细胞工程—干细胞

细胞工程—干细胞
细胞工程—干细胞

细胞工程

细胞工程的定义

细胞工程是指应用细胞生物学和分子生物学的原理和方法,通过某种工程学手段,在细胞整体水平或细胞器水平上,按照人们的意愿来改变细胞内的遗传物质或获得细胞产品的一门综合科学技术。

分类

A、根据研究生物类型不同,细胞工程可分为动物细胞工程、植物细胞工程、微生物细胞工程。

动物细胞工程包括:细胞培养技术(包括组织培养、器官培养);细胞融合技术;胚胎工程技术(核移植、胚胎分割等);克隆技术(单细胞系克隆、器官克隆、个体克隆)。

植物细胞工程包括:植物组织、器官培养技术;细胞培养技术;原生质体融合与培养技术;亚细胞水平的操作技术等。

B、根据实验操作对象可分为:细胞与组织培养、细胞融合、细胞核移植、染色体操作、转基因生物等。

细胞工程的基本操作

(1)无菌操作技术,细胞工程的所有实验都要求在无菌条件下进行,所以实验者必须十分认真细心地把好无菌操作这道关。

(2)细胞培养技术,细胞培养是指动物、植物和微生物细胞在体外无菌条件下的保存和生长。细胞培养技术包括取材除菌;配制培养基;对培养基除菌或灭菌;采用无菌操作进行接种;在培养室培养,并控制种类细胞生长所需的最佳培养条件,如温度、湿度、光照、氧气、二氧化碳等;当细胞达到一定生物量时应及时收获或传代;

(3)细胞融合技术,采取一定的措施诱导细胞同步化生长,对于成功地进行细胞融合及代谢物的生产具有十分重要的作用。

细胞工程在医学领域的应用

1.干细胞的发现

早在19世纪,发育生物学家就知道,卵细胞受精后很快就开始分裂,先是1个受精卵分裂成2个细胞,然后继续分裂,直至分裂成有16至32个细胞的细胞团,叫做桑椹胚。这时如果将组成桑椹胚的细胞一一分开,并分别植入到母体的子宫内,则每个细胞都可以发育成一个完整的胚胎。这种细胞就是胚胎干细胞,属于全能干细胞。骨髓、脐带、胎盘和脂肪中则可以获取组织干细胞。干细胞技术作为生物技术领域最具有发展前景和后劲的前沿技术,将可能导致一场医学和生物学革命,给无数疑难病症治疗带来了新的希望。

2.干细胞的特征

具有高度自我更新能力和多向分化的潜能。所谓自我更新是指细胞在增殖分裂为子细胞时,其子细胞的表现型与基因型与亲代细胞完全一致,因此具有极强的生命力。所谓多向分化潜能,可以分化成人体内部各种各样器官和组织细胞。干细胞可进行多次的、连续的、自我更新式的细胞分裂,这是维持群体稳定的首要条件,起源于单一干细胞的子细胞可分化出超过1种以上的细胞类型,不易确定的标准:即使无组织损伤,干细胞也能在体内分化扩增。

3.干细胞的分类

干细胞可分为两大类:胚胎干细胞(ESC)和成体干细胞(ASC)。从干细胞到成熟细胞有许多分化阶段。ESC和ASC实质上是发育的不同阶段。造血干细胞(HSC)是人们认识最深入的干细胞。HSC移植用于临床已有多年。在治疗恶性血液病、实体瘤以及遗传性免疫缺陷病方面已取得了举世公认的成就,挽救了很多病人的生命。近年又扩展到治疗一些自身免疫性疾病。ASC的一个重大发现是具有“横向分化”功能,也有人称之为脱分化或重新程序化功能,即ASC不但能分化为特定的组织细胞,而且可以分化成其他类型组织或器官的各种细胞。例如HCS可向骨、软骨、神经胶质细胞、心肌、骨骼肌、肝细胞、血管内皮细胞和肺基质细胞转化。而神经干细胞也可转化成肝细胞、血细胞等。

4.干细胞应用与发展

1)揭示人及动物的发育机制及影响因素

生命最大的奥秘便是人是如何从一个细胞发展为复杂得不可思议的生物体的。人胚胎细胞系的建立及人胚胎干细胞研究,可以帮助我们理解人类发育过程中的复杂事件,使人深刻认识数十年来困扰着胚胎学家的一些基本问题,促进对人胚胎发育细节的基础研究。人胚胎干细胞的体外可操作性,可以一种伦理上可接受的方式,提供在细胞和分子水平上研究人体发育过程中极早期事件的方法。这种研究不会引起与胎儿实验相关联的伦理问题,因为仅靠自身胚胎干细胞是无法形成胚胎的。

2)药学研究方面

干细胞系可分化为多种细胞类型,又是能在培养基中不断自我更新的细胞来源。它发展为胚体后的生物系统,可模拟体内细胞与组织间复杂的相互作用,这在药物研究领域具有广泛的用途。胚胎干细胞有望在短期内就能体现的优势在于药物筛选中。目前用于药物筛选的细胞都来源于动物或癌细胞这样非正常的人体细胞,而胚胎干细胞可以经体外定向诱导,为人类提供各种组织类型的人体细胞。胚胎干细胞提供了对新药的药理、药效、毒理及药代等研究的细胞水平的研究手段,大大减少了药物检测所需动物的数量,降低了成本。另外,由于胚胎干细胞类似于早期胚胎的细胞,它们有可能用来揭示哪些药物干扰胎儿发育和引起出生缺陷。人胚胎干细胞还可以用于其它用途。由于这类细胞本质上可以无限量地产生人体细胞,它们对于旨在发现稀有人蛋白的研究计划理应有用。

3)细胞替代治疗和基因治疗的载体

干细胞最诱人的前景和用途是生产组织和细胞,用于“细胞疗法”,为细胞移植提供无免疫原性的材料。任何涉及丧失正常细胞的疾病,都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗。如用神经细胞治疗神经退行性疾病(帕金森病、亨廷顿舞蹈症、阿尔茨海默病等),用胰岛细胞治疗糖尿病,用心肌细胞修复坏死的心肌等。

干细胞还是基因治疗最理想的靶细胞。这里的基因治疗是指用遗传改造过的人体细胞直接移植或输入病人体内,达到控制和治愈疾病的目的。这种遗传改造包括纠正病人体内存在的基因突变,或使所需基因信息传递到某些特定类型细胞。

干细胞研究及其意义

干细胞的用途非常广泛,涉及到医学的多个领域。目前,科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。假如某位老年人能够使用上自己或他人婴幼儿时期或者青年时期保存起来的干细胞及其衍生组织器官。

新加坡国立大学医院和中央医院通过脐带血干细胞移植手术,根治了一名因家族遗传而患上严重的地中海贫血症的男童,这是世界上第一例移植非亲属的脐带血干细胞而使患者痊愈的手术。医生们认为,脐带血干细胞移植手术并不复杂,就像给患者输血一样。由于脐带血自身固有的特性,使得用脐带血干细胞进行移植比用骨髓进行移植更加有效。现在,利用造血干细胞移植技术已经逐渐成为治疗白血病、各种恶性肿瘤放化疗后引起的造血系统和免疫系统功能障碍等疾病的一种重要手段。科学家预言,用神经干细胞替代已被破坏的神经细胞,有望使因脊髓损伤而瘫痪的病人重新站立起来;不久的将来,失明、帕金森氏综合症、艾滋病、老年性痴呆、心肌梗塞和糖尿病等绝大多数疾病的患者,都可望借助干细胞移植手术获得康复。

同胚胎干细胞相比,成人身体上的干细胞只能发育成20多种组织器官,而胚胎干细胞则能发育成几乎所有的组织器官。但是,如果从胚胎中提取干细胞,胚胎就会死亡。因此,伦理道理问题就成为当前胚胎干细胞研究的最大问题之一。美国政府明确反对破坏新的胚胎以获取胚胎干细胞,美国众议院甚至提出全面禁止胚胎干细胞克隆研究的法案。美国的一些科学家则对此提出了尖锐的批评,他们认为,将干细胞用于医学研究,在减轻患者痛苦方面很有潜力。如果浪费这样一个绝好的机会,结果将是悲剧性的。

我国的干细胞研究和应用已经具备了一定的基础,早在20世纪60年代就开始了骨髓干细胞移植方面的研究,目前研究和应用得最多的是造血干细胞。1992年,我国内地第一个骨髓移植非亲属供者登记组在北京成立,“中华骨髓库”也正式接受捐赠。2002年,北京建立了脐带血干细胞库。

按照科学家描绘的美妙蓝图,通过干细胞技术的有效应用,今后更换人体器官就像给汽车换零件一样简单,血细胞、脑细胞、骨骼和内脏都将可以更换,即使患上绝症也能绝处逢生。在2010年的“两会”期间,有代表从战略高度呼吁国家自然科学基金委高度重视干细胞和再生医学这一新兴学科。2010年11月国家自然科学基金委第52期“双清论坛”会上,专家一致认为干细胞和再生医学及其相关技术的研究和应用是医学研究领域未来的重要发展方向,既有重大理论研究价值,又属于国家重大需求,国家应关注并加大支持力度,甚至提出要设立干细胞和再生医学学科,以更加有效地推动我国干细胞和再生医学的健康发展。其实,干细胞技术不仅在疾病治疗方面有着极其诱人的前景,而且其对动物克隆、植物转基因生产、发育生物学、新药物的开发与药效、毒性评估等领域也将产生极其重要的影响。干细胞技术是世纪之交最为引人注目的科技成果,被认为是人类生命科学研究的重要里程碑,预示着生命科学研究将进入快速发展时期。

干细胞与组织工程

干细胞与组织工程 随着生命科学的飞速发展,目前组织工程、干细胞研究已经成为21世纪生命科学研究的焦点和前沿领域。组织工程研究涉及种子细胞、生物支架材料以及组织构建等众多研究方向.干细胞研究则有望解决组织工程研究中的种子细胞来源问题,可能成为组织工程研究中的理想种子细胞。 一“组织工程”的概念 1 “组织工程”的产生和发展 组织、器官的损伤或功能障碍是人类健康所面临的主要危害之一,也是人类疾病和死亡的最主要原因。据美国的一份资料显示,每年有数以百万计的美国人患有各种组织、器官的损伤或功能障碍,每年需进行800万次手术进行修复,年住院日在4000万~9000万之间,年耗资超过400亿美元。 随看现代外科学的发展,人类对组织、器官缺损的治疗有了很大的进步,但仍然存在许多问题。目前临床常用的治疗方法有三种: 1.自体组织移植、 2.异体组织移植、 3.人工合成组织代用品 组织工程是近年来正在兴起的一门新兴学科,1984年, Wolter首先提出“组织工程”(Tissue Engineering)一词。1987年,美国国家科学基金会于正式提出和确定“组织工程”一词,开辟了组织工程学研究的新纪元。它是应用生命科学和工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下结构与功能关系的基础上,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态生物替代物的科学。 从事组织工程研究的科学家们利用细胞生物学、分予生物学以及材料科学等学科的最新技术,像工厂生产零部件一样,针对患音组织或器官缺失情况,利用构成组织或器官的基本单位——细胞以及为细胞生存提供空间的支架材料,在体内外培育出所需的人体组织或器官.需要多少就培育多少.量体裁衣制备完成后再给患者安装上去。 组织工程研究的核心是建立由细胞和生物材料构成的三维空间复合体。这一三维的空间结构为细胞提供了获取营养、气体交换、排泄废物和生长代谢的场所,

干细胞研究发展历程.

1950:将骨髓细胞移植到遭受致死剂量辐射的动物,发现能够挽救生命,重建骨髓造血免疫系统 1960:真正认识和了解人和哺乳动物干细胞始于20世纪60年代 1961:Till 和Mc Culloch 提出多能干细胞概念 1967:多纳尔–托马斯完成第一例骨髓移植,后于1990年获得诺贝尔医学和生理学奖 1980:造血干细胞移植成为治疗多种疾病的重要手段 1981:Evans等首次成功建立小鼠胚胎干细胞系 1981:胚胎干细胞(embryonic stem cell,ES细胞)的分离和培养首先在小鼠中获得成功 1988:美国科学家James Thomson分离出人类胚胎干细胞 1998:美国两个科研小组分别报告从胚胎和生殖脊成功建立人类胚胎干细胞系,使人类胚胎干细胞能在体外生长和增殖 同年,美国科学家在《美国科学院院刊》上报告:小鼠肌肉组织的成体干细胞可以“横向分化为血液细胞”。此后,世界各国科学家相继证实,包括人类的成体干细胞具有可塑性,从而掀起了全球成体干细胞研究高潮。干细胞研究进展被《科学》杂志评选为该年度世界十大科学成就之首。人类ES (hES)细胞建系获得成功,由此推动了干细胞研究的兴起。 2000: 日本把以干细胞工程为核心技术的再生医疗列为“千年世纪工程”之一,当年投资108亿日元;同年,全世界有10622例造血干细胞移植。 成体干细胞移植使糖尿病大鼠恢复正常 神经干细胞能够进入脑组织并修复脑损伤 角膜干细胞有助于恢复视力 发现成人骨髓干细胞形成肝细胞 成人骨髓干细胞可以在合适的条件下转化为神经细胞 成人骨髓干细胞可以在体外大规模培养 证实成人骨髓干细胞可以形成多种类型组织

干细胞抗衰老机理

干细胞抗衰老机理 干细胞可以在体内分化为内胚层、中胚层以及外胚层3个胚层来源组织的细胞。干细胞输入宿主体内后,可以归巢在特定部位,在微环境影响下能向正确表型的细胞分化,成为心肌细胞、肝细胞、肾细胞、胰岛细胞、神经细胞、皮肤细胞、脂肪细胞、肌肉细胞、骨细胞、软骨细胞、肌腱细胞等,达到抗衰老的目的。 干细胞抗衰老的具体机制: ①干细胞分化为功能性细胞,代替衰退、损伤的功能性细胞; ②启动再生相关基因的顺序表达,使组织器官的内源性衰退、损伤修复启动; ③外源性干细胞进入体内,分泌多种生长营养因子,改善组织器官内部微环境; ④免疫调节作用可减轻了局部组织器官的炎性反应。 干细胞抗衰老的技术特点: 所用的干细胞是采用国家干细胞工程技术研究中心专利技术,在国家认证的GMP 细胞培养室进行特定培养,专门用来做抗衰老治疗的干细胞。经特殊手段培养的干细胞细胞活力、增殖能力、耐受力及植入能力较普通方法培养的间充质干细胞都要强,在抗衰老方面的疗效自然更好。 干细胞抗衰老的适宜人群: 1、预防衰老,要求维持机体年轻化、面部美容年轻化的人群; 2、高压力、工作紧张、亚健康人群; 3、内分泌及性功能衰退人群:男性、女性性功能下降、减退,女性月经失调、内分泌紊乱,卵巢早衰、更年期提前,睡眠、情绪欠佳等; 4、机体未老先衰人群:机体衰老,缺乏活力,易疲倦,组织器官功能老化等; 5、心血管系统功能退变人群:动脉硬化、老化,冠状动脉硬化、狭窄,血压增高等; 6、内脏器官功能退化人群:心、肝、肺、肾、胃肠等器官功能衰退或下降; 7、骨骼运动系统退变人群:骨质疏松,骨关节增生疼痛,骨关节退变,关节炎,肌肉、韧带、肌腱功能退化,运动及活动能力下降等; 8、免疫系统衰退人群:免疫力弱,易感冒或患感染性疾病等; 9、血液系统功能衰退人群:血脂高,血粘稠度高,血液流变学改变等; 10、疾病方面:慢炎疾病稳定期(恶性肿瘤除外),如高血压、糖尿病、冠心病、肝硬化、中风、手术后、神经系统损伤或疾病等;急性疾病发作期,如心肌梗死、脑中风等;自身免疫性疾病,如红斑狼疮、Ⅰ型糖尿病等。 干细胞抗衰老治疗后出现的变化: 1、外在变化:皮肤变光滑、润泽,肤色变白;细小皱纹减轻、变浅,面部色斑变淡;头发可出现增多、白转黑现象,全松弛的皮肤开始变得紧致以及肌肉变得紧实,女性乳房、臀部变得紧致富有弹性。 2、免疫力增强,原来易感冒的人不易再感冒。 3、睡眠改善,不容易疲倦,精力充沛,记忆力好转。 4、肌肉变得有力,腰膝酸软疼痛症状减轻。 5、食欲好转,腹胀、便秘现象减轻甚至消失,肠炎症状好转。 6、男性功能改善,前列腺肥大增生减轻好转;女性卵巢早衰患者月经的恢复,更年期症状的改善,女性乳房及臀部变得紧致有弹性。 7、代谢率提高,脂肪重新分布,机体年轻态的恢复。 8、全面提高人体机能,改善人体退变现状,使机体保持青春活力和年轻状态。

细胞工程复习题

细胞工程复习题 一、名词解释(每小题3分,共21分)1.酶工程: 2.继代培养 3.人工种子: 4.单倍体培养: 5.微细胞: 6.胚胎工程: 7.克隆: 8.蛋白质工程: 9.外植体: 10.动物细胞与组织培养: 11.组织工程: 12.雌核发育: 13.胚胎融合: 14.转基因动物: 15.生物化学工程: 16.愈伤组织: 17.看护培养: 18.细胞固定化: 19.染色体工程 20.细胞重组: 21.基因工程技术: 二、简答题 1.细胞工程的重要应用体现在哪些方面

2.何为植物细胞两相培养技术建立植物细胞的两相培养系统必须满足的条件是什么 3.动物细胞体外培养有哪些特点 4.动物器官培养技术中,传统的器官培养方法主要有哪些 5.什么是细胞核移植技术以鱼类细胞核移植为例,其技术要点有哪些方面6.植物组织培养与植物细胞培养有什么区别 7.何为细胞悬浮培养怎样做到悬浮培养细胞的同步化 8.动物细胞生物反应器培养生产的生物制品主要有哪些种类 9.什么是试管动物试管动物技术主要包括哪几个主要技术环节 10.何为体细胞克隆技术多莉羊是怎样培育出的 11.芦荟组织培养快速繁殖中,通过哪些途径可以得到完整的植株 12.人工种子利用有何优势 13.用于动物细胞与组织培养的生物反应器应具备哪些基本要求

14.何为胚胎移植主要包括哪些关键技术 15.转基因动物技术的应用主要体现在哪几个方面 三、论述题 1.请阐述单克隆抗体的制备过程 2.植物组织培养技术主要包括哪些环节各环节的主要工作内容有哪些 3.请阐述原生质的分离,纯化和活力鉴定的技术过程 四、计算题 μ和ppm浓度各是什么1.有一培养基的IAA浓度是1.5/ mg L,问其/ mol L (分子量) 2.培养基的配方是 2.0/0.5/ +++水解酪蛋白 MS BA mg L NAA mg L 500mg/L+3%蔗糖+%琼脂粉。MS母液的浓度分别是:大量元素10倍,微量元素100倍,铁盐100倍,有机物100倍;BA母液浓度ml,NAA母液浓度ml。要配制800ml 该培养基,需要吸取各种母液各多少ml分别称取蔗糖、琼脂粉各多少克 3.要配制1mol/L的 NaOH100ml, 要称取98%的固体NaOH多少克要配制1mol/L的HCl1000 ml,要量取浓HCl多少ml(NaOH分子量40,HCl分子量,浓HCl含量38%,比重) 五、填空题 1.生物工程操作的对象是什么这是与化学工程等其他工程类学科最明显的不同

干细胞与组织工程重大项目课题申请指引

附件1: 863 计划生物和医药技术领域 “干细胞与组织工程”重大项目 课题申请指南 一、指南说明 “十一五”期间,本重大项目以替代、修复或再造人体各种组织器官的“再生医学”为主线,以干细胞与克隆技术、组织工程技术、组织器官代用品和再生医学相关评价体系为重点,利用多学科、多技术交叉合作的关键技术和资源平台,建立具有一定规模的高水平研究、生产和应用基地,形成我国再生医学工程研究开发技术体系,研制具有自主知识产权的系列干细胞与组织工程产品及代用品,建立、完善和细化相应的技术标准、准入规范和相关伦理学指导原则,培育和带动新兴产业,加快实现部分干细胞、组织工程产品和组织器官代用品的产业化,从而使我国再生医学研究和应用的整体水平进入世界先进行列,部分关键技术和产品达到国际领先水平。 本重大项目的任务分解及主要任务指标为:完成1-2 种重要退行性疾病的治疗性克隆临床前研究,力争获得第一个治疗性克隆的临床批 文;完成3-5 种重要疾病干细胞治疗的临床前研究,获得SFDA或卫生 行政主管部门的临床批文,力争1-2种治疗技术或产品 完成临床试验,获得相应证书;初步建立1-2 个国家级人类(疾病)胚胎干细胞库,建立干细胞库有关的硬件标准和管理规范;4-6 种具有自主知识产权的系列组织工程产品获得SFDA临床批文,力争 2-3 项完成临床试验并获得许可证;开发3-5 项具有自主知识产权的新型组织器官代用品,力争获得生产许可证;建立3-5 种针对干细胞和组织工程应用的灵长类动物疾病与评价模型;申请专利200 项左右,其中

10项左右为国际PCT专利,力争10%获得授权。 上述任务分解除个别保密课题外,所有课题均通过公开发布课题申请指南落实任务。 此次发布的是本重大项目课题申请指南,拟安排的主要内容包括干细胞与治疗性克隆、组织工程技术与产品研制、组织器官代用品研发及灵长类动物疾病与评价模型等,拟支持的经费为 2 亿元人民币。课题支持强度依据所承担任务和完成指标而定,课题支持年限为5 年,但依据中期评估进行滚动支持。 二、指南内容 课题 1 、帕金森病或卢迦雷氏病的治疗性克隆研究与应用研究目标:完成治疗性克隆技术及治疗性克隆干细胞的临床前研究及有效性和安全性评价,向SFDA申报临床批文,争取在治疗性克隆领域有所突破。此课题是重大项目总体目标中的重要组成部分和亮点,也是体现本项目水平的重要指标之一。 主要研究内容及考核指标:针对帕金森病或卢迦雷氏病等神经系统退行性疾病,建立治疗性克隆胚胎干细胞系,建立治疗性克隆临床应用评价体系和相关检测手段,完成治疗性克隆技术及治疗性克隆干细胞的有效性和安全性评价等临床前研究,申报SFDA临床批文,争取率先将1-2 种治疗性克隆技术应用到临床。申请30 项左右国家专利及部分PCT力争10%获得授权。 课题支持年限:五年。 课题经费来源及构成:课题拟支持的国拨总经费为1500 万元人民币。作为战略高技术类课题,以国拨经费为主,课题申请单位配套相应的人员经费。 课题2、我国人类(疾病)胚胎干细胞库的建立与应用 研究目标:有计划、有组织、有目标、有分工地利用好、保护好我

干细胞专业词汇

干细胞,无疑是当今生物医学研究领域中的重中之重,国内外很多生物医学研究机构都在开展着这方面的工作,与此同时,一些干细胞研究的专用术语也大量出现在相关文献中,为了使大家更好地理解这些术语的含义,李志琴博士,章静波教授从美国国立卫生院(NIH) 有关干细胞的报告中摘取了部分专有名词,并把它们译成中文,以供参考。 Adipocyte ———脂肪细胞。 Adult stem cell ———成体干细胞,存在于已分化组织中的未分化细胞,它可以自我更新,同时在一定的局限性条件下也可分化,产生其来源组织的各种特异的细胞类型。 Allogenic ———同种异体的,两个或两个以上的个体(或细胞系) ,当其在1 个或多个位点上的基因序列不相同时,则互称为同种异型的机体。 Amnion ———羊膜,最内的一层子宫内膜,包绕着胎儿和羊水。 Anterior visceral endoderm ( AVE) ———前脏内胚层,起源于早期胚胎的特异性组织结构,有助于建立起机体的前后轴向。 Antibody ———抗体,B 细胞对抗原反应而分泌的一种Y型蛋白质,抗体可与诱导其产生的抗原呈特异性结合。针对感染性生物体表面抗原产生的抗体有助于消灭体内的该生物体。

Antigen ———抗原,可以诱导抗体形成的物质,常是蛋白质。抗原通常存在于感染性生物体,输血血细胞和移植器官的表面。 Antigen presenting cells (APCs ) ———抗原递呈细胞,体内多种细胞类型中的一种,可以对抗原进行加工,并以一种可被T 细胞识别的形式展现于其表面。 Apoptosis ———细胞凋亡,遗传性的程序性细胞死亡。 Astrocyte ———星型胶质细胞,神经组织中的一种较大的神经胶质细胞。 Autoantibody ———自身抗体,一种与机体自身细胞和组织产生的抗原发生反应的抗体,自身抗体可引起自身免疫性疾病。 Autoimmune disease ———自身免疫性疾病,由于T 细胞和P或某种抗体攻击个体自身细胞或组织而引起的一种疾病。 Autologous transplant ———自身移植物,移植组织来自于接受移植的个体,这种移植可避免免疫排斥并发症。 Axis ———轴、纵轴,通过球体两极的直线;机体或其任一部分的中心线;脊柱;中枢神经系统。一条动脉当其发生并立即分为许多分枝时也可称为轴。

干细胞和肿瘤干细胞

干细胞和肿瘤干细胞: 干细胞和肿瘤干细胞的相同点: 肿瘤干细胞和干细胞在生物学特性和生长调控机制等诸多方面有着极其相似的生物学行为,主要相似之处有:①二者具有相似的调节生长的机制。有证据表明许多与肿瘤有关的调节途径也调节正常干细胞的发展,例如:凋亡抑制基因bcl-2可在体外增加HSC的数量。其他与癌变有关的信号途径如Wnt,Notch,Shh,Bmi-1等在调节干细胞自我更新的同时也在肿瘤中起作用[10-11]。②干细胞具有迁移的特性,而癌细胞有转移的能力。Tu等[12]认为干细胞的迁移和癌细胞的转移,皆受特异化学因子及其受体的调节。干细胞迁移到特定的组织和器官,而这可以解释肿瘤转移也有一定器官和组织特异性。③干细胞与癌细胞在一定的条件下是可以转化的,如生殖嵴或胚胎植入体内可以诱导成畸胎瘤,而畸胎瘤细胞注入鼠囊胚内细胞团可以形成正常胚胎。④肿瘤干细胞与HSC一样,可以分为肿瘤干细胞、短期增生细胞、分化细胞。⑤肿瘤起源于干细胞。有人认为单一细胞获得4~7次突变将发生恶性转化[13]。组织更新快的上皮组织、造血系统是肿瘤高发部位,组织自我更新越快,复制、转录过程中基因发生突变的概率越高。尽管大多数肿瘤转化突变的靶细胞并不清楚,但是已有相当多的证据表明某些结肠癌和白血病产生于积累多次突变的干细胞。⑥干细胞与肿瘤干细胞都具有端粒酶活性以及扩增的端粒重复序列,而人类终末分化体细胞不具有端粒酶活性。⑦二者均具有自我更新和无限增殖能力。⑧自我更新能力。⑨组织特异分化能力,肿瘤干细胞能够产生不同表型的肿瘤细胞,并在体内形成新的肿瘤。⑩不对称分裂能力。 干细胞和肿瘤干细胞的不同点:但肿瘤干细胞也具有不同于干细胞的特点:①自我更新信号传导途径的负反馈调节机制被破坏,肿瘤干细胞具有无限增殖和无自稳定性,而正常干细胞的增殖具有自稳性,其数目保持恒定。②缺乏分纯成熟能力,晚期肿瘤细胞没有分化为成熟细胞的能力,说明其分化程序异常,这与有着正常分化程序的干细胞不同。③肿瘤细胞倾向于积累复制错误,而正常干细胞的

细胞工程论文设计(胚胎干细胞)

细胞工程 课程论文 题目:胚胎干细胞在生物医学方面的研究及用学号:20100412310035 姓名:周文斌 年级:2010级 专业:生物工程(1)班 指导教师: 完成日期:2013 年11 月28 日 成绩:

胚胎干细胞在生物医学方面的研究及应用 摘要:干细胞,在医学中被称为“万用细胞”,是一类具有自我更新和分化潜能的细胞,在生命的生长与发育中其起主干作用的原始细胞。本文即以干细胞为基础,从胚胎干细胞概念出发,介绍胚胎干细胞的生物学特性,对近年来国外胚胎干细胞的研究历程做出梳理与总结,并对其研究成果、应用前景及存在问题作出概述。 关键词:干细胞;胚胎干细胞;生物学特性;研究历程及成果;应用前景;存在问题 一、干细胞 干细胞(stem cells, SC)是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞和成体干细胞。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。 二、胚胎干细胞(ESC) 胚胎干细胞(embryonic stem cell,ESC)是从着床前胚胎细胞团或原始生殖细胞经体外分化抑制培养分离的一种全能性细胞[1]。它具有体外培养无限增殖、自我更新和多向分化的特性。无论在体外还是体环境,ES细胞都能被诱导分化为机体几乎所有的细胞类型。1981年,埃文斯(Evans)和考夫曼(Kaufman)从小鼠胚囊细胞团建立了未分化的小鼠胚胎干细胞[2,3]。1998年,汤姆森(Thomson)在体外受精5 天的人囊胚中成功分离出hES细胞, 体外培养维持不分化状态均传代30 代以上,建立了人的胚胎干细胞系开创了胚胎干细胞的新纪元[4]。 三、生物学特性 1、形态学特征

(TOC约束理论)干细胞常用实验技术

实验室内部的人胚胎干细胞protocol 人类胚胎干细胞H1和H9维持方案 一、试剂配制 饲养层细胞培养基 Fibroblast-DMEM Media (F-DMEM) DMEM (GIBCO 11960-044) 450ml FCS GIBCO 16000-044 50ml 10% Pen/Strep 2.5ml 50IU/ml L-glut GIBCO 25030-081 5ml 2uM/ml 人类胚胎干细胞培养基 HESC-Media KO-DMED GIBCO 10829-018 480ml KOSR GIBCO 10828-028 120ml 20% 10mM NEAA GIBCO 11140-050 6ml 0.1mM L-glut(0.2M) GIBCO 25030-081 6ml 2mM Pen/Strep 3ml 55mM BME GIBCO 21985-023 1.1ml 0.1mM ITS GIBCO 41400-045 6ml 4-80C避光保存。用前每50毫升加200-400ng bFGF 细胞冻存培养基 FBS-DMSO FCS GIBCO 16000-044 9ml 90% DMSO SIGMA D2650 1ml 10% 细胞消化液Trypsin-EDTA 0.25% Trysin-1mM EDTA GIBCO 25200-056 2ml 0.05%,0.2mM PBS(-) 14190-144 8ml MEF细胞有丝分裂终止液Mito C Mitomycin C 0.2mg 0.05mg/ml dd-H2O 15230-162 4ml 避光保存。 Mito C的终浓度为10ug/ml即40吸ul 工作液加到2ml F-DMEM中。. 0.1% Gelatin(用于培养皿的包被) 1% Gelatin 40ml 0.1%

干细胞领域的牛人们

干细胞科研领域牛人 来源:生物谷https://www.360docs.net/doc/a76312575.html,/ 作者:石桂来(sglswjs@https://www.360docs.net/doc/a76312575.html,) 榜样的力量是无穷的。每个领域都有取得杰出成就的成功人士,他们也是后生崇拜学习的偶像。科研领域也不例外。作为目前最热门的研究领域--干细胞,该领域的大牛都有谁?他们都在做什么?笔者总结了一下这个领域的牛人,分为国际篇、华人篇和国内篇三部分介绍。本文仅代表笔者的个人观点,欢迎补充。 一 、国际篇 山中伸弥 (Shinya Yamanaka) https://www.360docs.net/doc/a76312575.html,/gladstone/site/yamanaka/ 5年前,提起Shinya Yamanaka,可能只有做胚胎干细胞的人略有耳 闻,而现在他的名字在科研领域可谓是家喻户晓。虽然在iPS之前, 他也做出了一些重要的工作,如发现Nanog和Eras在小鼠胚胎干细 胞中的作用(2003,cell;2003,Nature),但这些跟iPS相比,再好 的工作光芒都会被掩盖,即使是CNS(Cell,Nature,Science)级 别的工作。传统的观点认为核移植是获得个体特异的多能干细胞的主 要途径,但该方法技术难度高,成功率低,至今没有获得人的核移植胚胎干细胞。笔者至今仍记得2007年初(刚进实验室)看到Shinya Yamanaka于2006年发表在Cell上关于iPS的论文时的兴奋心情。我立刻意识到这项工作的重要性,虽然他们最初的结果并不完美,当时获得的iPS细胞按现在的标准只能算是半成品,因此部分人对这项工作的看法是半信半疑。直到一年后,Shinya Yamanaka和Rudolf Jaenisch同时在Nature上报道获得可以生殖系传递的iPS细胞,基本上打消了人们对这个发现的质疑,而随后越来越多的工作进一步证实这个发现。虽然这两年内他的产出不多(2010年有分量的工作只有一篇PNAS),但仅凭2006年那篇论文已经使他成为诺贝尔奖最热门的候选人。 Rudolf Jaenisch https://www.360docs.net/doc/a76312575.html,/research/faculty/jaenisch.html 提到Rudolf Jaenisch,在干细胞领域可谓是人尽皆知。1967年从德国 慕尼黑大学获得博士学位,现就职于美国麻省理工学院(MIT)的 whitehead 研究所,他是该研究所的创始人之一。Rudolf Jaenisch在 一系列领域都做出了有影响的工作,包括基因敲除小鼠、表观遗传学研 究、核移植、iPS等,并将这些领域的几乎所有的重要问题都解决,唯 一的遗憾是自己开创的领域不多。笔者有幸听过一次他的讲座,也同他有过简短的交谈,给人总体印象是一个典型的德国人,比较严肃。他曾经担任过国际干细胞学会的主席。

有关再生医学学习的感想

有关再生医学学习的感想 再生医学是21世纪生物学和医学科学研究的重要发展方向,并将成为临床转化医学发展的重点,它的概念有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 再生医学的内涵已不断扩大,包括组织工程、细胞和细胞因子治疗、基因治疗、微生态治疗等,国际再生医学基金会(IFRM)已明确把组织工程定为再生医学的分支学科。第一位提出“组织工程学”术语的是美籍华裔科学家冯元桢教授。组织工程学的基本原理是,从机体获取少量活组织的功能细胞,与可降解或吸收的三维支架材料按一定比例混合,植入人体内病损部位,最后形成所需要的组织混器官,以达到创伤修复和功能重建的目的。王正国认为,组织工程的科学意义不仅在于提出了一个新的治疗手段,

更主要的是提出了复制组织、器官的新理念,使再生医学面临重大机遇与挑战。王正国说,一般情况下,组织工程学和再生医学没有严格区分。现在学术界认为,凡是能引导组织再生的各种方法和技术均被列入组织工程范畴内,如干细胞治疗、细胞因子和基因治疗。从外科学的发展历程来看,在先后经历了三个“R”阶段,即“切除(Resection)、诊疗(Repair)和替代(Replacement)”之后,组织工程学的出现,意味着外科学已经进入“再生医学”的新阶段,即第四个“R”。 目前机体损伤和疾病康复过程中受损组织和器官的修复与重建,仍然是生物学和临床医学面临的重大难题。借助于现代科学技术的发展,使受损的组织器官获得完全再生,或在体外复制出所需要的组织或器官进行替代性治疗,已经成为生物学、基础医学和临床医学关注的焦点。据报道,全世界每年约有上千万人遭受各种形式的创伤,有数百万人因在疾病康复过程中重要器官发生纤维化而导致功能丧失,有数十万人迫切希望进行各种器官移植。但令人遗憾的是,一方面,目前的组织器官修复无论是体表还是内脏,仍然停留在瘢痕愈合的解剖修复层面上,离人们所希望的“再生出一个完整的受损器官”差距甚远;另一方面,器官移植作为一种替代治疗方法尽管有其巨大的治疗作用,但它仍然是一种“拆东墙补西墙”的有损伤和有代价的治疗方法,而且由于受到伦理以及机体免疫排斥等方面的限制,很难满足临床救治的需要。而再生医学的出现,就可以解决这一系列的问题。

基于诱导多能干细胞技术的若干重大疾病模型与机理研究

项目名称:基于诱导多能干细胞技术的若干重大疾 病模型与机理研究 首席科学家:金颖上海交通大学 起止年限:2010年1月-2014年8月 依托部门:上海市科委

一、研究内容 我们拟在本项目中开展一下研究内容: 1. 优化和完善建立人iPS细胞的技术体系:本研究拟对现有的iPS细胞诱导技 术进行改进,构建新的非整合性细胞重编程因子表达载体,同时构建将细胞重编程因子输入体细胞的蛋白质直接运输系统及采用化合物及小分子进行输送的非病毒系统,筛选能够替代细胞重编程因子的小分子,建立并优化出高效、安全的iPS细胞诱导技术。同时,我们还将对用于诱导iPS细胞的体细胞种类进行研究,筛选出比成纤维细胞更有效、更快速地被诱导成为iPS 细胞、并且易于收集的体细胞。此外,我们将对新方法建立的iPS细胞系进行安全性检验。 2. 建立若干种重大疾病特异的iPS细胞系:为了有保证后续研究疾病发病机制 和筛选新的疾病治疗靶点,我们将首先建立严重危害人民健康的重大疾病的iPS细胞系,重点选择我们项目组有一定研究基础的疾病,并优先考虑具有遗传起因的家族病例,包括神经系统(阿尔茨海默病、帕金森病和小儿脊髓性肌肉萎缩症等)重大疾病、若干其它已知单基因或多基因改变的遗传性疾病(β-地中海贫血、骨髓衰竭综合征、Y染色体微缺失和肥厚性心肌病)和目前尚不知道基因改变的重大传染性疾病(艾滋病)。当课题1建立新的方法后,我们将利用新的技术建立更多疾病患者特异的iPS细胞系。 3. 利用疾病特异的iPS细胞系研究重大疾病的发生机制:重点选择神经系统疾 病(阿尔茨海默病、帕金森病和小儿脊髓性肌肉萎缩症等)和肥厚性心肌病患者特异的iPS细胞系,以正常人iPS细胞为对照,将疾病特异性iPS细胞向相应疾病中的功能细胞定向诱导,比较正常人和患者来源的细胞在分化过程中以及在受到环境危害(如氧化应激)或过度刺激(overexcitation)情况下的形态和功能,建立研究相关疾病的模型。采用microarray或深度测序技术研究mRNA表达谱,采用ChIP-chip(seq)和MeDIP-chip(seq)技术研究表观遗传学谱,分析正常细胞和疾病细胞之间细胞编程的差异,结合蛋白组学和质谱分析,有效地将全基因组表达改变与疾病的表型变化链接起来,为揭示疾病的发生机制和发现新的药物靶点提供依据。

干细胞工程

干细胞的研究及应用 摘要;由于干细胞具有特定的分化潜能,表现其全能性、多能性和专能性,近几年来世界各国科学家对干细胞的临床应用研究已取得很大的进展。干细胞是目前细胞工程研究最活跃的领域,随着基础研究、应用研究的进一步深化,这项技术将会在相当大程度上引发医学领域的重大变革,它已成为 21世纪生命科学领域的一个热点。本人将对干细胞及其应用前景展开论述。 关键词:干细胞应用前景 干细胞具有无限制自我更新能力、同时也可分化成特定组织的细胞,在细胞发育过程中处于较原始阶段。干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。 1干细胞研究进展 干细胞在体外能自我更新和定向分化为各种特定功能细胞的潜能获得了各国科学家的青睐,成为21世纪研究热点,在再生医学和临床医学上干细胞提供了新的治疗途径。大量研究结果证实,干细胞的分化能力及其分化方向受到体内外多种调控因素的影响,干细胞通过与这些调控因素之间的相互作用,调节其自身的增殖、分化,从而决定干细胞的命运⑴。 干细胞为再生医学与组织工程学提供了新的治疗思路。干细胞在医学上的研究仍处于起步阶段,明确其分化调控机制是其临床应用的前提和基础。目前对干细胞的分化调控研究主要集中在单个调控因素的影响,但干细胞的分化是各调控因素相互影响共同作用的结果,说明对其机制仍需作更深入的研究⑵。 2干细胞种类 2.1 胚胎干细胞 胚胎干细胞(Embryonic Stem cell,ES细胞) 当受精卵分裂发育成囊胚时,内层细胞团(Inner CellMass)的细胞即为胚胎干细胞。日前许多研究工作都足以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移值了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES 细胞的研究日益深入,生命科学家对人类ES细胞的了解迈人了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能⑷。 2.2 成体干细胞 成体干细胞是在许多组织和器官具有修复和再生能力的细胞。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。主要的成体干细胞有造血干细胞、神经干细胞等⑷。 2.3 造血干细胞 造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。最近又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。

高考生物复习题细胞工程含解析

配餐作业(四十一) 细胞工程 1.下列关于植物克隆的叙述,错误的是( ) A.通过花药离体培养可获得单倍体 B.通过平衡植物激素种类可实现器官发生 C.可利用细胞培养生产人参皂苷等中药成分 D.对植物愈伤组织进行诱变、培育和筛选可获得新品种 解析在植物组织培养中,通过控制不同浓度的不同类型的植物激素,可诱导产生不定根或丛芽,不能通过平衡植物激素种类使其发挥作用。 答案 B 2.下列有关动物细胞培养的叙述,错误的是( ) A.恶性肿瘤细胞系具有不死性和失去接触抑制等特性 B.利用液体培养基和CO2培养箱,模拟动物体的内环境 C.因细胞具有相互依存关系,细胞克隆需滋养细胞支持生长 D.细胞株没有差异性,在连续传代过程中遗传性状始终保持稳定 解析动物细胞的培养过程,是细胞有丝分裂的过程,在分裂过程中,由于基因突变或染色体变异会造成遗传物质的改变。 答案 D 3.如图为植物细胞融合后再生出新植株的部分过程示意图,请据图分析,以下叙述中不正确的是( ) A.使植物细胞形成原生质体阶段的关键技术是使用纤维素酶和果胶酶去除细胞壁 B.植物细胞融合一般要用聚乙二醇(PEG)等诱导剂进行诱导 C.原生质体融合成为一个新的杂种细胞的标志是出现新的细胞核 D.亲本植物A的细胞与亲本植物B的细胞两两融合后的细胞类型有3种 解析本题考查植物细胞融合的相关内容,意在考查考生的理解与分析能力。植物体细胞杂交前首先要用纤维素酶和果胶酶去除植物细胞的细胞壁以得到原生质体,A正确;诱导植物原生质体融合时,常用聚乙二醇作诱导剂,B正确;原生质体融合成一个新的杂种细胞

的标志是出现新的细胞壁,C不正确;A细胞和B细胞融合后形成AA、BB和AB三种类型的融合细胞,D正确。 答案 C 4.如图所示为白菜—甘蓝的培育流程,下列叙述错误的是( ) A.过程①用到的酶是纤维素酶和果胶酶 B.过程②常用的化学试剂是聚乙二醇 C.过程④使细胞的全能性提高 D.过程⑤使细胞的全能性降低,最终失去全能性 解析植物细胞壁的主要成分是纤维素和果胶,所以去除细胞壁应用纤维素酶和果胶酶,A正确;杂种细胞是已经分化的细胞,而愈伤组织是未分化的细胞,所以愈伤组织的全能性要高于杂种细胞,C正确;无论是分化的还是未分化的植物细胞都具有全能性,D错误。 答案 D 5.如图示植物组织培养过程。据图分析下列叙述正确的是( ) A.⑤植株根尖细胞的全能性比①植株根尖细胞的强 B.②试管的培养基中含有植物生长调节剂,不含有机物 C.③试管中的细胞能进行减数分裂 D.调节④培养基中植物生长调节剂的比例可诱导产生不同的植物器官 解析⑤植株根尖细胞的全能性与①植株根尖细胞相同。②试管的培养基中含有植物生长调节剂和有机物等。③试管中的细胞进行的分裂方式为有丝分裂。调节④培养基中植物生长调节剂的比例,可诱导产生根或芽。 答案 D 6.对于下面制备单克隆抗体过程示意图,不正确的叙述是( ) A.①表示B淋巴细胞和骨髓瘤细胞,均是从小鼠的脾脏中提取的 B.④中的筛选是通过抗原—抗体反应进行的

第三代生命科学论之——干细胞再生医学的理论存在严重缺陷

《第三代生命科学论》之 ——干细胞再生医学的理论存在严重缺陷 作者:颜丙强张涛 单纯的向人体内输入大量的干细胞,虽然患者会感觉像是被“打了鸡血”一样兴奋,短期内会出现某些症状的改善,但是长期看来会造成整体机体的代谢负担,引发代谢系统的进一步失调。 目前,干细胞再生医学遇到发展瓶颈与科研困难的根本,是因为他们有一个基础性的认知是有缺陷的。在科学研究中,确实观察到了人体细胞在新旧代谢的过程中,人体内的干细胞不断的进行多种转化与分化,在组织器官的新旧更替中起到至关重要的作用。于是就想当然的认为,人体内受损的组织器官不能被修复与再生的根源是人体中的干细胞数量不足所导致。于是,就开始在体外培养与富集大量的自体的或异体的干细胞,然后把他们再注射到人体中去。他们认为,只要是补充了足够数量的干细胞,那些损伤的组织与器官就会获得修复与再生。 他们这种思想认知的根源,是由于还原论思维的定式造成的,把人体看作是一个机械式的组合式整体。他们认为人体出现问题的根源是因为这个组合整体的一个要素缺少了、不足了,只要通过外援补充这个要素,就是可以起到恢复组合整体的效果。 但是,其实人体是从一个单细胞原始整体开始分化的分化式整体,是一个元整体,是一个无比复杂的巨系统。人体组织器官损伤后不能被修复的根源,不仅仅是一个干细胞数量多少的要素,还与许许多多的的其他要素共同相关。只有众多的要素都具备了,机体才能对被损伤的组织器官进行修复与再生。而让众多要素都具备的最佳方式,一定不是一味地补充注射干细胞,而是要想方设法的启动起人体本自具足的自组织机制。只有人体的自组织机制,才能把众多的要素备齐,并能进行有机的调度与分配。因此,研究如何依靠和推动机体进行自主调理,发挥机体的自组织机制和能力,才是再生医学的第一基本原理。 美国哈佛大学心脏干细胞研究的丑闻事件,即证实了心脏中根本不存在心脏干细胞,也证实了并不是直接向心脏里注射干细胞就会起到修复与再生的作用。2019年12美国辛辛那提儿童医院在《自然》杂志发表的那片论文称“干细胞心脏疗法”的背后机制或与“干细胞”无直接联系,而是由注射时导致了伤口或损伤,是由伤口愈合反应诱导引起的心脏向好反应。因此,事实已经一再证明,研究如何诱导人体的自组织系统启动,才是回归真正再生医学的必由之路。 作者简介: 颜丙强,男,山东省济南人,中国共产党党员,《第三代生命科学论》作者。2007年博士毕业于山东大学生命科学学院,2009年9月份得到国家主席党总书记胡锦涛同志的亲切接见与勉励,并在中央电视台《新闻联播》节目中播出,一直致力于坚持利用钱学森先生的人体复杂系统论思想,思考与重建当代生命科学技术体系,总结分析了人体生命系统的六大基本原理。 颜丙强博士领导的团队在系统论思想与理论的指导下,充分论证了“癌症是一种代谢性疾病”,应主要遵循代谢调理的治疗思路,并研究出了一套综合调理方案;在利用中草药提取成份诱导人体组织器官原位再生领域取得巨大突破,实现了人体多组织器官的原位修复与

再生医学

再生医学 再生医学的概念与范畴 有位专家认为,再生医学是通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官,以改善或恢复损伤组织和器官的功能的科学。他提出移植干细胞可优势分布于损伤局部,但数量有限(<3%),将基因克隆到腺病毒表达载体能加强定向,转染干细胞使之增加基因表达,增强了促愈合作用。同时还发现了3个来源于大鼠、5个来源于人的真皮干细胞克隆、体外长期连续培养过程中全部发生恶性转化。不同干细胞克隆转化时间从5 0代至80代不等,建议在临床实际应用中不要用培养很多代的干细胞。 有的专家指出,再生医学是指利用生物学及工程学的理论方法创造丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。卢世璧院士还介绍了软骨组织工程方面的进展。 还有专家认为,再生医学的概念应有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 英国《再生医学》杂志1月刊登了一份由加拿大麦克劳克林—罗特曼全球卫生中心完成的关于中国再生医学研究现状的报告。该报告认为,进入21世纪以来,中国再生医学领域的研究迅速发展,在国际学术期刊上发表的相关论文数量位居世界第五,一些研究成果处于世界领先地位。 所谓再生医学,是指利用生物学及工程学的理论方法,促进机体自我修复与再生,或构建新的组织与器官,以修复、再生和替代受损的组织和器官的医学技术。这一技术领域涵盖了干细胞技术、组织工程和基因工程等多项现代生物工程技术,力图从各个层面寻求组织和器官再生修复和功能重建的可能性。 “再生医学”这一名词的提出还不到20年时间。这是在生命科学、材料科学、工程学、计算机技术等多学科的飞速发展和日益交融的基础上发展起来的一门新兴学科,是人类医学发展的一次飞跃。再生医学的发展同时也带动了上述各学科向应用领域的发展以及交叉合作。 干细胞具有再生各种组织器官的潜在功能,干细胞技术因而成为再生医学的基础。干细胞是一群尚未完全分化的细胞,它就像是万能细胞,在特定条件下可以向各种组织细胞分化,在生命体的胚胎发育、组织更新和修复过程中扮演着关键的角色。1968年,美国明尼苏达大学医学中心首次采用骨髓造血干细胞移植,成功治疗了一例先天性联合免疫缺陷病。干细胞移植技术现已用于多种疾病的临床治疗和相关基础研究,几乎涉及人体所有的组织和器官。 组织工程是指采用各种种子细胞和生物材料在体外进行组织构建,再造各种人工组织或器官,它涉及生命科学、材料学和工程学等多个领域。目前,多种生物材料已经成功应用于人工骨和关节、人工晶体、医用导管、人工心脏瓣膜以及血管支架,人造肺、心脏、肝、肾和角膜等各种人工器官也在大力研究开发。 基因工程技术是再生医学中必不可少的手段。对干细胞甚至已经分化的体细胞进行基因重新编程,可以用于治疗各种基因缺陷造成的遗传性疾病或恶性肿瘤。人工器官中的种子细胞往往也需要通过基因重新构建向特定方向分化。结合基因打靶技术以及干细胞克隆技术可以改变异种组织和器官的表型,使得异种移植有望成为可能。 再生医学的核心和终极目标是修复或再生各种组织和器官,解决因疾病、创伤、衰老或遗传因素造成的组织器官缺损和功能障碍。可以想象,如果将来人类有能力对任何细胞都进行编程和干细胞诱导分化,生产制造出任何一种人工器官,那么,绝大多数疾病就能治愈,人类可实现延长寿命之梦。

细胞工程简介 (1)

细胞工程 主讲人王文星 学前导引 本课程为必修考试课,理论授课32学时,期末考试闭卷 总成绩为100分:出勤+课堂提问占10%, 平时测验占20%,期末试卷占70%. 平时测验1~次,随堂考试,闭卷. 选用教材: 安利国,杨桂文.?细胞工程?第3版,科学出版社,2016 主要参考教材: 李志勇.?细胞工程?第2版,科学出版社,2010 殷红.?细胞工程?第2版,化学工业出版社,2013 第1章细胞工程简介 内容提要 一、定义五、主要研究内容 二、与其它生物工程的关系六、重要应用 三、发展历史七、本章小结 四、研究对象八、思考题 一、细胞工程定义 细胞工程:应用细胞生物学和分子生物学的方法,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿来改变细胞内的遗传物质以获取新型生物或特种细胞产品的一门科学技术。 广义的细胞工程:包括所有的生物组织、器官及细胞离体操作和培养技术,狭义的细胞工程则是指细胞融合和细胞培养技术。 二、细胞工程与其它生物工程的关系 生物化学工程为基因工程、细胞工程、微生物工程、蛋白质工程、酶工程、代谢工程提供产业化技术支持。

基因工程技术为细胞工程提供转基因细胞。 细胞工程技术为微生物工程、酶工程及工程产业化提供充足的 经过遗传改良和性状稳定的微生物、动植物细胞原料。 总结:细胞工程技术是现代生物工程技术各领域连接的桥梁和 纽带;与其它生物工程技术是密切联系,不可分割的有机整体。 三、细胞工程发展历史 细胞工程的理论基础是细胞学说和细胞全能性学说。 在植物学界,100年前,德国学者Haberlandt(1902)发表了着名 的论文《植物细胞离体培养实验》,提出了细胞全能性的观点。 20AD中叶,植物细胞组织培养与细胞的遗传操作相结合,发展 成为植物细胞工程。 20AD60s末兴起的植物单倍体技术是一项在植物育种上用途广 泛的细胞工程技术。 20AD90s以来,虽然基因工程成为生物技术的主流,但是细胞工 程并为失去独立存在价值,它继续在优良苗木繁育、农作物育种和 植物天然药物的开发中起着举足轻重的作用。 在动物学界,1907年美国学者哈里森等人采用盖玻片悬滴培养 蛙胚神经组织,存活数周,而且观察到生长现象,从而开创了动物细 胞培养的先河。 1965年,哈利斯和沃特金斯证明了灭活的病毒在控制的条件下 可以用来诱导动物细胞的融合。至此细胞融合作为一个重要的研究 领域已经引起人们的浓厚兴趣。 20AD70s初,诞生了细胞拆合工程。1972年,Prescott等人首先应用离心技术结合细胞松弛素B分离哺乳类细胞的胞质体获得成功,为研究哺乳类细胞核、质相互关系、细胞质基因的转移开创了新的途径。 近年来,细胞工程取得了迅速发展。如试管植物、试管动物、克隆动物、转基因生物反应器、干细胞等等。其中最具代表性的成就有:1977年,英国采用胚胎工程技术成功培育出世界首例试管婴儿。1997年英国利用成年动物体细胞首次克隆出绵羊“多莉”。2001年英国又宣布成功培育出世界首批转基因猪。2008年:美国科学家利用人胚胎干细胞可以在实验室培育出有携带氧功能的成熟红细胞,这个成果将可能解决个别血型血源紧缺的问题,也可帮助避免输血相关疾病的发生;美国研究人员在患糖尿病的老鼠身上做实验,将普通细胞转化成可分泌胰岛素的胰岛β细胞,减轻了病情。这一研究利用基因重组技术,实现不同种类成体细胞间直接转化,代表再生医学的重大进步。 细胞工程发展历史 2009年,马萨诸塞州总医院(MGH)的研究人员找到一种成功地体外培养肝细胞的方法,培养的肝细胞具有药物毒性筛选功能。研究报告详细介绍了肝细胞如何在高氧条件和无动物血清的条件下生长,并如何快速发挥正常肝脏所具有的功能。 2010年,科学家首次实现将多功能干细胞变成功能性人体肠道组织。 2011年,肿瘤的细胞免疫治疗研究进展:细胞免疫疗法能够靶向肿瘤细胞而不伤及正常组织细胞,并可产生免疫记忆来预防肿瘤复发,有可能成为肿瘤治疗的第四种方法。四、细胞工程的研究对象 细胞或其组成部分和构成的组织、器官等如染色体、细胞核、原生质体、整个细胞、受精卵、胚胎、组织或器官。 五、细胞工程的主要研究内容

相关文档
最新文档