其光谱相似于 Draq?5和Draq?7。RedDot?染料可被几种常见的激光激发并可在远红外区激发荧光。 RedDot? 的红色近红外荧光有效的与其他常用荧光探针区分开来。 不透膜的染料,如下: PI 作为红色荧光复染剂首选,PI 经常与Calcein-AM 或者FDA 等荧光探针合用,区分死/活细 EthD III 、7-AAD 、RedDot 2 :不能透过细胞膜,但能将坏死细胞区分开来;更适合凋亡坏死实验的检测; 细胞核荧光染料(PI DAPI Hoechst33342 ) 细胞核荧光染料PI 碘化丙啶(简称PI )是一种常用的细胞核荧光染色剂。它不能透过完整的细胞膜,但 PI 能透过凋亡中晚期的细胞和死细胞的膜 而将细胞核 染红,PI 在绿色光(540nm 波长)的激发下,会在600nm (红色光)处发出明亮的荧光,与细胞核中的DNA 结合的PI 发出的荧光,与未结合的PI 相比,强 度会增强 20-30 倍。40016Propidium iodide(PI)100mg40017Propidium iodide, 1.0mg/1mL solution in waterlOmL 碘化丙啶英文名: Propidium iodide, Propidium diiodide; PI 分子式:C27H34I2N4 分子量:668.39外观:红棕SF 末应用:DNA 染色染色原理: 碘化 丙啶(PI)是一种溴化乙啶的类似物,它在 嵌入双链DNA 后释放红色荧光。尽管PI 不能通过活细胞膜,但却能穿过破损的细胞膜而对核染色。 PI 经常被用来与 Calcein-AM 或者FDA 等荧光化合物一起使用,能同时对活细胞和死细胞染色。 光谱性质:PI-DNA 复合物的激发和发射波长分别为535nm 和615nm 。染色 过程:1.用PBS 或适当的缓冲液制备10?50小 的PI 溶液。a) 2.将1/10培养基体积的PI 溶液加入到细胞培养基中。b) 3 .在37 C 培养细胞10-20分 钟。4.用PBS 或合适的缓冲液洗涤细胞两次。 5.用535nm 激发波长,615nm 发射波长的滤光器的荧光显微镜观察细胞。 a)由于PI 可能具有致癌性, 请小心操作。b)也可以用1/10浓度的PI 缓冲液代替培养基。 保存条件:4C 避光保存 对人体有刺激性,请注意适当防护 DAPI 即4',6-二脒基-2-苯基吲哚(4',6-diamidino-2-phenylindole),是一种能够与DNA 中大部分A , T 碱基相互结合的荧光染料,常用与荧光显微镜观测。因为 DAPI :蓝色一种可以穿透细胞膜的蓝色荧光染料,其与 DNA 结合后可以产生比 DAPI 自身强20多倍的荧光,而与单链DNA 结合无荧光的增强。 DAPI 对双链 PI :不同通过活细胞膜,但却能穿过破损的细胞膜而对核染色。

常见细胞核荧光染料

细胞核常用荧光染料有: 吖啶橙(Acridine Orange,AO)、溴化乙锭(Ethidium Bromide,EB)和碘化丙啶(Propidium Iodide,PI),DAPI、Hoechst染料、EthD III、7-AAD、RedDot1、2 等等。 透膜的染料如下: AO:具有膜通透性,能透过细胞膜,将核DNA和RNA分别染成绿色和红色,因此使细胞核呈绿色或黄绿色荧光。 EB:一种高度灵敏的荧光染色剂,在标准302nm处激发出橙红色信号。 DAPI:蓝色一种可以穿透细胞膜的蓝色荧光染料,其与DNA结合后可以产生比DAPI自身强20多倍的荧光,而与单链DNA结合无荧光的增强。DAPI对双链DNA的染色灵敏度要高于EB和PI,荧光强度比Hoechst低,但光稳定性高于Hoechst。 Hoechst染料:蓝色一类在显微观察中标记DNA的荧光染料,最常见的两种是Hoechst33342和Hoechst33258。这两种染料都在紫外350nm处被激发,在461nm处最大发射光附近发射青/蓝色荧光。与DAPI相比,Hoechst33342加有乙基,具有更强的亲脂性,因此能更好的透过完整的细胞膜,并且细胞毒性更小。 RedDot 1染料:红色,超强的细胞核选择性,其光谱相似于Draq?5 和Draq?7。RedDot?染料可被几种常见的激光激发并可在远红外区激发荧光。RedDot? 的红色近红外荧光有效的与其他常用荧光探针区分开来。 不透膜的染料,如下: PI:不同通过活细胞膜,但却能穿过破损的细胞膜而对核染色。PI作为红色荧光复染剂首选,PI经常与Calcein-AM或者FDA等荧光探针合用,区分死/活细胞。 EthD III、7-AAD、RedDot 2:不能透过细胞膜,但能将坏死细胞区分开来;更适合凋亡坏死实验的检测; 细胞核荧光染料(PI DAPI Hoechst33342) 细胞核荧光染料PI碘化丙啶(简称PI)是一种常用的细胞核荧光染色剂。它不能透过完整的细胞膜,但PI能透过凋亡中晚期的细胞和死细胞的膜而将细胞核染红,PI在绿色光(540nm波长)的激发下,会在600nm(红色光)处发出明亮的荧光,与细胞核中的DNA结合的PI发出的荧光,与未结合的PI相比,强度会增强20-30倍。40016Propidium iodide(PI)100mg40017Propidium iodide, 1.0mg/1mL solution in water10mL 碘化丙啶英文名:Propidium iodide, Propidium diiodide; PI 分子式:C27H34I2N4 分子量:668.39 外观:红棕SF末应用:DNA染色染色原理:碘化丙啶(PI)是一种溴化乙啶的类似物,它在嵌入双链DNA后释放红色荧光。尽管PI不能通过活细胞膜,但却能穿过破损的细胞膜而对核染色。PI经常被用来与Calcein-AM或者FDA等荧光化合物一起使用,能同时对活细胞和死细胞染色。光谱性质:PI-DNA复合物的激发和发射波长分别为535nm和615nm。染色过程:1.用PBS或适当的缓冲液制备10~50μM的PI溶液。a) 2.将1/10培养基体积的PI溶液加入到细胞培养基中。b) 3.在37℃培养细胞10-20分钟。4.用PBS或合适的缓冲液洗涤细胞两次。5.用535nm激发波长,615nm发射波长的滤光器的荧光显微镜观察细胞。a) 由于PI可能具有致癌性,请小心操作。b) 也可以用1/10浓度的PI缓冲液代替培养基。保存条件:4℃避光保存对人体有刺激性,请注意适当防护

常用染料的激发与发射完整版

常用染料的激发与发射 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用荧光染料的激发和发射波长

荧光染料的使用 吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。EB:染色DNA和RNA荧光素双醋酸酯(FDA):FAD?本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。5mgFDA溶于1ml丙酮中,避光4℃下贮存,使用时取贮存液加入L甘露醇中.使用时,使最终浓度为%。荧光染料Ho33342和若丹明123: 活细胞双荧光染色观察细胞核和线粒体。一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。但有些活体

染料能进入活细胞,并对细胞不产生毒性作用。荧光染料Ho33342和若丹明123都是活体染料。Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。 荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH 值,此时荧光最强。当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降, 这是由于荧光分子间的缔合而使自身荧光猝灭所致。

主要荧光素一览表

(1)荧光素类 Fluorescein 标准荧光素(Reference standard)之一,在其基础上进行结构改造,可产生一系列荧光素衍生物。 Fluorescein适用于Argon-ion Laser的488nm光谱线,有相对高的荧光吸收,较好的荧光产率以及良好的水溶性。标记蛋白时通常不会产生蛋白沉淀。 与其他荧光素类衍生物一样,Fluorescein具有光淬灭率高,pH敏感性强与发射波谱宽的缺点。 主要应用于聚焦激光扫描微阵列(Confocal laser scanning microscopy)和流式细胞计应用(Flow cytometry)。 FITC 异硫氰酸荧光素,Fluorescein isothiocyanate,是荧光素衍生物的一种,5-FITC较6-FITC更经常使用。 FITC的异硫氰酸基能与氨基反应,可用于标记氨基修饰DNA,一旦形成,产物极为稳定。适用于Argon-ion Laser的488nm光谱线,Abs/Em=492/519nm(pH=9.0)。与蛋白的结合力也强。 FITC具有荧光素衍生物的普遍特性。在水中易变坏,不能长久保存。 FITC-Oligo 广泛用于杂交探针;FITC-多肽用于Edman降解蛋白测序;FITC也经常被用于蛋白电泳检测(即使是毛细管电泳)和荧光能量激发转移测试。 FAM 羧基荧光素,Carboxyfluorescein,是荧光素衍生物的一种,5-FAM较6-FAM更经常使用。 Carboxyfluorescein-5-succimidyl ester,即5-FAM(NHS)广泛存在于荧光标记试剂盒。 与FITC相比,FAM与氨基反应更快,产物也更稳定,但FITC结合蛋白的量更大且进程更易于控制。 FAM也适用于Argon-ion Laser的488nm光谱线,Abs/Em=492/518nm(pH=9.0),具有荧光素衍生物的普遍特性,在水中稳定。 5-FAM主要应用于DNA自动测序中,标记其中的d/ddCTP(PE公司),也经常用于PCR产物定量,核酸探针等。 TET 四氯荧光素,Tetrachloro fluorescein,是荧光素衍生物的一种。 TET以及HEX均是在FAM基础上加以改进的,氯原子使FAM的Abs与Em值都产生一定的红移,并在一定程度上减弱了pH敏感性。TET也适用于Argon-ion Laser激发光源,Abs/Em=521/536nm 。 TET,HEX,FAM和TAMRA可配合用于DNA自动测序中,其中TET用于标记d/ddATP,HEX用于标记d/ddGTP 或d/ddATP(PE公司) HEX 六氯荧光素,Hexachloro fluorescein,是荧光素衍生物的一种。

荧光染料列表

染料名称Excitation(nm)Emission(nm)分子量备注信息 Reactive and conjugated probes Hydroxycoumarin325386331Succinimidyl ester Aminocoumarin350445330Succinimidyl ester Methoxycoumarin360410317Succinimidyl ester Cascade Blue(375);401423596Hydrazide Pacific Blue403455406Maleimide Pacific Orange403551 Lucifer yellow425528 NBD466539294NBD-X R-Phycoerythrin 480;565578240 k (PE) PE-Cy5 conjugates480;565;650670aka Cychrome, R670, Tri-Color, Quantum Red PE-Cy7 conjugates480;565;743767 Red 613480;565613PE-Texas Red PerCP490675Peridinin chlorphyll protein TruRed490,675695PerCP-Cy5.5 conjugate FluorX494520587GE Healthcare Fluorescein495519389FITC; pH sensitive BODIPY-FL503512 TRITC547572444TRITC X-Rhodamine570576548XRITC Lissamine 570590 Rhodamine B Texas Red589615625Sulfonyl chloride Allophycocyanin 650660104 k (APC) APC-Cy7 conjugates650;755767PharRed Alexa Fluor系列荧光染料 Alexa Fluor 350343442410 Alexa Fluor 4054014211028 Alexa Fluor 430434540702 Alexa Fluor 488499519643QY 0.92 Alexa Fluor 500503525700 Alexa Fluor 514517542714 Alexa Fluor 532530555724QY 0.61 Alexa Fluor 5465615721079QY 0.79 Alexa Fluor 5555535681250QY 0.1 Alexa Fluor 568579603792QY 0.69

常用抗体标记荧光染料的选择

1、蓝色(350-450nm处激发) CF 350、Alexa Fluor 350、AMCA等----亮蓝和紫外光激发。 CF350是类似于Alexa Fluor 350和传统荧光染料AMCA的蓝色荧光染料,CF350的荧光强度高于Alexa Fluor350、AMCA,吸附在蛋白上的荧光超过50%,水溶性更好,耐光性非常优秀亮,更容易与现有的绿色荧光基团区分。 CF 405S/ CF 405 M、Alexa Fluor 405 ----近乎完美的匹配蓝色二极管激光器。 CF 405S/ CF 405 M、Alexa Fluor 405与近来使用的荧光显微镜和流式细胞仪405nm;谱线的蓝色二极管激光器完美的匹配。在流式细胞仪上的分析结果显示CF 405S/ CF 405 M荧光信号强度高于Alexa Fluor 405染料1.7倍。 2、绿色(488nm处激发) CF 488A、Alexa Fluor 488、FITC、FAM、DyLight 488、Cy2等----针对488nm 氩离子激光器的绿色荧光染料。 以上染料其标记的抗体蛋白适用于所有配备488nm氩离子激光器的流式细胞仪,流式细胞仪的FL1通道检测,或者可用于荧光显微镜技术。 CF 488A最低限度的带电量降低了与抗体耦联物的非特异性结合,在红色通道溢出少于Alexa Fluor 488,耐光性好、水溶性好和pH 不敏感,良好的稳定性和活性染料的标记率。 Alexa Fluor 488在较宽的PH值范围内保持稳定(PH4~10); FITC激发波长488nm,最大发射波长525nm,缺点:荧光强度易受PH值影响,PH值降低时其荧光强度减弱。 3、橙红色(543-555nm处激发) CF 543、Alexa Fluor 546、ATTO550, Cy 3, DyLight 549, Rhodamine (TRITC) 匹配543nm的橙色荧光染料; CF ?543 荧光条带明亮,耐光,水溶性好,确保了CF 543染料与抗体的耦联物保持优异的水溶性,为该波段最亮的橙色荧光染料。例如:同等的标记程度下,CF 543标记的羊抗鼠IgG抗体的亮度高于用Alexa Fluor 546 标记的2~10倍。 CF 555、Alexa Fluor 555、Tetramethylrhodamine (TAMRA) 等匹配Cy3滤光片的橙色荧光染料。 4、红色(568-594nm处激发) CF 568、Alexa Fluor? 568, ATTO 565, Rhodamine Red等568nm处红色荧光染料。 CF 568染料耐光性最好;高效水溶性;比Alexa Fluor 568 标记的抗体亮度更亮。 CF 594、Alexa Fluor? 594, ATTO? 594, DyLight? 594, Texas Red 等最亮红色荧光染料。 CF594由于其高量子产量和优异的水溶性而比AlexaFluor594 明亮2~4倍。同时CF594 对光极其稳定,使它能被理想地应用于诸如共聚焦显微镜和单分子显像条件苛刻的应用中去。

常用染料的激发与发射

常用荧光染料的激发和发射波长

备注:发射波长的颜色及频率 荧光染料的使用 吖啶橙:吖啶橙是最经典的灵敏的荧光染料,它可对细胞中的DNA和RNA同时染色而显示不同颜色的荧光,DNA呈绿色荧光,RNA呈橙红色荧光。EB:染色DNA和RNA荧光素双醋酸酯(FDA):FAD?本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。5mgFDA溶于1ml 丙酮中,避光4℃下贮存,使用时取0.22mlFDA贮存液加入5ml0.65mol/L甘露醇中.使用时,使最终浓度为0.01%。荧光染料Ho33342和若丹明123:?活细胞双荧光染色观察细胞核和线粒体。一般的生物染料不能穿透细胞膜,只有当细胞被固定后改变了细胞膜的通透性,染料才能进入细胞内。但有些活体染料能进入活细胞,并对细胞不产生毒性作用。荧光染料

Ho33342和若丹明123都是活体染料。Ho33342能与细胞中DNA进行特异的结合,若丹明123能与线粒体进行特异的结合。采用两种荧光染料的混合染液可对一个活细胞的核和线粒体同时染色。 荧光组化实验中应注意的几个问题:1.每种荧光染料,均有自己的最适PH值,此时荧光最强。当pH改变时,不仅荧光强度减弱,而且波长将有所改变,因此荧光检测时要在一定的PH值的缓冲液中进行。2.一放荧光染色在20℃以下时荧光比较稳定,温度升高常出现温度猝灭。3.在荧光观察中,常因激发光的增强而使样品荧光很快衰竭,造成观察和照相困难。为此最好用能量小的长波长光进行观察,需照相时再适当增强激发光。4.一般荧光染液的浓度在万分之一以下,甚至亿万分之一,也能使标本着色。在一定的限度内,荧光强度可随荧光素的浓度增加而增强,但超过限度,荧光强度反而下降, 这是由于荧光分子间的缔合而使自身荧光猝灭所致。

相关文档
最新文档