高考概率知识点及例题

高考概率知识点及例题
高考概率知识点及例题

概率知识要点

3.1.随机事件的概率 3.1.1 随机事件的概率

1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。

3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。

5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。

6、频率:事件A 出现的比例

()=A n n A n

f

。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.

3.1.2 概率的意义

1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。

2、游戏的公平性:抽签的公平性。

3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件

4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。

5、试验与发现:孟德尔的豌豆试验。

6、遗传机理中的统计规律。

3.1.3 概率的基本性质

1、事件的关系与运算

(1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作(

或A B)。

B A

??

不可能事件记作?。

(2)相等。若B A A B

且,则称事件A与事件B相等,记作A=B。

??

(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。

(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。

(5)事件A与事件B互斥:A B

,即事件A与

A B?

为不可能事件,即=

事件B在任何一次试验中并不会同时发生。

(6)事件A与事件B互为对立事件:A B

为必然事

为不可能事件,A B

件,即事件A与事件B在任何一次试验中有且仅有一个发生。

2、概率的几个基本性质

(1)0()1

≤≤.

P A

(2)必然事件的概率为1.()1

P E=.

(3)不可能事件的概率为0. ()0

P F=.

(4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = .

3.2 古典概型 3.2.1 古典概型 1、基本事件:

基本事件的特点:(1)任何两个事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本时间

的和。

2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。

3、公式:()=

A P A 包含的基本事件的个数

基本事件的总数

3.2.2 (整数值)随机数的产生

如何用计算器产生指定的两个整数之间的取整数值的随机数?——书上例题。

3.3 几何概型 3.3.1 几何概型

1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。

2、几何概型中,事件A 发生的概率计算公式:

()P A =

构成事件A 的区域长度(面积或体积)

试验的全部结果所构成的区域长度(面积或体积)

3.3.2 均匀随机数的产生

常用的是[]0,1上的均匀随机数,可以用计算器来产生0~1之间的均匀随机数。

本章知识小结

(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

(2)通过实例,了解两个互斥事件的概率加法公式。

(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

(4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。 (5)通过阅读材料,了解人类认识随机现象的过程。 重难点的归纳: 重点:

随机事件 频率

概率,概率的意义与性质

应用概率解决实际问题

古典概型 几何概型

随机数与随机模拟

1、了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义.

2、理解古典概型及其概率计算公式.

3、关于几何概型的概率计算

4、体会随机模拟中的统计思想:用样本估计总体.

难点:

1、理解频率与概率的关系.

2、设计和运用模拟方法近似计算概率.

3、把求未知量的问题转化为几何概型求概率的问题.

(二)高考概率

概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.

考试要求:

(1)了解随机事件的发生存在着规律性和随机事件概率的意义.

(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

(4)会计算事件在n 次独立重复试验中恰好发生κ次的概率.

以下归纳9个常见考点:

解析概率与统计试题是高考的必考内容。它是以实际应用问题为载体,以排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及

其概率的计算和随机变量概率分布列性质及其应用为目标的中档师,预计这也是今后高考概率统计试题的考查特点和命题趋向。

下面对其常见题型和考点进行解析。

考点1考查等可能事件概率计算。

在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。如果事件A包含的结果有m个,那么()m

P A

。这就是等可能事件

n

的判断方法及其概率的计n算公式。

高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。

例1(2004 天津)从4名男生和2名女生中任3人参加演讲比赛.

(I)求所选3人都是男生的概率;

(II)求所选3人中恰有1名女生的概率;

(III)求所选3人中至少有1名女生的概率.

考点 2 考查互斥事件至少有一个发生与相互独立事件同时发生概率计算。

不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。

事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为AB。用概率的乘法公式P(AB)=P(A)P(B)计算。

高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率的综合计算能力进行考查。

例2.(2005 全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有

影响。已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率。

考点 3 考查对立事件概率计算。

必有一个发生的两个互斥事件A、B叫做互为对立事件。用概率的减法公式

P(A)=1-P(A)计算其概率。

高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算进行考查。

例3.(2005 福建卷文)甲、乙两人在罚球线投球命中的概率分别为1

2

2

5

(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;

(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;

考点 4 考查独立重复试验概率计算。

若n次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n次独立重复试验。若在1次试验中事件A发生的概率为P,则在n次独立重复试验中,事件A恰好发生k次的概率为

Pn(k)=

n ()(1)

k k n k

n

P A C p p-

=-。

高考结合实际应用问题考查n次独立重复试验中某事件恰好发生k次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。

例4.(2005 湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2。从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;

(Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字)

考点5考查随机变量概率分布与期望计算。

解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分布列,最后根据分布列和期望、方差公式去获解。以此考查离散型随机变量分布列和数学期望等概念和运用概率知识解决实际问题的能力。

例5.(2005 湖北卷)某地最近出台一项机动车驾照考试规定;每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数ξ的分布列和ξ的期望,并求李明在一年内领到驾照的概率。

考点6考查随机变量概率分布列与其他知识点结合

1、考查随机变量概率分布列与函数结合。

例 6.(2005 湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。

(Ⅰ)求ξ的分布及数学期望;

(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率。

2、考查随机变量概率分布列与数列结合。

例7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方接替射击。已知甲乙两人射击一次击中的概率均为7,且第一次由甲开始射击。

(1)求前4次射击中,甲恰好射击3次的概率。

(2)若第n次由甲射击的概率为a

n ,求数列{a

n

}的通项公式;求lim a

n

并说明极n→∞限值的实际意义。

3、考查随机变量概率分布列与线形规划结合。

例8(2005 辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。

(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概P(甲)、P(乙);

(Ⅱ)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(I)的条件下,求ξ、η的分布列及Eξ、Eη;

(Ⅲ)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资金60万元。设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,y为何值时,z=xEξ + yEη x最大?最大值是多少?(解答时须给出图示)

考查随机变量概率分布列性质性质应用

考点7 考查随机变量概率分布列性质应用。

离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.,高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查。

例9(2004 年全国高考题)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得0分。假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响.。

①求这名同学回答这三个问题的总得分的概率分布和数学期望;

②求这名同学总得分不为负分(即ξ≥0)的概率。

考点8 样本抽样识别与计算。

简单随机抽样,系统抽样,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相等,均为n

(N为总体个体数,n为样本容量)。系统抽

N

样、分层抽样的实质分别是等距抽样与按比例抽样,只需按照定义,适用范围和抽样步骤进行,就可得到符合条件的样本。

高考常结合应用问题,考查构照抽样模型,识别图形,搜集数据,处理材料等研究性学习的能力。

例11 (2005 年湖北湖北高考题)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, (270)

使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;

③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()

A.②、③都不能为系统抽样

B.②、④都不能为分层抽样

C.①、④都可能为系统抽样

D.①、③都可能为分层抽样

考点9 考查直方图。这是统计的知识,不是概率的吧?

例12.(2005 江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a、b的值分别为()

A.0,27,78 B.0,27,83 C.2.7,78 D.2.7,83

方法小结:

解决概率问题时,一定要根据有关概念,判断问题是否是等可能性事件、互斥事件、相互独立事件,还是某一事件在n次独立重复试验中恰好发生k 次的情况,以便选择正确的计算方法,同时注意上述各类事件的综合问题,要全面考虑,特别是近几年高考概率与期望的综合,体现了高考对概率知识要求的进一步提高。下面仅以几个例题作以小结。

一、用排列组合求概率

例1从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个三位数不能被3整除的概率为()

(A)19/54 (B)35/5 (C)38/54 (D)41/60

分析:等可能事件的概率关键是利用排列组合出基本事件数。

答案:B

点评:本题将等可能事件与对立事件的概率,以及分类讨论综合在一起,体现了知识交汇点的命题精神,是高考的热点。

二、互斥事件有一个发生的概率

例2某厂生产A产品,每盒10只进行包装,每盒产品都需要检验合格后才能出厂,规定以下,从每盒10只中任意抽4只进行检验,如果次品数不超过1只,就认为合格,否则就认为不合格,已经知道某盒A产品中有2只次品

(1)求该盒产品被检验合格的概率

(2)若对该盒产品分别进行两次检验,求两次检验的结果不一致的概率

分析:对一个复杂事件的概率可以分拆成几个互斥事件的概率或者转化为求其对立事件的概率。

点评:求相互独立事件同时发生的概率,要保证两者确是“相互独立”事

件。本例的“比赛型”题,分析比较简单,只要结合有关比赛规则即可解决,此类题也是高考的热点题。

三、对立重复试验

例3一位学生每天骑自行车上学,从他家到学校有5个交通岗,假设他在交通岗遇到红灯是相互独立的,且首末两个交通岗遇到红灯的概率均为p,其余3

个交通岗遇到红灯的概率均为1

2

(1) 若p=2/3,求该学生在第三个交通岗第一遇到红灯的概率;

(2) 若该学生至多遇到一次红灯的概率不超过5/18,求p的取值范围。

分析:首末两个交通岗遇红灯的概率相同,其余3个交通岗遇红灯的概率也相同,可看作独立重复试验。

点评:要注意恰有k次发生和某指定的k次发生的差异。对独立重复试验来说,前者的概率为

总结:概率初步的考题一般以(1)等可能事件;(2)互斥事件有一个发生;(3)相互独立事件同时发生;(4)独立重复试验为载体。有的考题可能综合多个概率题型;在等可能事件的概率计算中,关键有二:一是谁是一次试验(一次事件所含的基本事件的总数);二是事件A所含基本事件数。当然,所有基本事件是等可能的是前提;善于将复杂的事件分解为互斥事件的和与独立事件的积是解题的关键。

(三)高考数学概率中的易错题辨析

一、概念理解不清致错

例1.抛掷一枚均匀的骰子,若事件A:“朝上一面为奇数”,事件B:

“朝上一面的点数不超过3”,求P (A+B )

错误解法1:事件A :朝上一面的点数是1,3,5;事件B :趄上一面的点数为1,2,3,∴P (A+B )=P (A )+P (B )=2

16

36

3=+

错因分析:事件A :朝上一面的点数是1,3,5;事件B :趄上一面的点数为1,2,3,很明显,事件A 与事件B 不是互斥事件。

即P (A+B )≠P (A )+P (B ),所以上解是错误的。实际上: 正确解法为:A+B 包含:朝上一面的点数为1,2,3,5四种情况 ∴P (A+B )=3

26

4=

错误解法2:事件A :朝上一面的点数为1,3,5;事件B :朝上一面的点数为1,2,3,即以A 、B 事件中重复的点数1、3

∴P (A+B )=P (A )+P (B )-P (A ·B )

=4

32

12

12

12

1=?-+

错因分析:A 、B 事件中重复点数为1、3,所以P (A ·B )=6

2;这种

错误解法在于简单地类比应用容斥原理

)()()()(B A C a r d B C a r d A C

a r d B A C

a r d -+=致错

正确解答:P (A+B )=P (A )+P (B )-P (A ·B )

=3

26

22

12

1=-+

例2.某人抛掷一枚均匀骰子,构造数列}{n a ,使???-=)

(,1)(,1次

掷出奇数当第次掷出偶数当第n n a n ,

记n n a a a S +++= 21 求)4,3,2,1(0=≥i S i 且28=S 的概率。

错解:记事件A :28=S ,即前8项中,5项取值1,另3项取值-1 ∴28=S 的概率858)2

1()(?=C A P

记事件B :)4,3,2,1(0=≥i S i ,将)4,3,2,1(0=≥i S i 分为两种情形: (1)若第1、2项取值为1,则3,4项的取值任意

(2)若第1项为1,第2项为-1,则第3项必为1第四项任意 ∴P (B )=8

3)2

1()2

1(32=+

∴所求事件的概率为P=P (A )·P (B )=858)2

1(8

3??C

错因分析:0≥i S 且28=S 是同一事件的两个关联的条件,而不是两个相互独立事件。0≥i S 对28=S 的概率是有影响的,所以解答应为:

正解:∵)4,3,2,1(0=≥i S i ∴前4项的取值分为两种情形

①若1、3项为1;则余下6项中3项为1,另3项为-1即可。即8361)2

1(?=C P ;

②若1、2项为正,为避免与第①类重复,则第3项必为-1, 则后5项中只须3项为1,余下2项为-1,即8352)2

1(?=C P ,

∴所求事件的概率为7835362

15

)21()(=?+=C C P

二、有序与无序不分致错

例3.甲、乙两人参加普法知识竞赛,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙依次各抽一题。

求:(1)甲抽到选择题,乙提到判断题的概率是多少? (2)甲、乙两人中至少有1人抽到选择题的概率是多少?

错误解法:(1)甲从选择题抽到一题的结果为1

6C 乙从判断题中抽到一题的结果为14C 而甲、乙依次抽到一题的结果为210C

∴所求概率为:

15

8210

1

416=

C C C 错因分析:甲、乙依次从10个题目各抽一题的结果,应当是先选后排,

所以应为2

10A 。为避免错误,对于基本事件总数也可这样做:甲抽取一道题目的结果应为110C 种,乙再抽取余下的9道题中的任一道的结果应为19C 种,

所以

正确解答:

15

4

19

1101416=

C C C C (2)错误解法:从对立事件考虑,甲、乙都抽到判断题的结果为24C 种,所以都抽到判断题的概率为

151

19

11024=

C C C ,所求事件的概率为15

141511=- 错因分析:指定事件中指明甲、乙依次各抽一题,那么甲、乙都提到判断题的结果应为

1

3

14C C 种,所以所求事件概率应为15

2

119

1101

314=

-

C C C C 说明:对于第(2)问,我们也可以用这样解答:

15

2

1210

24=

-

C C ,这里启示我们,当基本事件是有序的,则指定事件是有序的(指定事件包含在基本事件中);当基本事件是无序的,则指定事件也必无序。关键在于基本事件认识角度必须准确。

例4.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支,求:A 、B 两组中有一组恰有两支弱队的概率。

错解:将8支球队均分为A 、B 两组,共有4448C C 种方法:A 、B 两组中有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队取2支强队,组成这一组共有2325C C 种方法,其它球队分在另一组,只有一种分法。

∴所求事件的概率为:

7

3

44

482

225=

C C C C 。 错因分析:从基本事件的结果数来看,分组是讲求顺序的,那么指定事件:“A 、B 组中有一组有2支弱队”应分为两种情形。即“A 组有”或“B 组有”,所以正确解答为:

正解:

7

6

244

482

225=C C C C 或

7

6

/22

44482225=

A C C C C 说明:这道题也可从对立事件求解:

3支弱队分法同一组共有:1

5

15C C +种结果。 ∴所求事件概率为7

6

144

481

515=

+-

C C C C 三、分步与分类不清致错

例5.某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3次打开房门的概率?

错误解法:由于此人第一次开房门的概率为5

1,若第一次未开,第2

次能打开房门的概率应为4

1;所以此人第3次打开房门的概率为3

1。

错因分析:此人第3次打开房门实际是第1次未打开,第2次未打开,第3次打开“这三个事件的积事件” ,或者理解为“开房门是经过未开、未开、开”这三个步骤,不能理解为此事件只有“开房门”这一个步骤,所以,正确解答应为:

正解:第1次未打开房门的概率为5

4;第2次未开房门的概率为4

3;第

3次打开房门的概率为3

1,所求概率为:5

13

1435

4=??=P 。

例5.某种射击比赛的规则是:开始时在距目标100m 处射击,若命中记3分,同时停止射击。若第一次未命中,进行第二次射击,但目标已在150m 远处,这时命中记2分,同时停止射击;若第2次仍未命中,还可以进行第3次射击,此时目标已在200m 远处。若第3次命中则记1分,同时停止射击,若前3次都未命中,则记0分。已知身手甲在100m 处击中目标的概率为2

1,他命中目标的概率与目标的距离的平方成反比,且各次射击都

是独立的。求:射手甲得k 分的概率为P k ,求P 3,P 2,P 1,P 0的值。

:设射手射击命中目标的概率P 与目标距离x 之间的关系 为2

x k P =

,由已知

5000100212

=?=k k 错误解法:2

13=P

92

15050002

2==

P 8

1200500021==

P

144

49

)811)(921)(211(0=

---=P 错因分析:求P 2时,将第150m 处射击命中目标的概率作为第2次命中目标的概率,隔离了第1次射击与第2次射击的关系,实际上,第2次射击行为的发生是在第1次未击中的前提下才作出的。

∴P 2应为“第1次未击中,第2次击中”这两个事件的积事件的概率。求P1时也如此。

正解:2

13=P

9192)211(2=?-=P

1447

81)921)(211(1

=?--=P 144

49

)811)(921)(211(0=

---=P 四、考虑不周致错

例6.某运动员射击一次所得环数x 的分布列如下: x

7 8 9 10

P

0.2

0.2

0.2

0.2

现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记为ξ,求:ξ的分布列。

错误解法:ξ的取值为8,9,10。ξ=7,两次环数为7,7;ξ=8,两次成绩为7,8或8,8;ξ=9,两次成绩7,9或8,9或9,9;ξ=10,两次队数为7,10或8,10或9,10或10,10。

∴04.02.02.0)7(=?==ξP

15.03.03.02.0)8(2=+?==ξP

23.03.03.03.03.02.0)9(2=+?+?==ξP 2.02.03.03.02.03.02.0)10(2=+?+??==ξP

(分布列略) 错因分析:

8=ξ,即两次成绩应为

7,8或8,7或8,8实际为三种情形,

21.03.03.02.02)8(2=+??==ξP

9

=ξ两次环数分别为7,9(或9,7);8,9(或9,8),9.9 ∴

39.03.03.03.023.02.02)9(2=+??+??==ξP

同理36.02.042.03.0212.0)10(22=+??+?==ξP

例7.将n 个球等可能地放入到N (n ×n )个有编号的盒子中(盒子中容纳球的个数不限)。求A :某指定的n 个盒子中恰有一球的概率。

错误解法:将n 个球等可能地放入到N 个盒子中,共有N n 种方法。 而指定的n 个盆中各有一球的放法有:n!种,则所求概率:m

N n A P !

)(=

错因分析:这种解法不全面,如果球是有编号的,则答案是对的。若球是不可辨认的,则答案错了,若球是不可辨认的,则若考虑盒子中球的个数而不考虑放的是哪几个球,为此,我们用“□”表示一个盒子;用“○”表示一个球,先将盒子按编号

1 2 3 4 5 n

把n 个球放入N 中盒子中,形如:1010011……10001,正好看作N+1

个“1”和n 个“0”的全排列。由于两边必为“1”所以排法只有n

n N C 1-+种;

而指定的n 个盒子中恰有一球的放法只有1种,故)!

1()!

1(!1

)(1

-+-=

=

-+n N N n C A P n

n N

五、混淆“互斥”与“独立”出错

例8.甲投篮命中概率为0.8,乙投篮命中概率为0.7,每人投3次,两人恰好都命中2次的概率是多少?

错解:设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好投中2次为A+B 。

所以P (A+B )=P (A )+P (B )=825.03.07.02.08.0223223=?+?C C 。 错因分析:本题解答错误的原因是把相互独立同时发生的事件当成互斥事件来考虑。将两人都恰好投中2次理解为“甲恰好投中2次”与“乙恰好投中2次”的和。

正解:设“甲恰好投中2次”为事件A ,“乙恰好投中2次”为事件B ,则两人恰好都投中2次为AB 。

所以P (AB )=P (A )×P (B )=169.03.07.02.08.0223223=???C C 六.混淆有放回与不放回致错

例9.某产品有3只次品,7只正品,每次取1只测试,取后不放回,求:

(1)恰好到第5次3只次品全部被测出的概率;

(2)恰好到第k 次3只次品全部被测出的概率)(k f 的最大值和最小值。

错解:(1)P (A )=

144

1

61758792103=

???? (2)21.0)10

31(103)3(2355=-?=C P 。

错因分析:错解(1)的错误的原因在于忽视了“不放回摸球”问题的每一次摸球是不独立的;而错解(2)的错误的原因则在于忽视了“不放回摸球”问题的每一次摸球袋内球的总数是变的(比前一次少一个)。

正解:(1)20

15

4271310

3

44

3

=

??=A A C C P (2)),103(),2)(1(240

1

1

1

3143

4

37

433

Z k k k k A C C P k k k ∈≤≤--=

??=

---

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

初三数学九上概率初步所有知识点总结和常考题型测验题

概率初步知识点 一、 概率的概念 某种事件在某一条件下可能发生, 也可能不发生, 但可以知道它发生的可能性的大小, 我们把刻划 (描述) 事件发生的可能性的大小的量叫做概率 . 2、事件类型: ①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件 . ②不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件 . ③不确定事件: 许多事情我们无法确定它会不会发生,这些事情称为不确定事件 . 3、概率的计算 一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都 相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 ( 1) 列表法求概率 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通 常采用列表法。 ( 2) 树状图法求概率 当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。 4、利用频率估计概率 ①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某 个常数,可以估计这个事件发生的概率。 ②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模 拟实验。 ③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的 数据称为随机数。 概率初步练习 一、选择题 1、下列成语所描述的事件是必然事件的是( ) A .瓮中捉鳖 B .拔苗助长 C .守株待兔 D .水中捞月 2、在一个不透明的口袋中,装有 5 个红球 3 个白球,它们除颜色外都相同,从中任意摸出一个球,摸到 红球的概率为( ) A . 1 B . 1 C . 5 D . 3 5 3 8 8 3、小伟掷一个质地均匀的正方体骰子,骰子的六个面分别刻有 1 到 6 的点数。则向上的一面的点数大于 1 / 3

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

高中概率知识要点

概率知识要点 一、随机事件的概率 1 事件的有关概念 (1)必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 简称必然事件 (2)不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。简称不可能事件 (3)确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。简称随机事件 (5)事件及其表示方法:确定事件和随机事件统称为事件,一般用大写字母A 、B 、C,…,表示 2 随机试验 对于随机事件,知道它的发生可能性大小是非常重要的,要了解随机事件发生的可能性大小,最直接的方法就是试验 一个试验如果满足下述条件: (1)试验可以在相同的情形下重复进行; (2)试验的所有结果是明确可知的,但不止一个; (3)每次试验总是出现这些结果中的一个, 但是一次试验之前却不能确定这次试验会出现哪一个结果 我们称这样的试验为随机试验 3 频数、频率和概率 (1)频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数。 (2)频率:在相同条件S 下重复n 次试验,时间A 出现的比例n n A f A n = )(称为事件A 出现的频率 (3)概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 定义 符号表示 包含关系 对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ) ()B A A B ?? 相等关系 若B A A B ??且,则称事件A 与事件B 相等 A=B 并事件(和事件) 某事件发生当且仅当事件A 发生或事件B 发生。 )(B A B A +或Y 交事件(积事件) 某事件发生当且仅当事件A 发生且事件B 发生。 )(AB B A 或I 5 互斥事件与对立事件 (1)互斥 事件A 与事件B 互斥:B A I 为不可能事件,即?=B A I ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (2)对立 事件A 与事件B 互为对立事件:B A I 为不可能事件,B A Y 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 6 概率的几个基本性质 (1)1)(0≤≤A P A P )的取值范围:(概率.

统计概率经典例题(含(答案)和解析)

统计与概率经典例题(含答案及解析) 1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表: ⑴表中a和b所表示的数分别为:a= .,b= .; ⑵请在图中补全频数分布直方图; ⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名? 2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统 计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图: (1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整; (2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小 型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的 2家企业恰好都是餐饮企业的概率. 3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜 色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下 颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题: (1)求实验总次数,并补全条形统计图; (2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度? (3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%. 类别科普类教辅类文艺类其他册数(本)128 80 m 48 (1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数; (2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本? 5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。 (1)从中随机抽出一张牌,牌面数字是偶数的概率是;(3分) (2)从中随机抽出两张牌,两张牌面数字的和是5的概率是;(3分)(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的

2019年七年级数学下册第六章概率初步知识点归纳(新版)北师大版

第六章概率初步 必然事件 事件不可能事件 不确定事件 概率等可能性游戏的公平性 概率的定义 概率几何概率 设计概率模型 一、事件 1、事件分为必然事件、不可能事件、不确定事件。 2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。 3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。 4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。 5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件。 6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确定事件是指有可能发生,也有可能不发生的事件。 7、表示事件发生的可能性的方法通常有三种: (1)用语言叙述可能性的大小。 (2)用图例表示。 (3)用概率表示。 二、等可能性 1、等可能性:是指几种事件发生的可能性相等。 2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性。 (1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的; (2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的。 (3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可。 三、概率 1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不可能事件发生的概率为0,记作P(不可能事件)=0; 4、不确定事件发生的概率在0∽1之间,记作0

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

新课标高中数学必修三《概率》知识点

高中数学必修3(新课标) 第三章 概 率(知识点) 3.1 随机事件的概率及性质 1、 基本概念: (1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件; (4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件; (5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C ……表示. (6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A 为事件A 出现的频率: 对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。 (7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。我们把这个常数叫做随机事件的概率,概率从数量

上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 (8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性. 2 概率的基本性质 1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B?A(或A?B).不可能事件记作?,任何事件都包含不可能事件. 2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1. 一般地,若B?A,且A?B,那么称事件A与事件B相等,记作A=B. 3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B). 4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB). 5)若A∩B为不可能事件(A∩B=?),那么称事件A与事件B互斥.不可能同时发生. 6)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件.有且仅有一个发生. 任何事件的概率在0~1之间,即 0≤P(A)≤1. 必然事件的概率为1,不可能事件的概率为0. (4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).

概率经典例题及解析、近年高考题50道带答案【精选】

【经典例题】 【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ????0≤x≤4, 0≤y≤4,满足条件的关系式 为-2≤x-y≤2.

概率初步知识点总结

概率初步知识点总结 一、可能性: 1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件; 2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件; 3.确定事件:必然事件和不可能事件都是确定的; 4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。 5.一般来说,不确定事件发生的可能性是有大小的。. 二、概率: 1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0 3.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平

高中概率知识点、高考考点、易错点归纳

概率知识要点 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例 ()= A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ??或A B)。 不可能事件记作?。 (2)相等。若B A A B ??且,则称事件A 与事件B 相等,记作A=B 。 (3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。 (4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。 (5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ? ,即事件A 与事件B 在任何一次试验中并不会同时发生。 (6)事件A 与事件B 互为对立事件:A B 为不可能事件,A B 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1P A ≤≤.(2)必然事件的概率为1.()1P E =.(3)不可能事件的概率为0. ()0P F =. (4)事件A 与事件B 互斥时,P(A B)=P(A)+P(B)——概率的加法公式。 (5)若事件B 与事件A 互为对立事件,,则A B 为必然事件,()1P A B = . 古典概型 1、基本事件: 基本事件的特点:(1)任何两个事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本时间的和。 2、古典概型:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等。 具有这两个特点的概率模型称为古典概型。 3、公式:()= A P A 包含的基本事件的个数 基本事件的总数

概率经典例题与解析、近年高考题50道带答案

【经典例题】 【例1】(2012)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是 A .1- 2π B . 12 - 1π C . 2π D . 1π 【答案】A 【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2 即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 1 2 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为 扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选 A . 【例2】(2013)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( ) A. 126125 B. 65 C. 168125 D. 75 【答案】B 【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0× 27 125+1×54125+2×36125+3×8125=6 5 ,选B. 【例3】(2012)节日前夕,小在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的 4秒任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A. 14 B. 12 C. 34 D. 78 【答案】C 【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意? ??0≤x ≤4, 0≤y ≤4,满足条件的关系 式为-2≤x -y ≤2. 根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,

人教版高中数学【必修三】[知识点整理及重点题型梳理]_随机事件的概率_提高

人教版高中数学必修三 知识点梳理 重点题型(常考知识点)巩固练习 随机事件的概率 【学习目标】 1.了解必然事件,不可能事件,随机事件的概念; 2.正确理解事件A 出现的频率的意义; 3.正确理解概率的概念和意义,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系. 【要点梳理】 要点一、随机事件的概念 在一定的条件下所出现的某种结果叫做事件. (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件; 确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件,简称确定事件. (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件. 要点诠释: 1.随机事件是指在一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此强调同一事件必须在相同的条件下进行研究; 2.随机事件可以重复地进行大量实验,每次的实验结果不一定相同,但随着实验的重复进行,其结果呈现规律性. 要点二、随机事件的频率与概率 1.频率与频数 在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n 为事件A 出现的频率。 2.概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P(A). 由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0. 要点诠释: (1)概率从数量上反映了随机事件发生的可能性的大小. 求事件A 的概率的前提是:大量重复的试验,试验的次数越多,获得的数据越多,这时用 A n n 来表示()P A 越精确。 (2)任一事件A 的概率范围为0()1P A ≤≤,可用来验证简单的概率运算错误,即若运算结果概率不在[01],范围内,则运算结果一定是错误的.

初三数学 概率初步知识点归纳

概率初步知识点归纳 1、事件类型: ○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件. ○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件. (2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0

高考概率知识点及例题(供参考)

概率知识要点 3.1.随机事件的概率 3.1.1 随机事件的概率 1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。 2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。 3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。 4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。 5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。 6、频率:事件A 出现的比例()=A n n A n f 。 7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值. 3.1.2 概率的意义 1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。 2、游戏的公平性:抽签的公平性。 3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。 ——极大似然法、小概率事件 4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨

的机会是70%”。 5、试验与发现:孟德尔的豌豆试验。 6、遗传机理中的统计规律。 3.1.3 概率的基本性质 1、事件的关系与运算 (1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作( 或A B)。 ?? B A 不可能事件记作?。 (2)相等。若B A A B 且,则称事件A与事件B相等,记作A=B。 ?? (3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发生或事件B发生。 (4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发生且事件B发生。 (5)事件A与事件B互斥:A B为不可能事件,即= A B?,即事件A与事件B在任何一次试验中并不会同时发生。 (6)事件A与事件B互为对立事件:A B为不可能事件,A B为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。 2、概率的几个基本性质 (1)0()1 ≤≤. P A (2)必然事件的概率为1.()1 P E=. (3)不可能事件的概率为0. ()0 P F=. (4)事件A与事件B互斥时,P(A B)=P(A)+P(B)——概率的加法公式。(5)若事件B与事件A互为对立事件,,则A B为必然事件,()1 P A B=. 3.2 古典概型

《概率初步》知识点+例题+习题(含答案)

概率初步 一、事件的有关概念 1.必然事件 在现实生活中__________发生的事件称为必然事件. 2.不可能事件 在现实生活中__________发生的事件称为不可能事件. 3.随机事件 在现实生活中,有可能__________,也有可能__________的事件称为随机事件. 4.分类 事件??? 确定事件? ?? ?? 必然事件 不可能事件随机事件 二、用列举法求概率 1.定义 在随机事件中,一件事发生的可能性__________叫做这个事件的概率. 2.适用条件 (1)可能出现的结果为__________多个; (2)各种结果发生的可能性__________. 3.求法 (1)利用__________或__________的方法列举出所有机会均等的结果; (2)弄清我们关注的是哪个或哪些结果; (3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率. 列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举. 三、利用频率估计概率 1.适用条件 当试验的结果不是有限个或各种结果发生的可能性不相等. 2.方法 进行大量重复试验,当事件发生的频率越来越靠近一个__________时,该__________就可认为是这个事件发生的概率. 四、概率的应用 概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策. 自主测试

1.下列说法正确的是( ) A .打开电视机,正在播放新闻 B .给定一组数据,那么这组数据的中位数一定只有一个 C .调查某品牌饮料的质量情况适合普查 D .盒子里装有2个红球和2个黑球,搅匀后从中摸出两个球,一定一红一黑 2.两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) A .14 B .316 C .3 4 D . 3.有一箱规格相同的红、黄两种颜色的小塑料球共1 000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为__________. 4.扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项. (1)每位考生有__________种选择方案; (2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A ,B ,C ,…或①,②,③,…等符号来代表可简化解答过程) 典例 考点一、事件的分类 【例1】下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100 ℃沸腾 B .明天我市最高气温为56 ℃ C .中秋节晚上能看到月亮 D .下雨后有彩虹 触类旁通1 下列事件中,为必然事件的是( ) A .购买一张彩票,中奖 B .打开电视,正在播放广告 C .抛掷一枚硬币,正面向上 D .一个袋中只装有5个黑球,从中摸出一个球是黑球 考点二、用列举法求概率 【例2】在一个不透明的口袋中装有4张形状、大小相同的纸牌,它们分别标有数字1,2,3,4.随机地摸出一张纸牌,记下数字,然后放回,洗匀后再随机摸出一张纸牌并记下数字. (1)计算两次摸出的纸牌上的数字之和为6的概率; (2)甲、乙两个人玩游戏,如果两次摸出纸牌上的数字之和为奇数,则甲胜;如果两次摸出纸牌上的数字之和为偶数,则乙胜.这个游戏公平吗?请说明理由.

高中数学概率知识点及例题自己整理

1.事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +); ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥; ⑹对立事件:B A ?为不可能事件,B A ?为必然事件,则A 与B 互为对立事件。 2.概率公式: ⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B); ⑵古典概型:基本事件的总数 包含的基本事件的个数A A P =)(; ⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P = )( ; 3. 随机变量的分布列 ⑴随机变量的分布列: ①随机变量分布列的性质:p i ≥0,i=1,2,...; p 1+p 2+ (1) 1 1 2 2 n n 方差:DX =???+-+???+-+-n n p EX x p EX x p EX x 2222121)()()( ; 注:DX a b aX D b aEX b aX E 2 )(;)(=++=+; ③两点分布: X 0 1 期望:EX =p ;方差:DX =p(1-p). P 1-p p ① 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 },,min{,,1,0,)(n M m m k C C C k X P n N k n M N k M ====-- 其中,N M N n ≤≤,。 称分布列 X 0 1 … m P n N n M N M C C C 00-- n N n M N M C C C 11-- … n N m n M N m M C C C -- 为超几何分布列, 称X 服从超几何分布。 ⑤二项分布(独立重复试验): 若X ~B (n,p ),则EX =np, DX =np (1- p );注:k n k k n p p C k X P --==)1()( 。

高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -=++++

2011年七年级概率初步经典练习题

必然事件 1、有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a、b为实数,那么a+b=b+a.其中是必然事件的有() A.1个 B.2个 C.3个 D.4个 2、纸箱里装有2个篮球、8个白球,从中任意摸出3个球时,至少有一个是 3、一个不透明的口袋中有10个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n等于() A、10 B、11 C、12 D、13 4、下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身 C.某两个数的和小于0 D.某两个负数的积大于0 可能事件 1、下列事件:(1)明天是晴天;(2)小明的弟弟比他小:(3)巴西与土耳其进行足球比赛,巴西队会赢;(4)太阳绕着地球转。属于不确定事件的有: 2、下列事件中,属于随机事件的是() A. 掷一枚普通正六面体骰子,所得点数不超过6 B.买一张彩票中奖 C. 太阳从西边落下 D.口袋中装有10个红球,从中摸出一个是白球 3、下列事件: ①打开电视机,它正在播广告; ②从只装有红球的口袋中,任意摸出一个球,恰好是白球; ③两次抛掷正方体骰子,掷得的数字之和小于13; ④抛掷硬币1000次,第1000次正面向上 其中是可能事件的为() A.①③ B.①④ C.②③ D.②④ 4、下列事件中,属于不确定事件的有() ①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚硬币,有国徽的一面朝下; ④小明长大后成为一名宇航员. A.①②③ B.①③④ C.②③④ D.①②④ 5、在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,?请你写出这个实验中的一个可能事件: _________. 6、篮球投篮时,正好命中,这是事件。在正常情况下,水由底处自然流向高处,这是事件。

相关文档
最新文档