Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes

Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes
Amphiphilic PPESK-g-PEG graft copolymers for hydrophilic modification of PPESK microporous membranes

European Polymer Journal 43 (2007) 1383–1393

https://www.360docs.net/doc/aa7067367.html,/locate/europolj

0014-3057/$ - see front matter ? 2007 Elsevier Ltd. All rights reserved.doi:10.1016/j.eurpolymj.2007.01.037

Amphiphilic PPESK-g -PEG graft copolymers for hydrophilic

modi W cation of PPESK microporous membranes

Li-Ping Zhu, Chun-Hui Du, Li Xu, Yong-Xiang Feng, Bao-Ku Zhu, You-Yi Xu

¤

Institute of Polymer Science, Zhejiang University, Hangzhou Yuquan 310027, PR China Received 30 September 2006; received in revised form 6 December 2006; accepted 8 January 2007

Available online 30 January 2007

Abstract

Amphiphilic graft copolymers comprising poly(phthalazinone ether sulfone ketone) (PPESK) backbones and poly(eth-ylene glycol) (PEG) side chains were synthesized and blended into PPESK casting solutions to prepare hydrophilic and anti-fouling microporous membranes. The graft copolymer was prepared by a modi W ed Williamson etheri W cation method.Sodium alkoxide of methoxyl PEG (PEG–ONa) was used to react with chloromethylated PPESK (CMPPESK). FT-IR spectroscopy, 1H NMR and solid-state 13C CP-MAS NMR analysis con W rmed the covalent linking of PEG with PPESK backbones. The incorporation ratio of PEG calculated from 1H NMR was in agreement with that from TGA tests. The graft products were added into PPESK casting solutions to prepare composite porous membranes using phase inversion method. X-ray photoelectron spectroscopy (XPS) and water contact angle examinations indicated that the grafting copoly-mers were preferentially excluded to the membrane-coagulant interface during membrane forming, contributing the mem-branes with improved hydrophilicity and surface wettability. Compared with the neat membrane, the blend membranes exhibited a larger surface pore size and less susceptible to protein fouling.? 2007 Elsevier Ltd. All rights reserved.

Keywords:Amphiphilic graft copolymers; Poly(phthalazinone ether sulfone ketone); Membranes; Blending modi W cation

1. Introduction

Poly(phthalazinone ether sulfone ketone) (PPESK)is a newly-developed amorphous copolymer con-taining rigid phthalazinone moieties and aromatic structure. PPESK has shown excellent thermal sta-bility and chemical resistance [1,2]. This polymer is soluble in some polar aprotic solvents and thus can

be easily cast into porous membranes by traditional phase inversion technique. Jian and his co-workers have successfully used PPESK as membrane mate-rial for gas separation (GS), ultra W ltration (UF) and nano W ltration (NF), etc. [3,4]. However, the hydro-phobic nature of PPESK can lead to the adsorption of proteins or natural organic matters (NOM) which results in membrane fouling in water treatment.Many e V orts have been made to enhance the hydro-philicity and separation performance of the PPESK membrane. For example, Dai et al. used sulfonated PPESK to prepare NF membranes for the separa-tion of dyes and salts from water at a high operation

*

Corresponding author. Tel.: +86 571 87953011; fax: +86 57187953011.

E-mail address: opl-yyxu@https://www.360docs.net/doc/aa7067367.html, (Y.-Y. Xu).

1384L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

temperature. Sulfonated PPESK exhibits better

thermal stability and enhanced hydrophilicity than

the virgin PPESK [5,6]. Zhang et al. prepared thin W lm composite (TFC) membranes using sulfonated PPESK as the top layer coating on PPESK UF sup-

port membranes. The TFC membranes showed a

high water X ux at low pressures [7]. Su et al. made use of chloromethylated PPESK (CMPPESK) as the material to fabricate porous membranes by phase inversion method, and then the membranes were quaternized by immersing it into an aqueous tri-methylamine solution. The resultant membranes were used for the separation of dyes and divalent salts [8]. Xuan et al. synthesized a modi W ed PPESK contain-ing carboxylic groups in its side chains, this polymer showed high hydrophilicity and good solubility [9].In addition, several researchers fabricated TFC membranes via interfacial polymerization on PPESK UF membranes. The obtained membranes were used for desalination in high operation temperature [10,11]. However, little work was done to improve the properties of PPESK membrane through a chemical graft method.

In recent years, amphiphilic graft copolymers

having hydrophobic backbone and hydrophilic side

chains have absorbed many researchers’ attention

due to their particular properties and convenient synthesis process [12]. Poly(ethylene glycol) (PEG) is widely used as the hydrophilic side chains for amphiphilic graft copolymer due to its low cost and inherent biocompatibility. For example, Chiu et al. synthesized a series of amphiphilic copolymers con-taining monomeric units such as stearyl methacrylate, methyl acrylate, acrylic acid and PEG acrylate by free radical copolymerization. The obtained copolymers were applied in drug-delivery systems and exhibited a sustained release patten for pyrene in aqueous solu-tions [13]. Hou et al. prepared an amphiphilic co-polymer based on poly(styrene-co-maleic anhydride) (backbone copolymers) and methoxypolyethylene glycols (grafts) [14]. G uo et al. synthesized a blood compatible amphiphilic copolymer with uniform PEO side chains by the copolymerization of poly(eth-ylene oxide) (PEO) macromonomer with methacrylic acid [15]. Mihaylova et al. prepared the graft copoly-mers by the reaction between pentachlorophenyl fumarate-co-styrene and amino functionalized PEO. The supermolecular structure of obtained graft co-polymers was studied by WAXS [16]. Generally, there are two routes for the preparation of amphiphilic PEG-grafted copolymers: one is via copolymeriza-tion of vinyl monomers with PEG macromonomers,the other is the conjugation of polymeric precursors with the active functionalized group of PEG [13]. The products from the latter route produce comb-like PEG side chains that often show enhanced hydrophi-licity and biocompatibility compared to the poly-meric precursors.

Several authors synthesized graft copolymers having polysulfone backbones and PEG side chains via reaction of an alkoxide formed from PEG and sodium hydride with chloromethylated polysulfone. The resulting copolymers were added into casting solution of polysulfone to surface modify poly-sulfone membranes [17]. In the present work, analo-gous approach was employed for the chemical modi W cation of PPESK resin. Hydrophilic PEG chains were introduced to the rigid PPESK back-bones through a modi W ed Williamson reaction. The obtained PPESK-g-PEG graft copolymers were blended into PPESK to prepare hydrophilic porous membranes by immersion–precipitation technique. In comparison with the neat PPESK membrane, the blend membranes exhibited an elevated anti-fouling property.

2. Experimental

2.1. Materials and reagents

PPESK (sulfone/ketone D1:1) with an intrinsic viscosity of 0.65dL/g was provided by Dalian New Polymer Co. (PR China) and was vacuum dried at 100°C for 24h prior to use. Methoxyl poly(ethylene glycol) (PEG–OH) (average molecular weight of 350 and 750, respectively), sodium hydride (NaH) and bovine serum albumin (BSA) were purchased from Aldrich. Commercially available N-methyl-2-pyrrol-idone (NMP) (Shanghai Wulian chemical plant, PR China, reagent grade) served as solvent and was puri W ed by vacuum distillation from calcium hydride before use. Chloromethylether (CME) was obtained from Shanghai Haiqu Chemical Company. All other reagents were analytical grade and used without further puri W cation.

2.2. Preparation of PPESK-g-PEG copolymers

The synthesis route for PPESK-g-PEG copoly-mers was illustrated in Fig.1. The polymeric precur-sor, chloromethylated PPESK (CMPPESK), was synthesized as an intermediate to prepare PPESK–PEG graft copolymer. The chloromethylation of PPESK followed the procedures described by previ-

L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–13931385

ous reports [8,18,19]. In a typical reaction, 10g PPESK resin was dissolved in 150ml of 98% con-centrated H 2SO 4 under vigorous stirring at room temperature. About 40ml of CME was added drop-wise into the PPESK solution, and the reaction was performed under stirring for 5h. Then, the reaction mixture was precipitated in cool de-ionized water under mechanical agitation, and was repeatedly washed with de-ioned water until the washed water was neutral. After W ltering and completely drying,the obtained CMPPESK was used for the synthesis of PPESK-g -PEG graft copolymer.

A modi W ed Williamson etheri W cation was employed for the synthesis of PPESK-g -PEG [17].In a typical procedure, an alkoxide solution was pre-pared by adding dropwise 40ml of 10.0 mmol PEG–OH solution into 40ml of 10.0mmol NaH solution using NMP as the solvent. The PEG –OH with molecular weight of 350 and 750g/mol were used,respectively. After stirring for 2h at room tempera-ture, the mixture was added dropwise to a solution of 3g CMPPESK dissolved in 60ml NMP. The reac-tion was performed at room temperature under an argon atmosphere for 72h and was terminated through neutralizing the mixture with acetic acid. At last, the reaction mixture was precipitated into an adequate amount of de-ioned water. After W ltrated and dried, the product was puri W ed by repeatedly dissolving in NMP and precipitating in ethanol. The

resultant product was extracted for 48h by metha-nol using a Soxhlet extractor and vacuum dried at 60°C overnight.

2.3. Characterization of PPESK-g-PEG

Fourier transform infrared (FT-IR) spectra were recorded using a Vector22 (Bruker Co. Germany )instrument. The 1H NMR spectra of CMPPESKs and PPESK-g -PEG s in deutrated chloroform were determined using a Bruker Avance DMX 500 MHz instrument. Solid-state 13C CP-MAS NMR spectra for virgin PPESK and PPESK-g -PEG compolymers were acquired on a Bruker Avance AV 400MHz spectrometer using a standard Bruker broad-band MAS 4mm probe. All samples were examined with the MAS spinning speed of 5kHz, the CP contact time of 1ms and the recycle delay of 3s. The thermal weight loss of the raw material and products were evaluated at a heating rate of 10°C/min under a pro-tective nitrogen atmosphere using a Pyris 6 TG A (Perkin–Elmer, Germany) instrument.2.4. Blend membrane preparation

Casting solution for membrane formation was prepared by dissolving PPESK and PPESK-g -PEO in NMP. The weight ratio of PPESK/PPESK-g -PEO was 4/1 and the total solid content in the solution

Fig.

1. Schematic diagram for the synthesis of PPESK-g -PEG graft copolymers.

1386L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

was 15wt%. 10 weight percent of ethylene glycol methyl ether was used as a non-solvent additive.After W ltered and degassed, the solution was cast onto a horizontal glass plate at room temperature using a glass blade. After exposed in air for 30s, the nascent membrane was immersed into an 80°C deioned water bath for gelation. The resulting mem-brane was stored in de-ioned water for at least 2 days before characterization.2.5. Membrane characterization

XPS spectra for the surface of the neat and blend PPESK membranes were recorded on a PHI 5000C ESCA System (PHI co., America) employing Al K excitation radiation (1486.6eV). A W eld emitting scanning electronic microscopy (FESEM SIRION-100, FEI CO., LTD., Netherlands) was used to observe the surface morphologies and cross-section structure of the membranes. The changes of water contact angle with drop age on the top surface of the membranes were acquired in the movie mode using an OCA20 contact angle system (Dataphysics Instru-ments with G mbH, G ermany). Membrane fouling was evaluated through the UF experiments of BSA aqueous solution in a dead-end ultra W ltration cell.

3. Results and discussion

3.1. Chloromethylation of PPESK

Chloromethylation provides PPESK with active group, –CH 2Cl, for the subsequent graft reaction, as shown in Fig.1. The chloromethylation of aromatic polymers is an electrophilic Friedel–Crafts substitu-tion reaction, and the substitution position depends on the type of activating substituents linked to the phenyl ring. In the chemical structure of PPESK, the ether bond is an electron-donating substituent lead-ing to selective ortho - and para -substitution, while phthalazinyl and sulfone groups are electron-with-drawing substituents which favor the meta -substitu-tion. Thus, the chloromethyl substitution occurs at the carbon atom adjacent to the ether bond, as shown in Fig.2 [5,20]. PPESK resin used in this work is a random copolymer, in which the mole ratio of the sulfone and ketone is 1:1. Fig.2 presents the 1H NMR spectrum of CMPPESK. For chlorom-ethylated PPESK, the signal of –CH 2Cl protons was observed at about 4.8ppm (a and b ) and only a slight di V erence was between the ones adjacent to the sulfone unit and ketone unit. The incorporation of chloromethyl group was also veri W ed by the FT-IR analysis. As shown in Fig.3, the FT-IR spectrum

Fig.

2. 1H NMR spectrum of chloromethylated PPESK.

L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–13931387

of CMPPESK presents a new strong absorbance at 754cm ?1, which is attributed to the stretching vibra-tion of C–Cl bond.

A more detailed discussion about the synthesis,puri W cation and characterization of CMPPESK was reported elsewhere [19]. The only di V erence is that,in this work, CME, instead of chloromethyl butyl ether, was employed as chloromethylation agent. In Fig.2, the peak at 8.63 ppm is assigned to the proton adjacent to the C

B O group of phthalazinone. Since its relative intensity remains unchanged after chlo-romethylation, the peak at 8.63ppm was selected as the reference peak. The number of chloromethyl group per PPESK repeat unit (DS, degree of substi-tution) was calculated based on the intensity of the 4.8 ppm peak vs the 8.63ppm peak. A series of CMPPESKs were prepared in various reaction con-ditions. The DS values of di V erent samples are listed in Table 1. The DS of CMPPESK strongly depends on the reaction conditions, including reaction tem-perature, reaction time, the amount of CME, con-centration of reactants, etc. Obviously, the ratio of CME to PPESK is the main factor that determines the DS. The value of DS increased observably with the increasing amount of CME. In this work, the DS of CMPPESK varied from 0.81 to 3.22, which was controlled by the dosage of CME. The DS value increases steadily as the reaction progresses. Increas-ing reaction temperature speeds up the chlorome-thylation process, but the ultimate DS declines because of sulfonation and chain degradation of PPESK at elevated temperatures. Thus, the reaction was performed at the temperature range of 20–30 °C.3.2. Synthesis of PPESK-g-PEG copolymers After PPESK was chloromethylated, the resultant CMPPESK reacted with a sodium alkoxide to pre-pare PPESK-g -PEG graft copolymers. The sodium alkoxide was formed by reacting PEG –OH with NaH. Because the sodium alkoxide was highly sensi-tive to moisture and water, the reactants and the sol-vent needed to be su Y ciently dry. The reaction was performed under a protective inert gas atmosphere.The purpose of selecting mono hydroxyl PEG as the graft agent is to avoid the cross-linking of reactants and the gelation of reaction system. The molecular weights of PEG–OH used in this work are 350 and 750 g/mol.

The incorporation of PEG chains to the PPESK backbone was qualitatively con W rmed by FT-IR spectroscopy, as shown in Fig.3. In comparison to CMPPESK, the intensity of C–Cl absorbance peak (754cm ?1) for PPESK-g -PEG decreases remarkably,whereas that of ether bond peak (1098cm ?1) exhibits a great increase. Moreover, a new peak occurs at 2863cm ?1, which is attributed to the stretching vibration of C–H in the PEG chains. FT-IR analysis cannot provide su Y cient evidence for the covalent linking of PEG with the PPESK backbone, thus fur-ther NMR measurements were performed.

Fig.4 shows a typical 1H NMR spectrum of PPESK-g -PEG. The signals of methylene protons (denoted in Fig.4 as f ) and terminal methyl protons (denoted in Fig.4 as g ) were observed at about 3.4and 3.7ppm, respectively. They are the characteris-tics of the PEG chains. The peaks at about 4.35ppm are attributed to the protons between phenyl and PEG chains, as denoted in Fig.4 as d and e . Com-parison of Fig.4 with Fig.3, the peak at about 4.8ppm corresponding to the protons of –CH 2Cl (a and b ) was greatly reduced after the grafting of

Table 1

The DS of CMPPESK in various reaction conditions a a

In all chloromethylation experiments, the amounts of concen-trated H 2SO 4 were 15mL/g PPESK.

Sample label

Reaction conditions

DS

Mole ratio of CME/PPESK repeat unit Temperature (°C)

Time (h)CMPPESK-111.52020.81CMPPESK-234.5202 1.65CMPPESK-357.5202 3.03CMPPESK-457.5205 3.22CMPPESK-557.52010 2.96CMPPESK-6

57.530

10

2.47

1388L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

PEG. Solid-state 13C CP-MAS NMR spectra of the virgin PPESK and PPESK-g -PEG are shown in Fig.5. In the spectrum of PPESK-g -PEG 350, a series of new peaks appeared at 38–70 ppm, which are attributed to the incorporation of PEG chains. The

peaks for the carbon of methyl and methylene of PEG occurred at about 58 and 69ppm, respectively.The peak at 64.6 ppm is corresponding to the carbon linking PPESK with PEG. Based on these data, it was concluded that PEG chain is covalently linked to PPESK backbones.

The grafting degree (GD) of PEG on PPESK, de W-ned as the number of grafted PEG chains per PPESK repeat unit, was determined according to the ratio of peak intensity at 4.35ppm (d and e ) to that at 8.6ppm (c ) in Fig.4. The grafting e Y ciency (namely the per-centage of –CH 2Cl conversion into –CH 2O–PEG)was calculated according to the ratio of PEG grafting degree to the corresponding DS of CMPPESK. The results are listed in Table 2. The PEG content of the graft copolymers for PEG –OH 350 and PEG –OH 750are 29.2 and 37.2wt%, respectively. With same synthe-sis conditions, the PEG grafted degree of PPESK-g -PEG 350 (1.18) is higher than that of PPESK-g -PEG 750(0.79), and so is the grafting e Y ciency. This phenome-non might be attributed to the higher chemical activ-ity of hydroxyl group of PEG –OH 350 than that of PEG–OH 750. In addition, the shorter molecular chain has less steric hindrance for the reaction. It is worth

Fig.

4. The typical 1H NMR spectrum of PPESK-g -PEG.

L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

1389

noting that the grafting e Y ciencies of both PPESK-g -PEG 350 and PPESK-g -PEG 750 were lower than 36.6%.This suggests that only a small portion of –CH 2Cl were converted into –CH 2O–PEG. This phenomenon is mainly owed to the steric hindrance of molecular chains to PEG grafting.

The TG A curves for PPESK, CMPPESK and PPESK-g -PEGs are shown in Fig.6. The weight loss temperature (5% loss) of virgin PPESK was 476°C,exhibiting an outstanding thermal stability. Two decomposition events were observed for CMPPESK and PPESK-g -PEG s. The W rst decomposition occurs, from 250 to 320°C. This is attributed to the decomposition of chloromethyl groups and PEG chains. The second decomposition step, beginning at about 480°C, corresponds to the degradation of PPESK backbones. From the weight loss ratios at the W rst decomposition step, the grafting degree of PEG on the PPESK was also calculated. Due to the graft products containing unreacted CMPPESK, the weight loss ratio of CMPPESK must be considered when calculating the G D of PPESK-g -PEG . As shown in Table 2, the results from TG A were approximately in agreement with the data calculated

1acted PEG–OH was completely been removed from the products by precipitation and extraction.3.3. Surface characterizations of the blend membranes

The Neat and blend PPESK asymmetrical membranes were prepared by the immersion precipi-tation method. The elevated coagulant bath temperature would lead to the exchange of solvent and non-solvent more rapidly, thus hydrophilic components are excluded to the top surface of the membrane [21,22]. The chemical compositions for both surfaces of the neat and blend PPESK mem-branes were evaluated by XPS analysis. The X-ray source was run at a power of 250W (14.0kV,93.9eV). Binding energies were calibrated by using the containment carbon (C 1s D 284.6eV). Surface elemental stoichiometry, with the accuracy of was §5%, was determined from peak area ratios after correcting with experimentally determined instru-mental sensitivity factors. The XPS atomic percents for both surfaces of PPESK control membrane (M-1) and PPESK/PPESK-g -PEG blend membranes (M-2, M-3) are shown in Table 3. It can be seen clearly that the O contents for the blend membranes are higher than those of the neat PPESK membrane.On the contrary, the contents of S and N decreased after blending with the graft copolymers. Moreover,the element content variations on the top surface are bigger than those on the bottom surface. For exam-ple, the O content on the top surface of M-3increases from 13.73% to 18.15%, while that on the bottom surface of M-3 increases from 13.78% to only 15.98%. The XPS O 1s core level spectra for both surfaces of these membranes are shown in Fig.7.The peak intensity of –C–O–C– bond for the top surfaces of M-2 and M-3 increases remarkably when compared to that of M-1, while that for the bottom surfaces increases only moderately. These results indicate that the hydrophilic PEG chains were pref-erentially excluded to the membrane-coagulant

Table 2

The grafting degree (GD) and the grafting e Y ciency of PPESK-g -PEG a PEG content calculated according to the grafting degree from 1H NMR analysis.

b

Grafting e Y ciency denotes the conversion percentage of –CH 2Cl and calculated from 1H NMR analysis.

Sample label DS of used CMPPESK GD of PEG

PEG content (%)a

Grafting e Y ciency (%)b 1

H NMR

TGA PPESK-g -PEG350 3.22 1.18 1.0929.236.6PPESK-g -PEG750

3.22

0.79

0.71

37.2

24.5

1390L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

a hydrophilic surface modi W cation was achieved for the PPESK membranes. This conclusion was further veri W ed by the following water contact angle mea-surements.neat PPESK membrane and the blend membranes was performed through a contact angle measure-ment. The curves of contact angle as a function of the drop age was plotted to evaluate the membranes’

Table 3

XPS atomic percentage for the neat and blend PPESK membranes

Membrane label Composition (wt%)XPS atomic percent

Carbon Oxygen Sulfur Nitrogen M-1 (bottom surface)PPESK 100%78.5113.78 1.69 6.02

M-1 (top surface)78.5813.73 1.64 6.05

M-2 (bottom surface)PPESK-g-PEG350 20%, PPESK 80%78.7314.15 1.40 5.72

M-2 (top surface)79.1415.980.91 3.97

M-3 (bottom surface)PPESK-g-PEG750 20%, PPESK 80%77.1415.89 1.36 5.61

M-2 (top surface)76.7418.15 1.08 4.03

L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–13931391

hydrophilicity and surface wettability, as shown in Fig.8. Due to the hydrophobic nature of PPESK, the contact angle declined very slowly with drop age for the neat membrane (M-1). After adding the graft polymers, the initial value of contact angle for the blend membranes (M-2 and M-3) was smaller, and contact angle decreased with drop age more rapidly. This phenomenon indicates that both surface and bulk of the blend membranes held an enhanced hydrophilic compared with the membrane made from pure PPESK.

Fig.9 presents the SEM images of the bottom sur-face, the top surface and the cross-section for the membranes M1, M-2 and M-3, respectively. In com-parison with pure PPESK membrane (M-1), the blend membranes (M-2, M-3) have rougher surfaces with larger pore size. In addition, the cross-sections of M-2 and M-3 exhibit a porous sponge-like structure, while that of M-1 had a structure of a dense skin-layer linked by W nger-like pores. Meanwhile, some nodular aggregates were observed in the bottom sur-face of M-2 and M-3. This phenomenon is also observed in other membrane-forming systems where hydrophilic polymers are used as additive [23–25]. The changes of membrane morphologies are mainly owed to a change of precipitation kinetics during the membrane formation. On one hand, the addition of PPESK-g-PEG results in an increase of casting dope viscosity and slowed down the exchange of solvent–non-solvent [26]. On the other hand, inclusion of the more hydrophilic additive hastens the exchange of non-solvent with solvent, causing the membrane to precipitate more rapidly [17]. The ultimate membrane morphologies depend on the trade-o V between the two factors. As a result, the macrovoid formation is suppressed and the sponge-like pore is favoured.

Fig.9. SEM images of the surface and cross-section morphologies: (A) pure PPESK membrane (M-1); blend membranes: (B) M-2 and (C) M-3. 1, 2 and 3 represent the bottom surface, top surface and cross-section of the asymmetrical membranes, respectively.

1392L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–1393

3.4. Evaluation of anti-fouling property

To compare the anti-fouling property of the neat and blend membranes, UF experiments for protein solution were performed using these membranes. After the membrane sample was pressurized with de-ioned water under 0.15MPa for 30min, a 1g/L of BSA aqueous solution was W ltrated under the trans-membrane pressure of 0.05MPa. The permeate

X uxes at di V erent W ltration time were measured to evaluate the anti-fouling properties of membrane. Fig.10 shows the permeate X ux declines with the

W ltration time. In the initial period, the X ux showed a drastic decline due to the protein adsorption and deposition on the membrane. After running for about 60 min, the X ux reached a stable value. From the initial X ux, J w0, and the steady protein solution X ux, J w1, the relative X ux decline, RFD, was de W ned and determined as: RFD D(1?J w1/J w0)£100%. The RFD of the neat membrane (M-1) was 68.8%, while that of M-2 and M-3 was 60.5% and 54.2%, respectively. The RFD value re X ects the membrane fouling degree. The smaller RFD of M-2 and M-3 than M-1 indicates a lower fouling due protein adsorption and deposition on the membrane. From these data, it is concluded that the grafting with PEG allows PPESK membrane to be less susceptible to protein fouling. The enrichment and arrangement of PEG chains on the separation side (top surface) are responsible for the improvement of anti-fouling property. The repulsion force coming from the change of conformation and desolvation of PEG chains depresses the adsorption and deposition of protein molecules on membrane surface, and thus enhanced permeability and fouling resistance are achieved after PPESK-g-PEG addition [27].

4. Conclusion

Amphiphilic PPESK-g-PEG graft copolymer were prepared by a modi W ed Williamson ether reac-tion, in which sodium alkoxide of poly(ethylene glycol) methyl ether was covalently coupled with chloromethylated PPESK. The grafting degree of PEG calculated from 1H NMR was in approxi-mately agreement with that from TG A tests. The PEG content of the graft copolymers was in the range of 29.2–37.2wt%. The graft products were blended with PPESK to prepare porous membranes by immersing precipitation method. The graft copolymers were excluded to membrane surface dur-ing membrane formation and a hydrophilic surface modi W cation was achieved for the PPESK mem-branes. The modi W ed membrane exhibited enhanced hydrophilicity, surface wettability and ant-fouling properties than the neat one. Acknowledgements

The authors are grateful to the W nancial support of the National Basic Research Program of China (Grant No. 2003CB615705).

References

[1]Meng YZ, Hay AS, Jian XG, Tjong SC. J Appl Polym Sci

1997;66:1425–32.

[2]Jian XG, Chen P, Liao GX, Zhu XL, Zhang SH, Wang JY.

Acta Polym Sin(4) 2003:469–75.

[3]Jian XG, Dai Y, Zeng L, Xu RX. J Appl Polym Sci 1999;

71:2385–90.

[4]Jian XG, Dai Y, He G H, Chen G H. J Membr Sci 1999;

161:185–91.

[5]Dai Y, Jian XG, Liu XM, G uiver MD. J Appl Polym Sci

2001;79:1685–92.

[6]Dai Y, Jian XG, Zhang SH, Guiver MD. J Membr Sci 2001;

188:195–203.

[7]Zhang SH, Jian XG, Dai Y. J Membr Sci 2005;246:121–6.

[8]Su Y, Jian XG, Zhang SH, Wang G Q. J Membr Sci 2004;

241:225–33.

[9]Xuan YN, G ao Y, Huang Y, Jian XG. J Appl Polym Sci

2003;88:1111–4.

[10]Wei J, Jian XG, Wu CR, Zhang SH, Yan Chun. J Membr Sci

2005;256:116–21.

[11]Wu CR, Zhang SH, Yang DL, Wei J, Yan C, Jian XG. J

Membr Sci 2006;279:238–45.

[12]Horgan A, Saunders B, Vincent B, Heenan RK. J Colloid

Interf Sci 2003;262:548–59.

L.-P. Zhu et al. / European Polymer Journal 43 (2007) 1383–13931393

[13]Chiu HC, Chern CS, Lee CK, Chang HF. Polymer 1998;39:

1609–16.

[14]Hou SS, Kuo PL. Polymer 2001;42:2387–94.

[15]Guo SR, Shen LJ, Feng LX. Polymer 2001;42:1017–22.

[16]Mihaylova MD, Krestev VP, Kresteva MN, Amzil A,

Berlinova IV. Eurp Polym J 2001;37:233–9.

[17]Park JY, Acar MH, Akthakul A, Kuhlman W, Mayes AM.

Biomaterials 2006;27:856–65.

[18]Li L, Wang YX. J Membr Sci 2005;262:1–4.

[19]Su Y, Jian XG, Zhang SH. J Funct Mater Contents, China

2004;35:385–8.

[20]Zhang AQ, Li XD, Nah CW, Hwang KJ, Lee MH. J Polym

Sci: Part A: Polym Chem 2003;41:22–9.[21]Hester JF, Banerjee P, Mayes AM. Macromolecules 1999;

32:1643–50.

[22]Hester JF, Mayes AM. J Membr Sci 2002;202:119–35.

[23]Jung B, Yoon JK, Kima B, Rhee H-W. J Membr Sci 2004;

243:45–57.

[24]Yoo JE, Kim JH, Kim Y, Kim CK. J Membr Sci 2003; 216:

95–106.

[25]Jung B. J Membr Sci 2004;229:129–36.

[26]Wang M, Wu LG, Mo JX, G ao CJ. J Membr Sci 2006;

274:200–8.

[27]Wang YQ, Su YL, Ma XL, Sun Q, Jiang ZY. J Membr Sci

2006;283:440–7.

软骨移植术

Cartilage Injuries and Restoration What is an articular cartilage injury? An articular cartilage injury occurs when there is damage to the joint surface. Injuries to the cartilage can be partial thickness (part of the way down to bone) or full-thickness (all the way down to bone). The problem with articular cartilage injuries is that they have very limited ability to heal. How is the articular cartilage injured? Cartilage injuries can occur from trauma, such a football tackle or twisting injury, or gradually over time. In addition, there are certain diseases, such as osteochondritis dessicans, which causes damage to an area of cartilage and bone in the knee without a definite cause. When there is significant loss of the articular cartilage, the knee is considered to have “arthritis”. How do I know my articular cartilage is injured? Injuries to the articular cartilage most typically cause pain in the knee in the area of the damage. In addition, patients can get swelling, locking, or buckling of the knee. In some cases, it can be difficult to know for sure if cartilage damage is the reason for knee pain. Do I need x-rays, MRI’s or any othe r test? A set of x-rays is usually ordered to evaluate the bones and cartilage around the knee. The x-rays are primarily used to evaluate for arthritis and severity of the articular cartilage injury of the knee joint. If the damage is small, the x-rays may appear normal. A MRI may be ordered to look for damage to the articular cartilage and rule out any other injuries to the knee. In some cases, the damage cannot be seen on the MRI, even though it is present. Is there other damage to the knee when the articular cartilage is injured? There is frequently other damage to the knee in cases of articular cartilage damage, which occur at the

骨移植替代材料研究进展

ChJut!¥eJournalofReparativeandR烈:onstn虻帆Surgery,October2008,V01.22。No.10 骨移植替代材料研究进展 张永光王志强 【摘要】目的综述骨移植替代材料的近期研究进展,展望可能的研究方向。方法广泛查阅近年来有关骨 移植替代材料研究与应用的文献,选择常见的几种骨移植替代材料,分别进行阐述。结果骨移植对于提供支持、填充 骨腔、加速骨缺损愈合是一种必要的治疗方式,自体骨移植是骨移植的“金标准”,但受到许多限制。骨移植替代材料的研 究与开发受到广泛重视,在异体骨、合成人工骨、组织工程骨的研究与应用方面已取得很大进展,部分研究成果已形成产品。结论现有材料仍存在许多问题,将不同类生物材料复合,采用特定的J;l-工技术,研制出力学性能、化学性质、物理 结构等方面类似于人体骨组织性质的生物材料,促进骨缺损的治愈,将是今后的研究方向。 【关键词】骨移植替代材料生物材料骨缺损修复 中图分类号:R622.9R687.34文献标志码:A PROGRESSOFBONEGRAFTSUBSTITUTE/ZHANGYongguang,WANGZhiqiang.TheOrthopaedicHospitalofNorth ChinaCoalMedicalCollege,TangshanHebei,063000,P.R.China.Correspondingauthor:ZHANGYongguang.E—mail:tsdzyg@163. corn [Abstract]ObjectiveTosumuptherecentprogressofcommonbonegraftsubstituteandtoforecastthe possibledirections forfurtherresearch.MethodsRecentoriginalarticlesaboutinvestigationandapplicationforbone graftsubstitutewereextensivelyreviewed.Several commonbonegraftsubstituteswereselectedandexpoundedindifferent categories.ResultsBonegraftwasanessential treatmentinordertoprovidestructuralsupport,fillbonecavityandpromotebonedefecthealing.ThegoldstandardforbonegraftwasautograftwhichissubjecttOmanyrestrictions.Inrecentyears,the researchanddevelopmentofbonegraftsubstitutehavereceivedpublicattention.Averygreatprogresshasbeenmadeinthe researchandapplicationofallograftbones,syntheticbonesandengineeredbones,andsomeresearchresultshavebeenput intouseforrealproducts.ConclusionTherestillexistmanyproblemsinpresentbonegraftsubstitutes.Combiningvarious biomaterialsandusingthespecificprocessingtechnologytOdevelopabiomaterialwhichhasthesimilarmechanicaland chemicalpropertiesandphysicalstructurestoautograftsoastopromotebonedefecthealingisthedirectionforfutureresearch.[Keywords]BonegraftsubstituteBiomaterialBonedefectRepair 骨移植对于提供支持、填充骨腔、加速骨缺损愈合是一种必要的治疗方式,是临床上仅次于输血的、应用最多的异体移植技术。传统的自体骨移植仍是目前最理想的骨移植材料,是骨移植的“金标准”,但受到许多限制,如供区损伤、植骨量不足、不能制备特殊形状等。因此促进了骨移植替代材料的研究,并且在异体骨、合成人工骨、组织工程骨的研究与应用方面已取得很大进展,部分研究成果已形成产品。现主要对各种骨移植替代材料的特性与研究现状进行综述,并对未来的研究方向进行展望。 l同种异体骨和异种骨 1.1同种异体骨 同种异体骨移植是指同一种属个体之间的骨组织 作者单位:华北煤炭医学院附属骨科医院(河北唐山,063000) 通讯作者:张永光,主治医师,研究方向:骨移植替代材料,E-mail:tsdzyg@163.c0111移植,可诱发宿主产生免疫排斥反应,目前临床上多采用经冷冻、冻干或化学处理的同种异体骨,其细胞成分多已破坏。因此同种异体骨移植在与宿主愈合过程中的表现、作用机制和生物力学特征等方面,与自体骨移植有一定差异。与实质脏器移植有所不同,同种异体骨移植诱发的宿主免疫排斥反应一般不危及生命,但往往干扰移植骨愈合,影响治疗效果。VandeVord等【1】研究认为,移植骨的胶原蛋白是产生免疫反应的抗原,应用前去除这些抗原,能减轻免疫反应,提高移植成功率。同种异体骨的生物学性能受不同处理方法的影响,Hofmann等121对BMSCs在8种不同消毒灭菌方法处理的同种异体骨上吸附、增殖和分化的能力进行了研究,发现低温血浆灭菌脱矿物质异体骨、80℃恒温消毒和化学溶液消毒3种方法处理的异体骨对BMSCs有很强的亲和力,而采用高压、环氧己烷、新鲜冷冻、丫射线和Barrycida灭菌的异体骨细胞亲和力较低,说明不同处理方法对BMSCs的吸附、增殖和功能有影响。 万方数据

骨髓移植怎么配型

骨髓移植怎么配型 文章目录*一、骨髓移植怎么配型1. 骨髓移植怎么配型2. 骨髓移植的成功机率3. 骨髓移植后能活多久*二、骨髓移植手术的条件*三、骨髓移植后的注意事项 骨髓移植怎么配型 1、骨髓移植怎么配型骨髓移植的配型首先要选择与受者组织相容性配合的供体。在选择适合的供体时,首先从在兄弟姐妹中选择供髓者;如不成,则在近亲及血缘无关的自愿者中寻找供髓者。在供者选择上首先在同胞中用血清学方法做HLA检查,所得结果相差不大后再做淋巴细胞培养(MLC)来检测D位点并核实HLA配型。即使血清学或分子生物学方法所不能检出的组织相容抗原的差别往往可通过MLC测出。 目前已采用分子遗传学技术直接检测HLA基因,如多聚酶链反应(PCR)技术,序列特异性寡核苷酸探针杂交(SSOPA)及限制性片断长度多态性(RFLP)技术,可作为BMT组织配型的重要补充,尤其适用于无关供者组织配型的核实。 2、骨髓移植的成功机率如果在骨髓库中要找到合适的骨髓配型,几率非常低,只有几万分之一,甚至更低,然而,如果能够找到患者的亲生父母或兄弟姐妹,那么,配型成功的几率最少有四分之一,甚至二分之一。在选择适合的供体时,首先从在兄弟姐妹

中选择供髓者;如不成,则在近亲及血缘无关的自愿者中寻找供髓者。在供者选择上首先在同胞中用血清学方法做HLA检查,所得结果相差不大后再做淋巴细胞培养(MLC)来检测D位点并核实HLA配型。即使血清学或分子生物学方法所不能检出的组织相容抗原的差别往往可通过MLC测出。 3、骨髓移植后能活多久约60%的成人急性白血病患者,异基因或异基因骨髓移植后可以达到3年以上的生存期,其中一些已经达到6至5年。在慢性粒细胞白血病慢性期,约80%的病人可存活3年以上,部分已存活5~6年以上,但仍有部分患者骨髓移植后短期内复发或产生严重的排他反应而死亡。 骨髓移植手术的条件1、必须找到合适的配型。人类白血球抗原配型完全相符的概率非常低,绝大多数患者是找不到合适的配体的,病情却因此延误。 2、如果患者幸运地找到了合适的配体,那么下一关是至少30万元的手术费。这对许多中国患者来说是一个天文数字。他们因为凑不到这笔巨款,也只得放弃手术。 3、放化疗的打击、病原微生物的感染、身体的排异反应等。其中任何一个问题都能使患者面临生死考验,能够成功恢复的患者有60~70%。

骨移植材料成骨效能检测指标及方法的选择与应用

龙源期刊网 https://www.360docs.net/doc/aa7067367.html, 骨移植材料成骨效能检测指标及方法的选择与应用 作者:李泽键赖仁发 来源:《中国美容医学》2013年第07期 目前,临床上对于骨移植材料的需求量日益增加,各种类型的骨移植材料已经在实验研究中取得了一定的成效并逐渐进入临床应用研究阶段,评价骨移植材料成骨效能的指标也愈来愈多样化,各项指标之间各有侧重,从不同的角度反映材料的骨修复能力。本文通过检索近几年的相关研究文章,对各项评价骨材料成骨效能的检测指标及其对应的检测方法做了如下总结。本文将成骨效能的检测指标归纳为新骨形成,微血管形成,成骨活性标志物的表达,骨组织形态及生物强度检测等几个方面,根据检测指标的需要,对各种特异性检测方法也作了总结,现综述如下。 1 新骨形成与骨组织形态的检测 1.1 影像学检测:X-ray是最常见,也是最原始的检测方法,早在1896年便开始应用于医学影像,是目前医学诊断的重要手段之一。目前,研究者在使用X-ray的同时,多采用一些定量或半定量的评分标准,对X-ray显像结果进行定量分析、比较。窦洪磊等[1]应用X-ray结合Lane-Sandhu评分系统对同种异体骨移植修复大段骨缺损疗效进行检测,将X-ray显像结果通过计分转变为数值进行统计分析与比较。Mahesh等[2]采用X-ray结合Kuznetsov半定量评分标准检测人类骨髓间充质干细胞的体内成骨情况,同样将X-ray检测结果转化为计分,利用统计学方法进行分析比较。 螺旋CT三维重建在骨缺损修复疗效的检测方面目前应用较多,利用多层螺旋CT进行图像分析和骨密度测定可以更直观地了解骨组织缺损重建后局部组织再矿化的程度。国内外学者已应用定量CT进行三位的骨密度测量,并取得了一定成果[3-4]。多层螺旋CT 技术能将骨皮质和骨松质的图像显示得更加清晰,通过调整图像能使人眼更易观察到细微的灰度变化,以便更加精确和全面地对冠状位、矢状位和横断面的三维CT图像进行测量,准确反映局部骨密度变化;螺旋CT图像不仅可以通过不同灰阶度显示其密度的高低,还可用组织对X射线的吸收系数反映其密度高低的程度,即CT 值。Maki等[5]通过体外试验显示,CT值与羟基磷灰石浓度有较高的相关性。Norton等[6]及Shahlaie等[7]亦认为CT值用于对缺损区修复再造后骨密度的评价具有一定的价值,可以用CT测量值来预测骨密度。 CBCT是近几年新发展的检测技术,它具有一次扫描、三维成像,三维影像更加清晰,最小分辨率可达到0.125mm,并可以实时显示横纵断面的三维影像,使得成骨效能的检测更加全面、直观、可靠。随着CBCT在口腔医学影像诊断学的发展应用,已有不少研究者将CBCT应用于颌面骨缺损修复效果的检测。刘苗等[8]应用CBCT观察人工骨对兔下颌骨缺损的修复效果,得到清晰的三维图像,能够多角度多层面地观察下颌骨缺损修复后的成骨情况,提示

骨移植替代品行业调研报告

中国市场调研在线

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国市场调研在线https://www.360docs.net/doc/aa7067367.html,基于多年来对客户需求的深入了解,全面系统地研究了该 行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

2017-2023年全球及中国骨移植替代品行业发展调研与发展趋势分析报告报告编号:550634 市场价:纸介版7800元 电子版8000元 纸质+电子版8200元 优惠价:¥7500元 可开具增值税专用发票 在线阅读:https://www.360docs.net/doc/aa7067367.html,/yjbg/yyhy/qt/20170325/550634.html 温馨提示:如需英文、日文、韩文等其他语言版本报告,请咨询客服。 《2017年全球及中国骨移植替代品行业发展调研与发展趋势分析报告》通过骨移植替代品项目研究团队多年对骨移植替代品行业的监测调研,结合中国骨移植替代品行业发展现状及前景趋势,依托国家权威数据资源和一手的调研资料数据,对骨移植替代品行业现状及趋势进行全面、细致的调研分析,采用定量及定性的科学研究方法撰写而成。 《2017年全球及中国骨移植替代品行业发展调研与发展趋势分析报告》可以帮助投资者准确把握骨移植替代品行业的市场现状及发展趋势,为投资者进行投资作出骨移植替代品行业前景预判,挖掘骨移植替代品行业投资价值,同时提出骨移植替代品行业投资策略、营销策略等方面的建议。 [正文目录] 网上阅读:https://www.360docs.net/doc/aa7067367.html,/ 第1章,分析骨移植替代品行业特点、分类及应用,重点分析中国与全球市场发展现状对比、发展趋势对比,同时分析中国与全球市场的供需现在及未来趋势。 第2章,分析全球市场及中国生产骨移植替代品主要生产商的竞争态势,包括2016年和2016年的产量、产值、市场份额及各厂商产品价格。同时分析行业集中度、竞争程度,以及国外先进企业与中国本土企业的SWOT分析。 第3章,从生产的角度,分析全球主要地区骨移植替代品产量、产值、增长率、市场份额及未来发展趋势,主要包括美国、欧洲、日本、中国、东南亚及印度地区。 第4章,从消费的角度,分析全球主要地区骨移植替代品的消费量、市场份额及增长率,分析全球主要市场的消费潜力。 第5章,分析全球骨移植替代品主要厂商,包括这些厂商的基本概况、生产基地分布、销售区域、竞争对手、市场地位,重点分析这些厂商的骨移植替代品产能、产量、产值、价格、毛利率及市场占有率。 第6章,分析不同类型骨移植替代品的产量、价格、产值、份额及未来产品或技术的发展趋势。同时分析全球市场的主要产品类型、中国市场的产品类型,以及不同类型产品的价格走势。

骨移植替代材料

骨移植替代材料——国外专家讲座 发表者:王呈1710人已访问 2011年中华医学会第十三届全国骨科学术会议暨第六届国际学术大会(COA)在北京国家会议中心隆重举行。在12月4日早晨的教程讲座上,德国柏林创伤中心Michael Wich教授应邀作了题为“骨替代材料在创伤骨科的应用”的报告,深入浅出地阐述了骨与骨替代材料移植的原则和理念,对临床有很好的指导意义。作为报告翻译,我有义务将它整理出来,为提高创伤骨科的学术水平尽微薄之力。 自1862年Jobi MeeKren冒教会之大不韪,利用犬颅骨为一名颅骨缺损士兵进行移植修复,至第一次世界大战前后受到世人公认,骨及骨替代物移植技术发展至今已有200多年历史,成为临床上治疗骨缺损的重要手段,并得到广泛应用。在欧洲,骨移植替代材料的应用呈逐年增加趋势,2010年就超过50万例。应用的移植物材料品种也越来越多,包括自体骨、同种异体骨、异种骨、人工合成骨、脱钙骨基质和骨形态发生蛋白(BMP)等。不过,应用最多的依然是自体骨移植,所占份额几乎达到2/3。 在创伤骨科临床实践中,常常遇到结构性骨缺损,骨折塌陷的关节面复位后会遗留软骨下骨缺损,还有骨折愈合不良和萎缩性骨不连等。这些情况均需要移植骨骼或骨骼替代品进行治疗。至于如何重建骨骼,促进骨愈合,则要遵循所谓“钻石法则”[1],即从4个基本要素出发加以考虑:①骨传导基质,系提供间充质干细胞迁移、黏附和增生的基质,为血管长入和新骨形成提供支架;②骨诱导因子,包括BMP、肿瘤生长因子(TGF)-β、成纤维细胞生长因子(FGF)、血小板源性生长因子(PDGF)、胰岛素样生长因子(IGF)等,能够刺激原始、未分化的多能干细胞向成软骨细胞或成骨细胞分化,形成新骨;③成骨细胞,包括骨原细胞(成骨细胞或骨祖细胞),一旦植入合适的环境,就能够直接形成新骨;④稳定的生物力学环境,有助于将自然的生物力学应力传递到周围的正常骨结构上,增强植骨部位对内固定物的把持力,满足力学支撑的要求。 自体骨基本上具备上述4个基本条件,移植3~6个月之后便可以完成骨的爬行替代、再生和塑形。因此,自体骨移植一直被认为是植骨的金标准,临床上进行植骨手术首选自体骨。问题是,自体骨取材有限,切取供移植的骨骼时难免增加失血量,延长手术时间,给病人增加痛苦,供区部位还会有一定的不适,甚至出现并发症。正是这些固有的缺陷,使自体骨移植在临床的应用受到一定限制,迫使人们去寻找并应用其他替代材料,以满足临床治疗的需要。 目前,临床上用于移植修复骨缺损的材料包括自体骨、同种异体骨、异种骨和人工合成骨。各种材料的特性不一,论及优势和缺点,则各有千秋。自体松质骨和皮质骨都具有良好的骨诱导能力、成骨能力和骨传导作用,但皮质骨的生物力学性能略高一筹;自体骨髓虽然也有很好的成骨和骨诱导能力,但缺乏骨传导能力和生物力学性能。它们各自具有不同的适应证

骨髓移植的详细步骤

骨髓移植的详细步骤 骨髓移植主要内容有以下几个部分: 一、移植前的准备工作 二、预处理 三、骨髓移植(干细胞采集、输注) 四、移植后处理 五、移植并发症的处理等。 其实上述内容书上还是有的。大致摘要以下供参考: 一、移植前的准备工作 (一)、受者检查常规 1.向患者及家属单位负责交代骨髓移植的合理性,与其他治疗比较的优越性,骨髓移植的经过,主要合并症及预后,希望患者树立战胜疾病的信心。手术签字。 2.详细全面病史及体检,尤应注意: 1). 诊断及分期,有无中枢神经系统及其他髓外白血病,诊断时白细胞计数 2)出血史 3)治疗经过,详细用药及反应,放疗史。 4)输血史,有无过敏,输血小板后血小板不升史。 5)过敏,手术、外伤史,药物、毒物接触史。 6)结核史。 7)其他疾病,肝、肾、肺、心、中枢神经系统疾病。 8)精神、意志状态制定。 3.组织配型 HLA基因配型。 4.血常规+BPC+RC +ABO血型。 5.血型抗体滴度。 6.确定供者植入的标志,如无特异标志,作限制性片段长度多态性检查。 7.请口腔科(骨髓移植三周前)、五官科、外科会诊,尽可能去除感染灶。 8.ESR 9.尿Rt 10、大便常规+OB 11、生化(肝肾功能、心肌酶谱、血糖、电解质) 12、血清蛋白电泳、免疫球蛋白测定。 13、病毒学检查:肝炎分型、抗CMV-IgM、抗CMV-IgG、抗HIV、抗EBV、TPHA。 14、咽、痰、尿、便细菌和霉菌培养。 15、血气分析 16、胸片、肺功能检查 17、心电图、超声心动图(必要时请心内科会诊)。 18、B超肝、胆、脾、胰、肾等。 19、骨髓检查:形态学检查、染色体分析。 20、血淋巴细胞亚群分析(T、B、祖细胞标志)。 21、急性白血病:脑脊液常规、生化、压力测定(必要时)。 22、如为男性无孩子患者,可储存精子(必要时)。 23、身体测量:姓名、性别、诊断、身高、体重、体表测量面积(注明日期) 24、TBI时测量:前后径:头颅、颈部、肩部(肩关节水平、胸骨角水平)、胸部(乳头水平)、

手术_3.1.1 松质骨移植详解

【编号】3.1.1 【手术名称】松质骨移植 【英文名称】cancellous bone transplantation 【别名】松质骨移植术;cancellous bone transplantation;spongy bone transplantation 【ICD编码】78.0001 【相关解剖】 骨移植 首次报道植骨术距今已有300年,但有一定科学基础的骨移植(bone transplantation)实验和临床研究,则始自Olilier(1887)、Barth(1893)和Axhausen(1908)等,他们相继做了大量工作。此后,骨移植技术才逐渐广泛应用于临床。骨移植在骨科领域中主要用于修复创伤、肿瘤、炎症及各种畸形造成的骨缺损、骨不连等矫形手术。由于传统的游离骨块移植有一定的失败率,特别是大块骨移植,疗效尚不满意。多年来,为了寻求更有效的骨移植新方法,许多学者通过动物实验、应用解剖学及临床实践进行研究。20世纪60年代带蒂骨瓣应用于临床,是将移植骨瓣连同其上的肌肉或与肌肉皮肤一起转移,移植骨瓣依赖与其相连的肌蒂获得血液供应,20世纪70年代以来,随着显微外科的发展,现有技术已能成功地接通直径0.3mm以上的血管,可以将移植骨瓣连同其血管一次移植到受区,与受区血管吻合,立即重建血运。这种骨移植不必经过缓慢的爬行替代过程完成骨愈合,就是说,可进行“活骨移植”,这就为骨移植开拓了新路。在植骨材料方面,以自体骨疗效为最佳,但其来源有限,目前同种异体骨作为替代材料已广泛应用于临床,使库骨的处理、保存技术和灭菌方法等有了很大的进展。至于异种骨移植,由于其强烈的免疫排斥反应,很难应用于临床,但随着骨诱导理论的新进展,骨形态发生蛋白(bone morphogenetic protein,B MP)及其他骨生长因子的发现和提纯,复合异种骨和重组合异种骨的实验研究和临床应用已获得进展。不少学者预测,异种骨的应用将会日益普及,并提出应重新评估异种骨移植的价值。 应用现代组织工程技术研制具有生物活性的仿生植骨材料,将成为21世纪骨移植研究领域的前沿和热点。 目前植骨取材主要有以下四种:

骨髓移植术

造血干细胞移 造血干细胞移植(HSCT)是通过大剂量放化疗预处理,清除受者体内的肿瘤或异常细胞,再将自体或异体造血干细胞移植给受者,使受者重建正常造血及免疫系统。目前广泛应用于恶性血液病、非恶性难治性血液病、遗传性疾病和某些实体瘤治疗。造血干细胞移植主要包括骨髓移植、外周血干细胞移植、脐血干细胞移植。由于骨髓为造血器官,早期进行的均为骨髓移植。 基本信息 目录 1基本介绍 2适应症 3分类介绍 4移植准备 5骨髓采集 6移植护理 基本介绍 造血干细胞移植(HSCT)是通过大剂量放化疗预处理,清除受者体内的肿瘤或异常细胞,再将自体或异体造血干细胞移植给受者,使受者重建正常造血及免疫系统。目前广泛应用于恶性血液病、非恶性难治性血液病、遗传性疾病和某些实体瘤治疗,并获得了较好的疗效。 2适应症 造血干细胞移植迄今仍然是一种高风险治疗方法,目前主要用于恶性血液疾病的治疗,也试用于非恶性疾病和非血液系统疾病,如重症难治自身免疫性疾病和实体瘤等。 (1) 血液系统恶性肿瘤:慢性粒细胞白血病、急性髓细胞白血病、急性淋巴细胞白血病、非霍奇金淋巴瘤、霍奇金淋巴瘤、多发性骨髓瘤、骨髓增生异常综合征等。 (2) 血液系统非恶性肿瘤:再生障碍性贫血、范可尼贫血、地中海贫血、镰状细胞贫血、骨髓纤维化、重型阵发性睡眠性血红蛋白尿症、无巨核细胞性血小板减少症等。 (3) 其它实体瘤:乳腺癌、卵巢癌、睾丸癌、神经母细胞瘤、小细胞肺癌等。 (4)免疫系统疾病:重症联合免疫缺陷症、严重自身免疫性疾病。 由于移植存在致命性合并症,因而非血液系统疾病的造血干细胞移植治疗还未被广泛接受。

3分类介绍 (1) 按照采集造血干细胞的来源不同分为:骨髓移植、脐血移植、外周血造血干细胞移植等。 (2)按照供体与受体的关系分为:自体骨髓移植/脐血移植/外周血造血干细胞移植、异体骨髓移植/脐血移植/外周血造血干细胞移植。异体移植又称异基因移植,当供者是同卵双生供者时,又称同基因移植。 (3)根据供者与受者HLA配型相合程度,异体骨髓移植/脐血移植/外周血造血干细胞移植分为:HLA全相合移植、不全相合移植、单倍体相合移植。 (4)根据供者与受者的血缘关系分为:血缘相关移植、非血缘移植即骨髓库来源供者。 (5)根据移植前的预处理方案强度可分为:清髓性造血干细胞移植和非清髓性造血干细胞移植(减低预处理剂量的造血干细胞移植)。 一般根据患者的疾病种类、疾病状态及预后、HLA配型结果及供者年龄等因素综合考虑来选择造血干细胞移植方式。目前异基因造血干细胞移植绝大多数为配型相同的同胞间、半相合父母与子女间、不全相合同胞间的移植,而随着全世界及我国骨髓库的增加,非血缘供者的异基因造血干细胞移植数量也在不断增加。不同移植类型各自优劣不同,自体造血干细胞移植的优点在于不受供者的限制,移植后不发生移植物抗宿主病,不需要使用免疫抑制剂,严重并发症较少,费用较低,缺点是复发率高。异基因造血干细胞移植治疗恶性疾病,植入的供者细胞有持久的抗肿瘤作用,复发率低,但严重并发症多,费用相对较高。 4移植准备 移植前患者的准备 患者进入移植仓前,要进行全面查体,以了解患者疾病缓解状态、重要器官功能状态、有无潜在感染灶。患者需要在层流洁净病房住1-1.5月,需准备在洁净室内所用的生活用品,剃掉头发。 移植前供者的准备。 供者移植前需做全面查体,以了解重要器官功能有无缺陷、有无感染性疾病。目前多数供者需要采集骨髓加外周血干细胞,因此采髓前2周供者需要自体备血400-800ml。 造血干细胞移植的预处理 在造血干细胞移植前,患者须接受一个疗程的大剂量化疗或联合大剂量的放疗,这种治疗称为预处理(conditioning),这是造血干细胞移植的中心环节之一。预处理的主要目的为:(1)为造血干细胞的植入腾出必要的空间;(2)抑制或摧毁体内免疫系统,以免移植物被排斥; (3)尽可能清除基础疾病,减少复发。根据疾病和所进行的造血干细胞类型不同,所选择的预处理方案的侧重点各有不同。恶性血液病目前常用的预处理方案有:①Cy/TBI(环磷酰胺+全身照射);②Bu/Cy(马利兰+环磷酰胺);③Bu/Flu(马利兰+氟达拉宾)等,尚可在这些基础

相关文档
最新文档