胜利油田发电厂二氧化碳回收状况

胜利油田发电厂二氧化碳回收状况

胜利发电厂是油田自备燃煤电厂,主要负责油田生产、生活发电和集中供热任务。总装机容量104万千瓦,供热能力1200多万平方米。为了减少二氧化碳排放,从1998 年开始,胜利油田开展二氧化碳捕集研究。经过十余年探索,创新形成了燃煤电厂烟气二氧化碳捕集纯化等多项具有自主知识产权的配套技术。2010年,“胜利燃煤电厂烟气二氧化碳捕集纯化工程”正式开工建设。2012年,“十二五”国家科技支撑计划——“大规模燃煤电厂烟气二氧化碳捕集、驱油及封存(CCUS)技术开发及应用示范项目”启动。

二氧化碳捕集纯化装置设计能力为100吨/天,全年能够捕集、液化二氧化碳3万至4万吨。捕集处理后的二氧化碳纯度达99.5%以上,可全部应用于目前胜利油田正在开展的“低渗透油藏二氧化碳驱油先导试验”。2008年,二氧化碳驱油示范项目——高89—1块开始注二氧化碳,截至目前,累注二氧化碳16.8万吨,累计增油3.6万吨,二氧化碳动态封存率86%,预计油田采收率提高17.2个百分点。

目前,胜利油田正在进行100万吨/年二氧化碳捕集及利用工程的设计论证。项目建成后,将形成大规模燃煤电厂烟气二氧化碳捕集、驱油及封存一体化工程综合技术和经济评价技术,为我国碳捕集工程建设探索一条可行路径。

二氧化碳回收操作规程完整

双多化工 3万吨/年二氧化碳回收装置工艺技术操作规程

双多化工 二O一二年八月 目录 第一章项目简介........................................................................................................ 1 第一节项目名称:......................................................... 1第二节项目地址:......................................................... 1 第二章装置简介........................................................................................................ 1 第一节装置规模........................................................... 1第二节工艺技术........................................................... 1第三节主要设备........................................................... 2第四节二氧化碳的性质..................................................... 3 第三章工艺过程介绍................................................................................................ 3 第一节压缩吸附部分....................................................... 3第二节精馏贮存部分....................................................... 5第三节冷冻液化部分....................................................... 5 第四章装置的操作.................................................................................................... 5 第一节首次开车准备....................................................... 5 1、1管路系统的准备工作.................................................................................................... 5 1、2机泵、控制系统的单体试车........................................................................................ 7第二节正常开车步骤....................................................... 8 2、1压缩吸附部分................................................................................................................ 8 2、2 精馏部分....................................................................................................................... 8 2、3 冷冻部分....................................................................................................................... 9第五章装置的正常运行........................................................................................ 10 第一节压缩吸附部分.................................................... 10 1、1第一冷却器................................................................................................................ 10 1、2干燥床的操作及再生................................................................................................ 10 1、3 吸附床的操作及再生............................................................................................... 11

胜利油田安全监察通报

胜利油田安全监察通报 总第11期 胜利油田安全环保委员会办公室2009年9月30日根据油田安全环保工作总体部署,安全监察支队结合油田安全环保大检查和本季度重点工作,对部分二级单位进行了督查。现将督查工作情况通报如下: 一、基本情况 安全环保处结合油田安全生产形势,对钻井和作业队伍施工、地面工程建设、承包商管理、雨季汛期安全生产等方面进行了督查,对集团公司安全环保大检查、油田上半年安全环保大检查和油田“解剖式”检查提出的问题进行了复查。共检查二级单位58个(次)、承包商单位15个、钻井队9个、作业队57个、油库泵站64个、有毒有害场所18个、地面建设施工现场7个,查出并督促整改问题646个,下达《隐患整改通知单》14份。 二、主要问题 (一)安全管理规章制度不落实 一是个别单位领导安全承包不到位。孤东采油厂采油三矿领导承包基层队活动反馈卡不全,承包综合维修队负责人无1至4月份安全承包记录,承包采油9队负责人无1至7月份安1 全承包记录。鲁明临邑公司无1至8月份领导承包检查记录。 二是个别单位安全检查制度不落实。渤海钻井管具公司钻具修理厂4月15日后无安全检查记录。三是个别单位没有严格执行站库管理制度。孤东采油厂新滩试采矿KD18沉降站,站值班领导不了解进站施工队伍和进站人数,进站人员未登记,进站施工人员没有进行安全教育。 (二)关键装置、要害部位安全规范执行不到位 个别单位不能够严格执行安全规范。胜中社区加油站、加气站分界处没有明显隔离区,进出车辆混乱;加油站未认真落实集团公司为确保国庆期间安全下发的《关于加强加油站安全管理的紧急通知》要求,仍进行容器分装销售汽

油,部分车辆载客进站加油;加气站门禁管理不严,多台车辆载人进站加气,并在站内打手机,站内消防通道上停放员工自行车,加气机旁未配备灭火器。胜中燃气有限公司租赁经营的机关车辆管理中心加气站,2名当班运行工无操作证,压缩机房多处法兰没有按标准要求跨接,压缩机、干燥室电机外壳未直接接地。胜利工程建设公司胜建加油站卸油台门前没有静电释放器,柴油卸油口没有接地报警装置。滨南采油厂采油一矿卸油台上4个防静电接地报警器中3个不报警。胜北社区景苑加油站油罐阻火器逾期未检。 (三)直接作业环节作业许可制度执行不严 部分单位对直接作业环节管理松懈,存在不按规定办理审批手续、过程监控不力、现场确认敷衍应付现象。胜利石油化 2 工建设公司桩西海工基地在建采油平台施工现场,施工人员在采油平台桩腿内刷漆,未办理受限空间作业许可证,且未采取安全防护措施。胜中社区城管大队没有执行受限空间作业许可证管理制度;5月10日云门山路泵站1、2泵检修时,没有办理受限空间作业许可证。 (四)井控设计不规范 部分单位没有认真贯彻执行《胜利油田井下作业井控工作细则》要求和油田防范井喷事故大会精神,加强井控安全管理,出具的设计对井控的要求过于简单。东辛采油厂作业20队营17-80井、作业19队营17-斜33井、石油开发中心服务中心作业2队草109-平10井、纯梁采油厂作业12队樊18-32井(东胜高青公司井)地质设计仅提示“注意防喷”,没有提出具体的井控要求。 (五)现场存在“低、老、坏”现象 胜利石油化工建设公司金属结构厂、容器厂、桩西海工基地施工现场,安全标准执行不严,各类设备布局混乱,氧气瓶、乙炔瓶混放,施工机具不按规定距离和区域摆放,施工用电一个插座多用,用电缆线头直接插入插座,部分移动式、手持式电气设备没有按规定安装漏电保护器、线路老化裸露。胜利采油厂综合大队管修队动力电缆线直接架设在房顶和空气贮气罐体上,管修队洗

啤酒厂CO2回收量和使用量的计算教学文稿

啤酒厂C O2回收量和使用量的计算

啤酒厂CO2的回收量和使用量的计算 KHS中国广东轻工机械二厂有限公司汤文发 CO2是啤酒发酵中的主要产物,近代啤酒技术中CO2又是必不可少的重要原料,CO2的合理回收利用对于改进酿造工艺,提高啤酒质量起着重要作用。因此,啤酒厂回收发酵产生的CO2经过过滤、洗涤、压缩等一系列的处理最后使用到啤酒的过滤和包装过程中,这样既能减排又能变废为宝。在此就啤酒厂CO2的回收量和使用量的计算方法介绍如下与同行参考。 1、发酵过程中CO2产生总量 啤酒发酵过程中,可发酵糖在酵母作用下转化为酒精、CO2及副产物。正常发酵情况下,可发酵糖中约98%左右可完全发酵产生CO2。根据巴林(Balling)氏的研究,在完全发酵时,存在下列关系: 浸出物酒精 + CO2 + 酵母 2.0665 1.0 0.9565 0.11 由上式可推出发酵满罐至下酒时CO2产生总量:: G =(麦汁浓度-下酒真浓)*98%*酒液总量*0.9565/2.0665 (1) 2、CO2实际回收量 设麦汁原浓14%,主酵温度 12℃,罐压 0.08-0.1Mpa,下酒外浓3.2%,外观发酵度75%,真正发酵度60%,酒精含量4.25%,真浓5.5%,CO2纯度达到99%、原浓为12..1 %时开始回收,按以上条件为例计算发酵过程中每KL麦汁实际回收的CO2量。 CO2理论收量= 产生总量-回收前溢出量-发酵液中溶解量 (2)

由1式可得:CO2产生总量=(14%-5.5%)*1000*1.056*98%*0.9565/2.0665=40.72.kg (3) 回收前溢出量=(14%-12.1%)*1000*1.056*98%*0.9565/2.0665=9.10kg (4) 假设发酵液中CO2含量为6.0g/L,发酵液中溶解量=0.60%*1000=6.00kg (5) 由(3)、(4)、(5)代入(2)式可得: CO2理论回收量=40.72-9.10-6.00=25.62kg,即每KL麦汁可产生CO2理论回收量为 25.62kg/kl,但实际上CO2 回收量受各种环节及操作水平的影响,回收率约为0.74-0.84之间,也就是每kl 14度麦汁实际回收可供使用的最大量约为21.50kg/kl。 3、生产过程中CO2的使用量 A、制取碳酸水 碳酸水中CO2含量以0.55%计,生产1KL10°P啤酒,需14度啤酒723 L和287 L碳酸水,则需添加CO2的量为 287*0.55/100=1.579kg,即KL啤酒耗CO2为 1.579kg/kl B、发酵罐滤酒背压 CO2背压以0.1 MPa计,需要的CO2的总量为根据气体状态方程,相同体积下,0.1 MPa 表压所需CO2的量为标准状态下所需CO2量的两倍,设发酵罐的全容为380KL,有效容积为300KL,即2×380 kL×1.97kg/m3 =1497.2kg,折合千升啤酒为4.99kg/ kl。 C、清酒罐滤酒背压

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

啤酒厂CO2回收量和使用量的计算

啤酒厂CO 2的回收量和使用量的计算 廊坊青岛啤酒厂: 窦春生 CO2是啤酒发酵中的主要产物,近代啤酒技术中CO2又是必不可少的重要原料,CO2的合理回收利用对于改进酿造工艺,提高啤酒质量起着重要作用。因此,啤酒厂回收发酵产生的CO2经过过滤、洗涤、压缩等一系列的处理最后使用到啤酒的过滤和包装过程中,这样既能减排又能变废为宝。在此就啤酒厂CO2的回收量和使用量的计算方法介绍如下与同行参考。 1、发酵过程中CO2产生总量 啤酒发酵过程中,可发酵糖在酵母作用下转化为酒精、CO2及副产物。正常发酵情况下,可发酵糖中约98%左右可完全发酵产生CO 2。"根据巴林(Balling)氏的研究,在完全发酵时,存在下列关系: 浸出物酒精+ CO2 +酵母 2.0665 1."0 0." 95650."11 由上式可推出发酵满罐至下酒时CO2产生总量:: G =(麦汁浓度-下酒真浓)*98%*酒液总量* 0."9565/ 2."0665…….. (1)

2、CO2实际回收量 设麦汁原浓14%,主酵温度12℃,罐压 0."08- 0."1Mpa,下酒外浓 3."2%,外观发酵度75%,真正发酵度60%,酒精含量 4."25%,真浓 5."5%,CO2纯度达到99%、原浓为 12.".1 %时开始回收,按以上条件为例计算发酵过程中每KL麦汁实际回收的CO2量。 CO2理论收量=产生总量-回收前溢出量-发酵液中溶解量…… (2) 由1式可得: CO2产生总量=(14%- 5."5%)*1000* 1."056*98%* 0."9565/ 2."0665= 40."7 2."kg… (3)回收前溢出量=(14%- 12."1%)*1000*

二氧化碳回收操作规程

江苏双多化工有限公司 3万吨/年二氧化碳回收装置工艺技术操作规程

江苏双多化工有限公司 二O一二年八月 目录 第一章项目简介?错误!未定义书签。 第一节项目名称:......................................... 错误!未定义书签。第二节项目地址:?错误!未定义书签。 第二章装置简介.......................................................................... 错误!未定义书签。 第一节装置规模?错误!未定义书签。 第二节工艺技术?错误!未定义书签。 第三节主要设备............................................ 错误!未定义书签。第四节二氧化碳的性质...................................... 错误!未定义书签。 第三章工艺过程介绍................................................................ 错误!未定义书签。 第一节压缩吸附部分?错误!未定义书签。 第二节精馏贮存部分........................................ 错误!未定义书签。第三节冷冻液化部分?错误!未定义书签。 第四章装置的操作?错误!未定义书签。 第一节首次开车准备?错误!未定义书签。 1、1管路系统的准备工作?错误!未定义书签。 1、2机泵、控制系统的单体试车?错误!未定义书签。 第二节正常开车步骤....................................... 错误!未定义书签。 2、1压缩吸附部分................................................................................ 错误!未定义书签。 2、2 精馏部分?错误!未定义书签。 2、3 冷冻部分......................................................................................... 错误!未定义书签。 第五章装置的正常运行?错误!未定义书签。 第一节压缩吸附部分?错误!未定义书签。 1、1第一冷却器?错误!未定义书签。 1、2干燥床的操作及再生.................................................................... 错误!未定义书签。 1、3 吸附床的操作及再生................................................................... 错误!未定义书签。

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

二氧化碳的分离回收技术与综合利用

知识介绍 二氧化碳的分离回收技术与综合利用 夏明珠 严莲荷 雷 武 王风云 朱 彬 赵小蕾 (南京理工大学水处理研究所,210094) 石油、煤、天然气等化石燃料的大量使用,排出大量的CO 2废物,使大气中CO 2的含量逐年增加,造成严重的环境污染,引起全球的“温室效应”,带来一系列的负面影响。如何降低CO 2的排放量,变废为宝,实现其分离回收与综合利用,将成为21世纪最为重要的能源与环境问题之一。 图1 物理吸收法工艺流程 1 二氧化碳的分离回收技术 工业上CO 2的分离回收技术种类很多,归纳起 来,大致分为以下几种。1.1 吸收法工业上采用的气体吸收法,可分为物理吸收法和化学吸收法。1.1.1 物理吸收法 物理吸收法是在加压下用有机溶剂对酸性气体进行吸收来分离脱除酸气成分,并不发生化学反应,溶剂的再生通过降压实现,因此所需再生能量相当少。该法关键是确定优良的吸收剂。所选的吸收剂必须对CO 2的溶解度大、选择性好、沸点高、无腐蚀、无毒性、性能稳定[1]。典型的物理吸收法有Shell 公司的环丁砜法,No rton 公司的聚乙二醇二甲醚法、 Lurgi 公司的甲醇法[2] ,另外,还有N -甲基吡咯烷酮法、粉末溶剂法(所用溶剂为碳酸丙烯酯),三乙醇胺 也可作为物理溶剂使用。典型的物理吸收工艺流程见图1[3] 。图1中,原料气从吸收塔底部进入,与塔顶喷下的吸收剂逆流接触,净化气由塔顶引出。吸收气 体后的富液经闪蒸器减压释放出闪蒸气(最高压力下闪蒸出来的气体大部分是溶解的非酸性气体),经低压闪蒸后的半富液送入再生塔顶部即降至常压,并放出大量CO 2,即为所需的分离回收的CO 2,可用于生产液体CO 2或干冰。其余未解吸的CO 2与再生塔底部送来的空气或惰性气体逆流接触,靠汽提使溶剂再生后送往吸收塔顶部。 1.1.2 化学吸收法 化学吸收法是使原料气和化学溶剂在吸收塔内发生化学反应,CO 2被吸收至溶剂中成为富液,富液进入脱析塔加热分解出CO 2从而达到分离回收CO 2的目的。所用化学溶剂一般是K 2CO 3水溶液或乙醇胺类的水溶液。热K 2CO 3法常见方法有苯菲尔德法(吸收溶剂中K 2CO 3质量分数为25%~30%,二乙醇胺1%~6%,加适量五氧化二钒作催化吸收剂和防图2 化学吸收法工艺流程 腐蚀剂)、砷碱法(Vetro Cokes 法,K 2CO 3质量分数23%,As 2O 312%,或用氨基乙酸和V 2O 5来代替As 2O 3)、卡苏尔法(Carso l 法,K 2CO 3、胺、V 2O 5)、改良热碳酸钾法(Cata Carb 法,K 2CO 3、乙醇胺盐、V 2O 5)。 以乙醇胺类作吸收剂的方法有M EA 法(所用溶剂为一乙醇胺)、DEA 法(二乙醇胺)、M DEA 法(甲基二乙醇胺)、联合碳化公司的乙醇胺法(同时添加两种防腐蚀剂)、道化学公司的2-烷氧基乙胺法(内添加防腐蚀剂)以及劳尔夫-巴逊斯法(所用溶剂为二乙醇胺)[1]。化学吸收工艺流程见图2[4]。化学吸收法的关键是控制好吸收塔和解析塔的温度与压 · 46·1999年第19卷第5期 现代化工 DOI:10.16606/https://www.360docs.net/doc/a45742081.html, k i .i ssn 0253-4320.1999.05.016

啤酒厂CO2回收利用措施探析

1.2 CO2回收利用的理论依据 理论上,啤酒发酵过程中文章来源华夏酒报每公斤麦芽糖、葡萄糖可分别获得0.514 kg、0.489 kg CO2。而且CO2很容易实现气、液、固三相的转变,即在低温加压的情况下,二氧化碳会变成无色具有流动性的液体,最终变成雪花状固体,这为CO2回收和处理提供了依据。 1.3 CO2气体用量及经济效益计算实例 1)CO2气体用量 假设清酒罐总容积为200M3、背压表压为0.08MPa,则一只200M3清酒罐(空罐)背压至表压为0.08MPa,CO2耗量为:(200÷22.4)×44×1.8=707kg(其中22.4—气体摩尔系数;44—CO2的摩尔质量;1.8—清酒罐背压的绝对压力)。 2)经济效益 为保证生产和产品质量,不少啤酒厂均部分使用外购高纯度CO2。如按每公斤外购CO2售价0.6元折算,并假设千升酒消耗5 kg外购CO2,则会增加千升酒成本3.0元。若全部使用回收CO2,则按回收1kg CO2耗电0.18kwh、电价按0.76元折算,则每回收5 kg CO2耗电成本约为0.70元,则就本实例而言,全部使用回收CO2至少可节约千升酒成本2.3元。因此,如何经济利用回收CO2是啤酒企业节约成本的最佳途径之一。 2. CO2回收环节的问题及解决措施 2.1 合适的回收储存能力 由于啤酒生产存在淡旺季之分,所以,CO2的回收储存能力首先必须考虑生产不均衡性及投料密集时CO2的最大产量,而储存能力必须保证旺季生产至少一周的生产需求量。其次,生产旺季必须保证CO2回收处理系统运行通畅、高效,因此要求设备维修人员要对CO2回收处理系统进行定期的检查和维护保养。 2.2 均衡安排糖化投料,避免密集投料 通常,生产安排要在产销、在制品及库存成品之间寻求平衡点,但实际生产中常出现这些环节不同步,使得CO2回收储存不连续,而且常将发酵CO2排放,滤酒及包装生产时又必须外购CO2。这样,不仅增加了可利用资源浪费,加重环境污染,而且增加生产成本。因此,生产安排必须连续、均衡、合理。 2.3 提高CO2回收量的措施 实际生产中,CO2的回收量低于理论值,有必要采取一些技术措施提高CO2回收量。 1)通过检测CO2纯度和发酵糖度指标,依据设备状况设定最佳的CO2回收点(体积分数达到97%—99%),通常将满罐时间及糖度下降值作为经验数据来确定回收CO2的起点。 2)两罐法发酵倒入罐或清酒罐罐体酸洗且为CO2背压,则进酒过程排出气体送至CO2回收。发酵罐和清酒罐碱洗用压缩空气置换前对CO2回收。 3)当可供回收CO2的发酵罐少于2只时,可考虑延时回收,主要因为系统负荷不足,回收量不足以满足系统再生耗气,且设备频繁开关增加电耗 2.4 CO2回收系统关键控制点 1) 控制好气囊气态CO2的量,保证回收系统正常运行,避免压缩机等频繁开关。 2) 加强不凝气的排放,通过降低在液化处理过程中O2和N2的分压达到降低CO2气体中O2和N2气体的含量的目的。 3) 水洗塔要有排气装置,防止CO2经过水洗塔时吸入水中的氧气。 4) 吸附塔中的活性碳要及时更换,避免活性碳长时间使用残留不良异味。洗涤塔、吸附塔、干燥塔等要定期再生,并定期对回收设备及管道进行CIP。 5) 回收过程中一定要控制好各发酵罐的压力平衡和阀门开度,以免影响回收量和发酵罐内酒体的正常对流。

温室气体二氧化碳的回收技术研究进展

温室气体二氧化碳的回收技术研究进展 摘要温室气体CO2减排是目前大气污染治理的一大难题,引起了国际社会的极大关注。吸附法、膜分离法、液膜法、胺化合物吸收法、离子液循环吸收法等是CO2气体回收常用的方法。通过对各种方法的原理及研究现状介绍,深入分析了各种方法的优缺点及存在的问题,提出了改善吸收剂性能、开发高效低耗的CO2选择性吸收剂、改进CO2吸收工艺将成为今后CO2捕集回收技术的研究方向。 关键词二氧化碳烟气脱碳回收 由温室效应导致的气候变暖已经成为一个全球性的环境问题。CO2是造成温室效应的主要气体之一,约占温室气体的2/3。据2004年IEA(International Energy Agency)的预测,到2030年,世界能源消费中以煤、石油、天然气为主的化石燃料仍然占据主导地位[1]。因此,在未来的几十年里,化石燃料利用量的持续上升将导致CO2排放量的不断增加,如不加以控制,CO2的过量排放将会造成环境的继续恶化。1997年124个国家签署了《京都议定书》,规定了2008~2012年全球CO2的排放量要比1990年的CO2排放量平均降低5.2%。 我国作为《京都协定书》签约国之一面临巨大的CO2减排压力。我国2006年排放CO2气体62亿吨,位居世界第一。钢铁工业是我国CO2排放的主要源头之一,CO2排放量占全国9.2%[2]。要满足CO2减排要求,除了大力推广新能源和不断优化生产流程,提高能源利用效率和加速二次能源的回收利用步伐,还需对废气中CO2配匹相应的脱碳装备。本文主要对吸附法、膜分离法、液膜法、胺类化合物吸收法、离子液循环吸收法等烟气中CO2气体回收技术的原理、优缺点、存在的问题及研究现状进行分析论述,最终展望了烟气脱碳技术的发展方向。 1 二氧化碳回收技术 1.1 吸附法 吸附法是利用固态吸附剂对原料混合气中的CO2的选择性可逆吸附作用来分离回收CO2。吸附剂在高温(或高压) 时吸附CO2,降温(或降压)后解析CO2,通过周期性的温度(或压力)变化, 从而使CO2分离出来。其关键是吸附剂的载荷能力,主要决定因素是温差(或压差)[3]。常用的吸附剂有天然沸石、分子筛、活性氧化铝、硅胶和活性炭等。 南京工业大学对硅胶的二氧化碳吸附性能及其与微孔结构的关系进行了研究[4],比较了两种硅胶吸附剂对CO2吸附穿透曲线和吸附性能的差异及硅胶的微结特性对吸附二氧化碳性能的影响。结果表明:比表面大、孔径分布趋向细孔有利于硅胶对二氧化碳的吸附,而适当的孔分布则有利于硅胶吸附剂减小扩散阻力,为硅胶吸附剂的改进以及变压吸附在合成气脱碳过程中的应用提供了理论依据。华南理工大学韦朝海等针对电厂烟道气流量大[5],温度高的特点,采用活性炭、沸石分子筛、金属氧化物,水滑石类混合物和锂盐化合物进行了CO2高温吸附性能比较,重点讨论了新型吸附剂Li2ZrO3用于高温烟道气中CO2的吸附性能及影响因素,如CO2吸附速率、反应温度、ZrO2颗粒大小、改性化合物的种类和用量等。研究结果表明Li2ZrO3是从高温烟道气中吸附CO2的高效吸附剂。吕国强等用固相合成法合成可用于循环使用的CO2吸收材料Li4SiO4 [6],并对其吸收性能进行研究。结果发现,在900℃下烧结2h可合成Li4SiO4陶瓷材料,该材料在600~720 ℃下表现最强的吸收性能,最高吸收率可达29.16%;该材料吸收CO2后,在750 ℃时开始解吸CO2,到900 ℃左右可解吸完全,再生为Li4SiO4。 目前工业上应用较多的是变压吸附工艺, 它属于干法工艺,无腐蚀,整个过程由吸附、漂洗、降压、抽真空和加压五步组成,其运行系统压力在1.26 MPa~6.66 kPa 之间变化。吸附法的主要优点是工艺过程简单、能耗低、适应能力强,但此法的吸附容量有限、需要大量的吸附剂、吸附解吸频繁、自动化程度要求较高。 1.2 膜分离法

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

二氧化碳回收项目可行性研究报告

第一章总论 第一节概述 一、项目名称及建设地点 1、项目名称:二氧化碳回收 2、建设地点:XXX工业园 二、主办单位基本情况 1、主办单位名称:XXXX生物科技有限公司 2、住所:XX县工业园 3、法定代表投资人名称:XX 4、注册资本金:叁佰陆拾万元 5、公司类型:有限责任公司 6、主办单位基本情况 XXXX生物科技有限公司是一家以生物原料、精细化工为主导产品的企业,成立于2004年3月。公司主要产品及规模为乙醇、无水乙醇10万吨,乙醛6万吨,醋酸3万吨,颗粒饲料5万吨,现有职工386人,其中工程技术人员81人。企业总资产10566万元,其中固定资产8165万元。2005年被临沂市人民政府授予“农业产业化龙头企业”,被省科学技术厅授予“省高新技术企业”,2006年成功通过ISO14001:2004环境管理体系认证,2007年获得“中国酒精制造行业百强企业”称号。2006年实现总产值26000万元,实现利税3100万元。2007年实现产值 1

35000万元,实现利税4750万元。2008年1~6月份实现总产值21000万元,实现利税2680万元。 三、项目提出背景、投资目的、意义和必要性 1、项目提出的背景 二氧化碳是一种用途广泛的工业原料,主要用作制造纯碱、化肥及合成甲醇和无机盐的原料,亦用于钢铸件的淬火,还用于制造干冰等。液体二氧化碳用于焊接、发酵工业、冷却和食品饮料、制糖、医用局部麻醉,也可用于大型铸钢防泡剂、植物生长促进剂、防氧化剂及灭火剂等。固体二氧化碳用于青霉素生产,鱼类、奶油、冰淇淋等食品贮存及低温运输等方面。随着我国冶金、化工及食品饮料工业的迅速发展,特别是我国加入WTO后,二氧化碳在国内的消费量不断增长。目前,由于二氧化碳在国内的消费量不断增长,因此在国内有较好的市场前景,市场潜力大。 到2007年底,XXXX生物科技有限公司各类产品年综合生产能力已达18万吨,而酒精工业CO2废气总量亦达100kt/a。目前,高消耗、高排放、低效率的粗放型经济模式已经严重制约了企业的发展,节能减排、发展循环经济已成为企业发展的重点。为使公司在市场竞争中能得到不断发展和壮大,必须以循环经济的理论为指导,继续调整、优化产业结构和产品结构,转变增长方式,以市场为导向,以提高经济效益和社会效益为中心,加强技术创新,发展循环经济,构建资源节约型和环境友好型产业,从而实现企业的创新发展。 XXXX生物科技有限公司经详细的市场调查,反复论证,决定投资建设二氧化碳回收项目,实现节能减排、发展循环经济、综合利用资源,2

胜利油田介绍

https://www.360docs.net/doc/a45742081.html,/a2_82_05_01300000098168125413054963448_jpg.html?prd=zhengwenye_ left_neirong_tupian胜利油田 中国石油化工股份有限公司胜利油田分公司(以下简称:胜利油田分公司),主体位于黄河下游的东营市,油田机关位于东营市济南路258号,工作区域主要分布在山东省的东营、滨州、德州、济南、潍坊、淄博、聊城、烟台等8个市的28个县(区)。主要工作范围约4.4万平方千米,主体部位在东营市境内的黄河入海口两侧。自1978年以来,胜利油田共取得各类科研成果6129项,其中获国家级奖励102项,获省部级奖励596项,取得专利1333件,累计实施专利技术972项。胜利油田分公司严格按照公司法的规定规范运作,不断增强竞争实力和盈利能力,正逐步向决策科学、运作协调、管理严密的现代企业迈进。“十一五”期间,胜利油田以“共创百年胜利,共建和谐油田,共享美好生活”为目标,按照“三稳一保”的工作要求和集团公司整体部署,大力实施资源、市场和可持续“三大战略”,持续推进改革、管理、科技“三大创新”,全面推进党的建设、队伍建设、文化建设、民生建设、和谐环境建设等“五大和谐工程”,凝心聚力,向着科学发展、创新发展、和谐发展的 胜利油田是中国陆上第二大石油生产基地,自1961年发现、1964年正式投入开发建设以来,到2007年底,先后找到75个不同类型的油气田,累计生产原油9.08亿吨,生产天然气391.64亿立方米。胜利油田分公司现有油井22891口,开井17817口,原油年生产能力2700万吨。全油田平均综合含水率为90.34%,自然递减率14.7%,综合递减率5.83%。有气井371口,开井94口,年工业产气量7.84亿立方米;有注水井7455口,日注能力61.73万立方米,累计注采比0.79。拥有计量站2103座,注水站261座,联合站50座,年处理液能力3.25亿吨;接转站60座,年处理液能力7733万吨;污水站55座,年污水处理能力3.4亿立方米;原油集输管线2.09万条/1.28万公里;有93座海上采油平台,海底输油管线76条/144.4公里;形成了具有胜利特色的原油集输、脱水、污水处理配套技术。 2007年底胜利油田分公司下设21个二级单位,185个三级单位,1292个四级单位,分公司机关设15个职能处室,3个直属单位,有员工87379人,其中固定职工58526人,有高级技术职称2952人,中级技术职称8529人;所辖石油专业队伍中,采油队343个,稠油热采注汽队25个,采气队7个,输油(气)队88个,运输队4个;固定资产和油气资产总量为652.05亿元,其中油气资产净值548.26亿元;机械装备总量30792万台,装机总功率237.93万千瓦,平均设备新度系数0.39。 中国石化胜利油田有限公司于 2000年5月28日正式挂牌成立,为中国石化股份有限公司的全资子公司。是由胜利油田的油气勘探开发主体部分重组改制而成的。

烟气中CO2回收

附件智胜化工公司二氧化碳捕集项目 一、工艺技术方案 1.1 工艺流程 锅炉烟道气副产的二氧化碳,在混合气中的浓度10%左右,属于低浓度二氧化碳范畴。智胜化工捕集其中的二氧化碳,生产98%纯度的气态产品,共后续单元使用。我们采用的方法首先是水洗脱硫,然后进入化学吸收塔,采用复合碱溶液作吸收剂捕集二氧化碳,解吸后二氧化碳为95%以上的气态,然后经过降温分水后,就可以得到98%纯度的气态二氧化碳产品。工艺流程简图如下: 由于烟道气有135~170℃的温度,并且含有一定量的粉尘,所以在进入脱硫水洗塔时,首先在下部进行水洗除尘,洗涤水温度升高后,送到板式冷却器用冷却水降温循环使用。冷却水进入凉水塔排出热量后循环使用。 由于原料气中的硫化物比较多,以前采用石灰水、氨水湿法脱硫,腐蚀性较大,脱硫塔渗漏较为严重。同时因为石灰水和氨都属于碱性物质,对烟道气中的酸性二氧化碳都有一定的吸收性,所以在脱硫的同时也会损失一部分二氧化碳。我们推荐使用自己研发的保碳脱硫技术,采用一种碱性溶剂,使其最大限度地脱除二氧化硫,但不损失二氧化碳。脱出的二氧化硫中间产物,用碳酸钙中和生成硫酸钙,把固体硫酸钙分离出去作副产品,脱硫液本身被还原,重新循环回脱硫塔连续使用,脱硫液本身不消耗。只消耗碳酸钙一种添加剂。该技术可以使用智胜化工原有的硝石灰中和设备、固体分离设备和溶剂循环设备。 水洗除尘和中和脱硫工艺如下图所示:

1.2.技术特点: 1、独有的脱硫专利技术,保证只脱出二氧化硫,而不损失二氧化碳。 2、独有的吸收溶剂专利技术,比目前MEA技术装置投资和生产成本都减少1/3以上,并且溶剂不降解,稳定性好。 第二章设计参数及投资 2.1 设计参数 智胜化工公司有大量的烟道气可用,如果考虑投资、市场等因素,确定回收产量以5.0万吨/年为好。 处理原料气量:50000Nm3/h (标准立方米/小时) 含量:10.0%(按最低设计); 气源CO 2 二氧化碳产量:6250kg/小时; 日产量: 150000kg/天 二氧化碳纯度:98.0%,(气态); 年产量(8000小时):50000吨/年; 占地面积:40×30=1200m2.

胜利油田胜利发电厂上大压小三期工程职业病危害控制效

胜利油田胜利发电厂“上大压小”三期工程 职业病危害控制效果评价报告 评价单位:北京燕山石化职业病防治所 建设单位:胜利国电(东营)热电有限公司 地理位置:山东省东营市 联系人:李利国 项目简介 本项目工程总投资为27.828亿元。生产规模为1×660MW超临界燃煤汽轮发电机组。项目组成包括输煤系统、锅炉系统、汽机系统、电气系统、化学水处理系统、脱硝系统、氨区、脱硫系统、除灰渣系统、公辅工程。 本项目于2009年11月完成了《胜利发电厂1×600MW级热电三期工程可行性研究报告》。2010年3月山东大学职业卫生检测评价中心完成了该项目的《职业病危害预评价报告》,将该项目判定为职业病危害严重的建设项目,并于2010年5月取得了山东省卫生厅的批复(鲁卫职建预字【2010】第41号)。2014年9月该项目通过了国家安全生产监督管理总局的职业病防护设施设计审查(安健项目设审字【2014】23号)。 本项目于2013年7月开始建设,建设期间职业病防护设施同时施工,2015年12月投产试运行。装置试运行期间职业病防护设施同时投入运行,运转正常。在竣工验收前项目试运行期间,胜利国电(东营)热电有限公司委托北京燕山石化职业病防治所对该项目进行职业病危害控制效果评价。 该项目的职业病防护设施所需费用已纳入建设项目工程预算,经核实其设计的各项职业病防护设施与主体工程同时设计,同时施工,同时投入生产和使用。项目“三同时”执行情况符合《职业病防治法》、《建设项目职业卫生“三同时”监督管理暂行办法》规定。

现场调查人员:李明、李勇 现场调查时间:2018.1.30~11.31 类比对象单位陪同人:李利国 项目存在的主要职业病危害因素及检测结果 生产过程中该项目存在的主要职业病危害因素为煤尘、矽尘、石灰石粉尘、电焊烟尘、砂轮磨尘、锰及其化合物、氨、联氨、盐酸、硫酸、氢氧化钠、二氧化氯、一氧化碳、二氧化氮、二氧化硫、噪声、高温、工频电场和电焊弧光。 针对生产过程中存在的职业病危害因素,按照职业病危害因素检测的相关方法和要求进行了检测,作业现场化学毒物浓度检测结果均符合职业接触限值的要求,作业现场粉尘浓度除1号皮带尾处超标外其他场所粉尘浓度均符合职业接触限值的要求,本次评价检测定点噪声测量99个工作地点,其中66个工作地点噪声强度超过85dB(A),灰硫岗、检修公司检修电气和检修锅炉岗位噪声暴露8小时等效声级超标。 评价结论与建议 通过对该项目的现场职业卫生调查、现场职业病危害因素检测、实验室检查,作业人员职业性健康检查。该项目在试运行期间建立健全了各项职业病防治的管理机构、落实了人员和职责,制定了各项职业病防治的管理制度和操作规程。生产运行过程中职业病危害基本得到了控制,灰水部灰硫岗、检修公司检修电气和检修锅炉岗位噪声暴露8小时等效声级超标,经采取个体防护后,以上岗位人员实际接触噪声强度能够符合职业卫生接触限值要求。作业人员上岗前职业健康体检未检出职业禁忌证、疑似职业病。该项目为作业人员配备了有效的个体防护用品,制定了有针对性的应急救援预案,落实了各项职业病防护设施经费,有相应的职业病危害防护设施。 该项目在职业病危害防护方面达到竣工验收专项验收条件。

相关文档
最新文档