The X-ray-to-Optical Properties of Optically-Selected Active Galaxies Over Wide Luminosity

The X-ray-to-Optical Properties of Optically-Selected Active Galaxies Over Wide Luminosity
The X-ray-to-Optical Properties of Optically-Selected Active Galaxies Over Wide Luminosity

a r X i v :a s t r o -p h /0602407v 1 17 F e

b 2006

S UBMITTED TO THE A STRONOMICAL J OURNAL ON O CTOBER 12,2005;A CCEPTED F EBRUARY 17,2006

Preprint typeset using L A T E X style emulateapj v.12/14/05

THE X-RAY-TO-OPTICAL PROPERTIES OF OPTICALLY-SELECTED ACTIVE GALAXIES OVER WIDE LUMINOSITY

AND REDSHIFT RANGES

A.T.S TEFFEN 1,I.S TRATEVA 1,W.N.B RANDT 1,D.M.A LEXANDER 2,A.M.K OEKEMOER 3,

B.D.L EHMER 1,D.P.S CHNEIDER 1,

C.V IGNALI 4,5

Submitted to the Astronomical Journal on October 12,2005;Accepted February 17,2006

ABSTRACT

We present partial-correlation analyses that examine the strengths of the relationships between l 2500?A ,l 2keV ,αOX ,and redshift for optically-selected AGNs.We extend the work of Strateva et al.(2005),that analyzed optically-selected AGNs from the Sloan Digital Sky Survey (SDSS),by including 52moderate-luminosity,optically-selected AGNs from the COMBO-17survey with corresponding deep (≈250ks to 1Ms)X-ray ob-servations from the Extended Chandra Deep Field-South.The COMBO-17survey extends ~3magnitudes deeper than the SDSS and probes the moderate-luminosity AGNs that numerically dominate the AGN popu-lation in the Universe.We also include recently published observations of 19high-redshift,optically-selected AGNs,and 46luminous,low-redshift AGNs from the Bright Quasar Survey.The full sample used in our analysis consists of 333AGNs,extending out to z ~6,with 293(88%)having X-ray detections.The sample spans ?ve decades in UV luminosity and four decades in X-ray luminosity.We con?rm that αOX is strongly anti-correlated with l 2500?A (13.6σ),the highest signi?cance found for this relation to date,and ?nd evidence suggesting that the slope of this relation may be dependent on l 2500?A .We ?nd that no signi?cant correlation exists between αOX and redshift (1.3σ),and constrain the maximum evolution of AGN UV-to-X-ray ?ux ratios to be less than 30%(1σ)out to z =https://www.360docs.net/doc/a67774320.html,ing our sample’s high X-ray detection fraction,we also ?nd a signif-icant anti-correlation (3.0σ)between αOX and l 2keV .We make comparisons to earlier studies on this topic and discuss implications for X-ray vs.optical luminosity functions.

Subject headings:Galaxies:Active:Nuclei —Galaxies:Active:Optical/UV/X-ray —Galaxies:Active:

Evolution —Methods:Statistical

1.INTRODUCTION

The relationship between X-ray and UV luminosity for AGNs,de?ned by Tananbaum et al.(1979)as αOX =log[l (νX-ray )/l (νUV )]/log(νX-ray /νUV ),where l (ν)is the monochromatic luminosity (erg s ?1Hz ?1)at frequency νin the rest-frame,has been the subject of many studies over the last two decades (e.g.,Avni &Tananbaum 1982;Kriss &Canizares 1985;Avni &Tananbaum 1986;Anderson &Margon 1987;Wilkes et al.1994;Vignali et al.2003;Strat-eva et al.2005).Most of these investigations examined

the relationship between the 2500?A

and 2keV monochro-matic luminosities,reducing the αOX relationship to αOX =0.3838log (l 2keV /l 2500?A ).These studies have usually found that αOX is anti-correlated with UV luminosity,with at most a weak anti-correlation with redshift (but see Yuan et al.1998;Bechtold et al.2003).Understanding the relationship between the intrinsic UV and X-ray emission from AGNs and its evo-lution through cosmic time is important for testing energy generation models in AGNs,deriving bolometric corrections for AGNs which are used in estimating their luminosities and accretion rates,identifying X-ray weak AGNs,and estimat-ing additional X-ray emission linked with jets in radio-loud AGNs.In addition,understanding how αOX evolves with red-shift aids in resolving discrepancies between the luminosity

1

Department of Astronomy and Astrophysics,525Davey Laboratory,Pennsylvania State University,University Park,PA 16802.

2Institute of Astronomy,Madingley Road,Cambridge CB30HA,UK.3Space Telescope Science Institute,3700San Martin Drive,Baltimore,MD 21218.

4Dipartimento di Astronomia,Universit`a degli Studi di Bologna,Via Ran-zani 1,40127Bologna,Italy.

5INAF-Osservatorio Astronomico di Bologna,Via Ranzani 1,40127Bologna,Italy.

functions derived from optical (e.g.,Boyle et al.2000;Wolf et al.2003;Richards et al.2005)and X-ray (e.g.,Miyaji et al.2000;Steffen et al.2003;Ueda et al.2003;Barger et al.2005;Hasinger et al.2005;La Franca et al.2005)AGN samples,which map the evolution of the accretion onto supermassive black-holes (SMBHs)in the Universe.

To provide tight constraints upon αOX (l,z ),any degenera-cies between luminosity and redshift must be broken.This is dif?cult in ?ux-limited samples,as l and z are typically strongly correlated.To obtain good coverage of the l ?z plane while maintaining a high X-ray detection fraction,it is necessary to combine both wide-?eld and deeper,narrow-?eld surveys.To achieve this goal we expand here upon the αOX work of Strateva et al.(2005,hereafter S05),who used the wide-?eld Sloan Digital Sky Survey (SDSS;York et al.2000)quasar sample along with low-redshift (z <0.2)Seyfert 1s and high-redshift (z >4)optically selected AGNs.We add to this sample moderate-luminosity,optically-selected AGNs from the deep,narrow-?eld (0.26deg 2)COMBO-17survey (Wolf et al.2004)centered on the Extended Chandra Deep Field-South (E-CDF-S;Lehmer et al.2005),along with a well-studied sample of luminous Bright Quasar Survey (BQS)quasars (Schmidt &Green 1983)at z <0.5and additional optically-selected AGNs at z >4(Kelly et al.2005;Shemmer et al.2005;Vignali et al.2005).The AGNs optically selected in the COMBO-17survey extend ~3magnitudes fainter than those used in previous αOX studies (e.g.,B =19.2;Avni &Tananbaum 1986and B =19.5;Anderson &Margon 1987)and have a substantially higher sky density than the SDSS quasar sample (~670deg ?2versus ~10deg ?2;Wolf et al.2004;Schneider et al.2005).These COMBO-17AGNs are representative of most of the optically-selectable AGNs in the Universe.

2Steffen et al.

While deep X-ray surveys can provide even higher AGN sky densities (up to ?7000deg ?2;e.g.,Alexander et al.2003),X-ray selected samples are dominated by obscured sources (e.g.,Bauer et al.2004).In the UV ,this obscura-tion leads to increased contamination from the host galaxy and uncertain absorption corrections (e.g.,Moran,Filippenko,&Chornock 2002).The X-ray absorption corrections are also often uncertain,mainly due to the poor signal-to-noise ratio of X-ray spectra with low photon counts.It is therefore dif?cult to measure the intrinsic emission from these obscured AGNs,and thus they do not signi?cantly elucidate the intrinsic en-ergy generation mechanisms within AGNs.

The exclusion of obscured sources from our analyses does not necessarily mean our conclusions below are valid for un-obscured sources only.Our results are still applicable to obscured AGNs if the obscuration is a line-of-sight orienta-tion effect and does not affect the intrinsic energy generation mechanisms within AGNs (i.e.,if the “Uni?ed”AGN model is valid;see Antonucci 1993,for a review).This will apply even given the recent evidence for luminosity-dependent ob-scuration found in X-ray selected AGN samples (e.g.,Steffen et al.2003;Ueda et al.2003;Barger et al.2005;La Franca et al.2005).

We brie?y introduce the optical and X-ray samples used in this paper in §2.In §3we discuss the analysis of the correla-tions between l 2500?A ,l 2keV ,αOX ,and redshift.We discuss our ?ndings and present our conclusions in §4.We use J2000co-ordinates and the cosmological parameters H 0=70km s ?1Mpc ?1,?M =0.3,and ?Λ=0.7.

2.SAMPLE

To search for correlations among l 2500?A ,l 2keV ,αOX ,and red-shift within optically-selected AGN samples,it is best to cover as much of the l ?z plane as possible to minimize degen-eracies.It is also important to eliminate AGNs with intrin-sic absorption that can affect UV and X-ray photons differ-ently,and radio-loud AGNs that can have additional UV and X-ray ?ux associated with the radio jet (e.g.,Worrall et al.1987;Wilkes &Elvis 1987;Worrall &Birkinshaw 2005).To this end,we combine the data from S05with the optically-selected,moderate-luminosity AGNs from the COMBO-17survey,a subsample of sources from the BQS quasar catalog which includes higher-luminosity,optically-selected AGNs,and additional optically-selected,z >4AGNs.We describe our AGN sample below starting with a brief description of the S05catalog.

2.1.Strateva et al.(2005)Sample

The main S05sample is composed of broad-line AGNs optically selected via multi-band photometry in the SDSS Data Release 2(SDSS DR2;Abazajian et al.2004),exclud-ing broad absorption-line quasars (BALQSOs)and radio-loud sources.The S05sample is an unbiased subsample of the full SDSS DR2AGN catalog,selecting sources with medium-deep (>11ks)ROSAT PSPC observations.Of the 155SDSS DR2AGNs in the S05sample,126(81%)have X-ray detec-tions.X-ray upper limits were calculated for the remaining 29sources.The 155AGNs span redshifts 0.2

To extend their l ?z plane coverage,S05include the low-redshift Seyfert 1sample of Walter &Fink (1993),excluding the radio-loud sources (L 5GHz >1025W Hz ?1).Twelve of these AGNs are also included in the well-de?ned BQS (see §2.2.2),and thus we have removed them from the S05sam-ple.For their high-redshift sample,S05include

optically-

F I

G .1.—Apparent i -band PSF magnitude vs.relative g ?i color,?(g ?i ),for our selected COMBO-17sample (red diamonds ),the SDSS sample (blue circles ),and the BQS sample (violet downward-pointing triangles ).For comparison the full SDSS DR2sample is shown as a blue contour enclosing 90%of the data and small blue dots representing the outliers.Any sources with signi?cant galaxy contributions that could affect their observed colors (identi?ed spectroscopically for SDSS AGNs and labeled ‘QSO (GAL?)’in the COMBO-17survey)are enclosed by large https://www.360docs.net/doc/a67774320.html,BO-17sources with z >2.1are denoted by open diamonds.The BQS sample sources observed in the SDSS are denoted with large symbols,and sources with SDSS magnitudes derived from other bands are denoted with small symbols.In the computation of ?(g ?i ),only AGNs with point-source morphology were used to determine the median g ?i color as a function of redshift to prevent arti?cial reddening due to host-galaxy contamination.The characteristic i -band magnitude ranges for the BQS,SDSS,and COMBO-17samples are denoted along the left-hand side of the ?gure.

selected,z >4quasars from the SDSS,the Palomar Digital Sky Survey (Djorgovski et al.1998),and the Automatic Plate Measuring facility survey (Irwin et al.1991).These high-redshift AGNs were speci?cally targeted by Chandra and XMM-Newton ,and S05again eliminated radio-loud sources and BALQSOs from their sample.It is important to note that all of these optically-selected,high-redshift AGNs would have met the SDSS AGN color-selection criteria,so the intro-duction of the sources from other surveys does not bias the S05sample.This high-redshift sample includes 36AGNs,in-creasing the S05total sample size to 216optically-selected AGNs (after removing the twelve Seyfert 1s also observed in the BQS),183(85%)of which have detected X-ray counter-parts and 33(15%)of which have X-ray upper limits.

2.2.New Objects in This Study

https://www.360docs.net/doc/a67774320.html,BO-17

To extend the AGN sample to fainter luminosities we in-clude the optically-selected AGNs from the portion of the COMBO-17survey that covers the E-CDF-S (Wolf et al.2004).To determine if the COMBO-17AGNs are indeed con-sistent with being a fainter extension of the SDSS AGNs,we examine the color-magnitude distributions of the two popu-lations.Figure 1shows the apparent i -band PSF magnitudes versus the relative g ?i colors for the COMBO-17AGNs (diamonds ),the SDSS AGNs (circles ),and the BQS sample

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies3 covered by SDSS(large triangles)and with SDSS colors de-

rived from APM magnitudes(small triangles).The SDSS g

and i magnitudes were calculated for the COMBO-17AGNs

using the observed BV RI magnitudes and the color transfor-

mations calculated by Jester et al.(2005).These AGN color

transformations are for sources with redshifts z<2.1.In Fig-

ure1we denote COMBO-17sources beyond this redshift with

open diamonds.The relative g?i colors,denoted as?(g?i),

were constructed by subtracting the median g?i color of the

DR2AGNs as a function of redshift from the observed g?i

color.Relative(i.e.,redshift-corrected)colors can be used to

detect signi?cant differences in the optical/UV continuua of

AGNs(Richards et al.2003),so they can be used to compare

the SDSS and COMBO-17AGN populations.From Figure1

it appears that the COMBO-17AGN sample is plausibly the faint extension of the SDSS AGN population.

The COMBO-17survey used observations in5broad-band and12medium-band?lters spanning the optical regime to de-rive photometric redshifts and“fuzzy”spectra for over63000 sources in the E-CDF-S?eld.Wolf et al.(2004)?nd175 sources with photometric colors that are best matched by the SDSS broad-line QSO template spectrum of Vanden Berk et al.(2001).Their method preferentially selects broad-line AGNs,but narrow-line sources with strong AGN emission lines could also be selected.

The17-band photometry and use of multiple galaxy/AGN templates allows the COMBO-17survey to measure among the most accurate photometric redshifts to date.To examine the quality of the photometric redshifts for the COMBO-17 AGNs,we compared the photometric redshifts with a compi-lation of publicly available spectroscopic redshifts of sources within the GOODS-South?eld created by Alessandro Ret-tura.6For our study,we?nd spectroscopic redshifts for12 COMBO-17AGNs and use photometric redshifts for the re-maining sources.Overall,we?nd excellent agreement be-tween the photometric and spectroscopic redshifts for AGNs at the magnitudes we consider below.The spectroscopic red-shifts for11sources differ by less than5%from their mea-sured photometric redshifts.Only one of the twelve COMBO-17sources with measured spectroscopic redshifts has a pho-tometric redshift that signi?cantly disagrees with the spec-troscopic value(COMBO-17ID:30792;z phot=1.929; z spec=0.743).

To obtain monochromatic2keV X-ray luminosities(or up-per limits)for these COMBO-17AGNs,we match the sources to the E-CDF-S and the Chandra Deep Field-South(CDF-S; Alexander et al.2003)X-ray catalogs.The E-CDF-S is com-posed of four250ks Chandra observations that cover the en-tire COMBO-17?eld(Lehmer et al.2005).The1Ms CDF-S probes fainter?uxes than the E-CDF-S,but it does not cover the entire COMBO-17?eld.We use a2′′matching radius to identify the X-ray counterparts of the COMBO-17AGNs, and we estimate the false-match probability to be<0.5%. All of the COMBO-17sources with X-ray counterparts were detected in the E-CDF-S,and none had more than one X-ray counterpart.We use the CDF-S to derive X-ray upper limits only when COMBO-17AGNs are not detected in the overlap-ping E-CDF-S?elds.

To minimize potential contamination of our correlation analysis below we impose two unbiased selection criteria on the full COMBO-17AGN sample.First,we only consider sources brighter than R=23.At these magnitudes the prob-ability of a COMBO-17source being misidenti?ed as an AGN is low(~1%;Wolf et al.2004).In addition,at R>23

the

F IG. 2.—Histogram of theαOX values for the52COMBO-17AGNs included in our sample.The mean of the distribution is shown with a dotted https://www.360docs.net/doc/a67774320.html,BO-17AGNs withΓ<1.6are marked(hatched his-togram).Sources withαOX upper-limits(i.e.,without X-ray detections)are also marked(shaded histogram).The left-pointing arrow indicates the direc-tion of the limits.For comparison,we show the meanαOX values for the three AGN samples in S05,which are described in Table3.

fraction of COMBO-17AGNs with X-ray detections drops quickly.This magnitude threshold ensures that the fraction of AGNs with X-ray detections remains high,reducing the impact of X-ray limits in our analysis.Second,we only in-clude sources that have HST ACS data from either the Galaxy Evolution from Morphology and SEDs survey(GEMS;Rix et al.2004)or the Great Observatories Origins Deep Survey (GOODS;Giavalisco et al.2004).These high-resolution data, which cover~84%of the COMBO-17?eld,can be used to minimize the galaxy contribution to the UV luminosity of the COMBO-17sources identi?ed as being extended objects (?agged as‘QSO(GAL?)’in Wolf et al.2004).These two se-lection criteria reduce the COMBO-17AGN sample from175 to60sources,with49(82%)having X-ray detections and13 (22%)identi?ed as extended objects.

Using the high-resolution GEMS and GOODS ACS V-band images we identi?ed four COMBO-17AGNs (COMBO-17IDs:5498,18324,31898,and50415)that were incorrectly classi?ed as extended sources but are actu-ally close sources blended together in the lower-resolution COMBO-17images.We correct the COMBO-17classi?ca-tion for these blended sources.For the remaining nine ex-tended COMBO-17AGNs,we attempted to minimize the contribution of the host galaxies to the measured optical/UV luminosities of the https://www.360docs.net/doc/a67774320.html,ing the high-resolution ACS im-ages we compared the magnitudes of the COMBO-17AGNs using3′′and0.5′′apertures.A mean magnitude difference of0.352mag was calculated for the unresolved COMBO-17 AGNs.For the extended sources,we calculated the magnitude differences using the same aperture sizes.Any magnitude off-sets exceeding the mean difference calculated for the point-like AGNs were considered to be caused by excess light from the host galaxy.We subtracted this host-galaxy contribution from the observed COMBO-17R-band magnitude and found that six of the nine extended sources subsequently fell below our R=23magnitude limit.Since these extended AGNs would not have met our magnitude criterion without the ad-6Available at https://www.360docs.net/doc/a67774320.html,/science/goods/ spectroscopy/CDFS_Mastercat/

4Steffen et al.

TABLE1

COMBO-17/E-CDF-S AGN DATA.

COMBO-17E-CDF-SαJ2000δJ2000z log(f2500?A)log(l2500?A)log(f2keV)log(l2keV)αOXΓR ID ID[erg cm?2s?1Hz?1][erg s?1Hz?1][erg cm?2s?1Hz?1][erg s?1Hz?1]

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) 1257399033232.28?280328.21.231?28.1929.40?31.5126.08?1.271.49<3.20 1731678033322.85?280312.91.499?28.4729.29?32.2025.56?1.432.04<5.79 2006397033232.00?280309.91.966?27.3730.60?31.1226.85?1.441.56<0.43 4050357033220.31?280214.71.635?27.8030.03?31.5326.29?1.431.89<1.17 480999033136.25?280149.61.988?28.3129.67?31.7226.26?1.311.79<3.51 4995234033156.88?280149.11.412?28.5029.21?32.3925.31?1.491.87<5.65 5498a630033316.07?280131.32.075?28.4529.56?31.9726.04?1.351.62<7.22 6735566033306.26?280055.52.444?28.3229.82?31.9926.14?1.411.89<3.91 681753033127.79?280051.01.988?28.0429.94?31.9626.02?1.511.49<2.33 7570b···033308.03?280030.83.583?27.4430.97

a Source is blended with nearby sources in COMBO-17images.

b Source is identi?ed as’QSO(GAL?)’in the COMBO-17survey.

c Spectroscopic redshift

ditional?ux from the host galaxy,we exclude them from our sample,reducing it to54sources.None of these six AGNs has an X-ray detection.

We attempted to remove both radio-loud and obscured AGNs from our sample of https://www.360docs.net/doc/a67774320.html,ing 1.4GHz VLA radio maps covering the COMBO-17?eld (Kellermann et al.2004)we found that only?ve of the54 COMBO-17AGNs have detected radio counterparts.We used the1.4GHz?ux limit of40μJy(5σ),quoted by Keller-mann et al.(2004),as an upper limit for the undetected ra-dio sources.We calculated the radio-loudness parameter, R,using the COMBO-17B-band monochromatic?ux(λ= 4350?A)and converting the observed1.4GHz?ux density to rest-frame5GHz,assuming S(ν)∝ν?0.8.We eliminate the two COMBO-17AGNs with R>30,and give the values (or limits)of R for the remaining sources in Table1.Our?-nal COMBO-17AGN sample consists of52sources,with47 (90%)having X-ray counterparts.

We interpolate the optical data to?nd the monochromatic luminosity at2500?A for each COMBO-17source using the redshifts and the12medium-band photon?uxes given by Wolf et al.(2004).These bands range between4180?9140?A which,for rest-frame2500?A,corresponds to a redshift range of0.67

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies

5

TABLE 2

BQS/ROSAT AGN DATA.

Name αJ 2000δJ 2000z log (f 2500?A )

log (l 2500?A )

log (f 2keV )

log (l 2keV )

αOX [erg cm ?2s ?1Hz ?1][erg s ?1Hz ?1][erg cm ?2s ?1Hz ?1][erg s ?1Hz ?1]

(1)(2)(3)(4)(5)(6)(7)(8)(9)

PG 0026+129002913.8+1316050.142?25.47

30.20

?29.2126.46?1.44PG 0050+124005334.9+1241360.061?25.2429.69?28.9625.96?1.43PG 0052+251005452.2+2525390.155?25.5130.24?29.1226.64?1.39PG 0157+001015950.25+002340.80.164?25.7330.07?29.8325.97?1.57PG 0804+761081058.5+7602430.100?25.0130.35?28.9126.45?1.50PG 0838+770084445.3+7653100.131?25.7929.81?29.7625.84?1.52PG 0844+349084742.47+344504.40.064?25.4029.57?30.2824.69?1.87PG 0923+201092554.7+1954040.190?25.6430.29?29.5926.34?1.52PG 0947+396095048.39+392650.50.206?26.0529.96?29.6026.41?1.36PG 0953+414095652.39+411522.20.239?25.5030.64?29.5026.64?1.54PG 1012+008101454.90+003337.40.185?25.8330.08?30.0225.89?1.61PG 1048+342105143.8+3359260.167?25.9429.88?29.8525.97?1.50PG 1049-005105151.50?005117.70.357?25.7630.74?30.1826.32?1.70PG 1114+445111706.40+441333.30.144?25.8829.81?30.1425.54?1.64PG 1115+407111830.29+402554.00.154?26.0629.69?29.8625.89?1.46PG 1116+215111908.8+2119180.177?25.2630.62?29.3526.52?1.57PG 1121+422112439.18+420145.00.234?26.1529.97?29.8826.24?1.43PG 1151+117115349.27+112830.40.176?25.9029.96?29.5626.30?1.40PG 1202+281120442.1+2754120.165?26.0729.73?29.5226.29?1.32PG 1211+143121417.7+1403130.085?25.0430.18?28.8526.37?1.46PG 1216+069121920.93+063838.50.334?25.7230.72?29.5826.86?1.48PG 1229+204123203.6+2009300.064?25.4829.49?29.1525.82?1.41PG 1259+593130112.93+590206.80.472?25.6931.06

2236

07.68

+134355.3

0.325

?25.90

30.52

?30.03

26.39

?1.59

lists the properties of the COMBO-17AGN sample,includ-ing the COMBO-17ID from Wolf et al.(2004),the E-CDF-S ID from Lehmer et al.(2005),the sources’positions and red-shifts,monochromatic 2500?A

and 2keV ?uxes and luminosi-ties,αOX ,the effective X-ray power-law photon index (Γ),R ,and a column identifying blended or extended COMBO-17AGNs.

Since the majority of the COMBO-17AGNs do not have optical spectra,we cannot easily identify obscured AGNs (us-ing emission-line and absorption-line diagnostics)that may contaminate our sample.To identify potential obscured COMBO-17AGNs,we will test the αOX correlations below after removing the 22sources with an effective X-ray power-law photon index Γ<1.6,which is indicative of X-ray obscuration (Lehmer et al.2005).This procedure does not help to identify potential obscured AGNs in the small num-ber of COMBO-17sources without X-ray counterparts;these sources will need future spectroscopic observations to iden-tify possible absorption.

The αOX distribution of our COMBO-17AGN sample is

shown in Figure https://www.360docs.net/doc/a67774320.html,BO-17AGNs that have measured effective photon indices of Γ<1.6,and sources that have αOX upper-limits,are shown as hatched and shaded histograms,re-spectively.The COMBO-17AGNs typically have ?atter αOX values than those calculated for more luminous AGN sam-ples.This is consistent with the observed anti-correlation be-tween αOX and optical/UV luminosity seen in the studies men-tioned in Section 1,where the value of αOX falls with increas-ing l 2500?A .For comparison,we mark the mean αOX values for the three AGN samples used in S05in Figure 2.

2.2.2.Bright Quasar Survey

To increase the luminosity range covered at low redshifts we included a set of 46BQS quasars with z <0.5ana-lyzed by Brandt,Laor,&Wills (2000).While the BQS sam-ple does extend beyond z =0.5,Jester et al.(2005)found a bias against detecting AGNs in the BQS catalog in the redshift range 0.5?23.

6Steffen et al.

This luminosity threshold also removes fainter AGNs that are more likely to be affected by contamination from their host galaxies.We excluded13radio-loud AGNs and?ve known BALQSOs(see footnote4in Brandt et al.2000).In ad-dition,following the arguments of Brandt et al.(2000),we also exclude two BQS quasars that have signi?cant UV ab-sorption,but do not meet the formal criteria for BALQSOs: PG1351+640(e.g.,Zheng et al.2001)and PG1411+442 (e.g.,Malkan et al.1987).

We converted the f3000?A values used in Brandt et al.(2000) to l2500?A,assuming f(ν)∝ν?αwithα=?0.5.We used PIMMS7to calculate the monochromatic2keV luminos-ity,assuming a power-law spectrum withΓ=2,from the ROSAT0.5?2.0keV pointed PSPC count-rate when avail-able,and from the0.5?2.0keV ROSAT All Sky Survey (RASS)count-rate when no pointed ROSAT observation ex-isted.An X-ray upper limit for one BQS quasar with no X-ray counterpart was calculated from the RASS.Our BQS sam-ple contains46sources,with45(98%)having X-ray detec-tions.We use the astrometry presented in Jester et al.(2005) for the BQS sources included therein and the astrometry from V′e ron-Cetty&V′e ron(2003)for the remaining sources.Ta-ble2presents the BQS sources’names,positions,and red-shifts along with the monochromatic2500?A and2keV?uxes and luminosities,andα

OX

.

2.2.

3.Additional High-z AGNs

To increase the size of our high-redshift sample we included recently published,optically-selected AGNs with z>4.We included the ten luminous quasars listed in Table3of Vig-nali et al.(2005)(excluding the BALQSO PSS1506+5220), and three radio-quiet AGNs from Shemmer et al.(2005)that were not included in S05(Q0000?263,BR0351?1034, and BR2237?0607).To extend the coverage of our sam-ple to somewhat lower luminosities at z>4we included a sample of six optically-selected,faint,radio-quiet,non-BALQSO sources targeted in>10ks Chandra observations (Kelly et al.2005).We analyzed these X-ray and optical data in the same manner as outlined in Vignali et al.(2005). We brie?y present these data in the Appendix.The addition of these three optically-selected,z>4AGN samples adds 19optically-selected AGNs to our total sample,18(94%)of which have X-ray detections.

For comparison purposes,we also plot the eight8published X-ray–selected,radio-quiet,z>4,AGNs(crosses)in Fig-ures3?9.We present the observed properties of these sources in Table A2in the Appendix.While these X-ray–selected AGNs substantially extend the coverage of the UV luminosity -redshift plane at high redshifts(see Figure3a),we do not in-clude these AGNs in our formal analyses as they have been se-lected with different criteria than the other optically-selected AGN samples.However,in§4.3we discuss how these AGNs ?t into the relations derived in§3using the optically-selected AGN samples.

7Portable Interactive Multi-Mission Simulator available at https://www.360docs.net/doc/a67774320.html,/Tools/w3pimms.html

8We excluded the two known X-ray–selected,radio-loud,z>4AGNs, RX J1028.6-0844(z=4.28;Zickgraf et al.1997)and RX J1759.4+6638 (z=4.32;Henry et al.1994).An up-to-date compilation of z>4AGNs with X-ray detections is available at https://www.360docs.net/doc/a67774320.html,/ users/niel/papers/highz-xray-detected.dat

TABLE3

S UMMARY OF S AMPLES U TILIZED

Sample Total Number0.5?2.0keV Limit Area AGNs X-ray Detected[erg cm?2s?1][sq.deg.]

S05

SDSS155126(81%)~10?1415 Seyfert125a25(100%)~10?12···b High-z3632(89%)~10?15···b

This work

COMBO-175247(90%)~10?160.26 BQS4645(98%)~10?1310,714 High-z1918(95%)~10?15···b

Full Sample

Total333293(88%)······b

a After removing the twelve sources that overlap with the BQS sample.

b Not well de?ned.

2.3.Full Sample

The full sample used in our analysis consists of333AGNs, 293(88%)of which have X-ray detections;this is a much higher X-ray detection fraction than for most previous analy-ses,where the detection fraction is typically10?50%.The number of AGNs contributed by each sample,and their re-spective X-ray detection fractions,are summarized in Table3. Figure3shows the monochromatic2500?A(left)and2keV (right)luminosity versus redshift for the combined AGN sam-ple.The addition of the COMBO-17(diamonds)and BQS (downward-pointing triangles)AGNs to the S05data substan-tially improves the luminosity range covered out to z~3, corresponding to?85%of cosmic history.

3.PARTIAL CORRELATION AND LINEAR REGRESSION ANALYSES To measure properly the correlations among l2500?A,l2keV,

α

OX

,and redshift,we must attempt to eliminate(or minimize) potential sources of bias from our analysis.Following the ar-guments of Kembhavi,Feigelson,&Singh(1986),we use the AGN luminosities in our calculations and not the measured ?uxes which,if used,can yield different results depending upon the cosmology and k-corrections assumed.However, using the luminosities can introduce a different bias since lu-minosity and redshift are typically correlated in?ux-limited samples.Our sample was constructed to cover a large area of the l?z plane,which acts to break this degeneracy.

While the majority of the AGNs in our sample have X-ray detections(88%),we cannot overlook the effects of sources with X-ray upper limits.In addition,our sample data un-doubtedly contain intrinsic scatter that is not quanti?ed in our measurements.We have minimized the effects of some sources of intrinsic scatter such as host-galaxy contamination, obscuration,and excess UV and X-ray?ux associated with ra-dio jets(as discussed in§2.2.1).Another source of intrinsic scatter in our data is caused by AGN variability,which affects our calculations ofα

OX

since the optical and X-ray observa-tions were not taken concurrently.Unfortunately,the effects of variability cannot be corrected and remain a signi?cant source of intrinsic scatter in our data.To measure the afore-mentioned correlations among these AGNs,proper statistical tools must be used that take these issues into consideration.

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies7

F IG.3.—2500?A luminosity(left)and2keV luminosity(right)vs.redshift for the S05Seyfert1(orange upward-pointing triangles),SDSS(blue circles),and high-redshift(green boxes)samples shown with the COMBO-17(red diamonds),BQS(violet downward-pointing triangles),and optically selected,high-redshift AGNs(green stars).X-ray upper limits are represented using open symbols(left)or arrows(right).The l2500?A-z subsample of187sources used in§3.6is denoted by the dotted-line box(left).The properties of the known X-ray–selected AGNs at z>4(black crosses)are also shown;these sources are not included in our formal analyses due to their different selection criteria.

3.1.Statistical Tools

While our extended coverage of the l?z plane helps to

break the redshift bias introduced by using luminosities in-

stead of?uxes in our analysis,a correlation between l and

z can still be clearly seen in Figure3.To take into account

this existing correlation we use a partial-correlation analy-

sis method that is designed to measure the correlation be-

tween two variables,controlling for the effects of one or

more additional variables.A partial-correlation method that

properly handles censored data was developed by Akritas&

Siebert(1996).This method builds upon Kendall’s rank-

correlation coef?cient(Kendall1938)and Kendall’s partial

rank-correlation coef?cient(Kendall1970)to include cen-

sored data.To measure the partial correlations we use the

FORTRAN program CENS

8Steffen et

al.

F I

G .4.—(top )Rest-frame 2keV monochromatic luminosity versus rest-frame 2500?A monochromatic luminosity.The symmetric,best-?t l 2keV -l 2500?A

relationship,given by Equation (1c),is denoted by a solid,black line.Equations (1a)and (1b)are denoted by solid,gray lines in order of increasing l 2keV at

l 2500?A =1032erg s

?1Hz ?1.For comparison,the best-?t line derived by S05(dashed line )and a β=1relation (dotted line ),normalized to best ?t the data,are shown.The residuals for Equation (1a)and the β=1relation are shown in the two lower panels,respectively.The residuals for Equation (1b)and the β=1relation are shown in the two panels on the right,respectively.The overlaid error bars denote the mean and the 3σstandard deviation of the mean of the residuals calculated for each ?log(l 2500?A )=1bin.Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are denoted with arrows.We ?nd a highly signi?cant (15.3σ)correlation between l 2keV and l 2500?A (controlling for redshift)with a best-?t slope of β=0.73±0.1,calculated from the ILS bisector.

assumes the residuals are Gaussian distributed).Since both l 2keV and l 2500?A are observed,neither can be truly called the “independent”or “dependent”variable.Indeed,a different result can be obtained if the residuals of the independent vari-able are instead minimized [i.e.,OLS(X |Y )].Rather than use the traditional OLS(Y |X ),we choose a method that instead provides a symmetric ?t to the data.Following the ar-guments in §5of Isobe et al.(1990),we use the OLS bisector,which simply bisects the two lines from the OLS(Y |X )and OLS(X |Y ),or in our case ILS(Y |X )and ILS(X |Y )from the EM Algorithm in ASURV .

We perform linear regressions with ASURV on the full sample of 333AGNs and ?nd the relation between l 2keV and l 2500?A to be log(l 2keV )=(0.64±0.02)log(l 2500?A )+(6.87±0.63)(1a)

using ILS(Y |X )(i.e.,treating l 2keV as the dependent vari-able)and

log(l 2keV )=(0.82±0.02)log(l 2500?A )+(1.74±0.75)(1b)using ILS(X |Y )(i.e.,treating l 2500?A as the dependent vari-able).Note that the slope of the l 2keV -l 2500?A relation does de-pend on which luminosity is used as the dependent variable,

but both cases are inconsistent with β=1.We use the equa-tions given in Table 1of Isobe et al.(1990)to calculate the bisector of the two regression lines.We ?nd the ILS bisector to be

log(l 2keV )=(0.72±0.01)log(l 2500?A )+(4.53±0.69)(1c)In Figure 4,we show l 2keV versus l 2500?A for the full AGN sample (top panel ).We show the symmetric,best-?t l 2keV -l 2500?A relationship,given by Equation (1c),as a solid,black

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies

9

F I

G .5.—(top )αOX vs.rest-frame 2500?A

monochromatic luminosity.The best-?t line from Equation (2)is shown (solid line ).For comparison,the best ?t line derived by S05(dotted line )is also shown.(bottom )Residuals from the ?t shown in the top panel.The overlaid error bars denote the mean and the 3σstandard deviation of the mean of the residuals calculated for each ?log(l 2500?A )=1bin.Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are de-noted with arrows.We ?nd a highly signi?cant (13.6σ)correlation between αOX and l 2500?A (controlling for redshift).

line.Equations (1a)and (1b)are denoted by solid,gray lines

in order of increasing l 2keV at l 2500?A =10

32

erg s ?1Hz ?1.For comparison purposes we show the l 2keV -l 2500?A relation found by S05(dashed line ),along with a β=1relation with a normalization chosen to minimize the l 2keV residuals (dotted line ).The residuals for Equation (1a)and the ?t assuming β=1are given in the bottom panels,with the mean and the (3σ)standard deviation of the mean calculated for sources in each ?log(l 2500?A )=1bin denoted with large error bars.The residuals for Equation (1b)and the ?t assuming β=1are given in the right-hand panels using the same symbols.From the systematic β=1residuals present along both axes,it is apparent that a β=1relation provides an unsatisfactory ?t to the data,independent of the luminosity considered as the dependent variable.

3.3.αOX versus l 2500?

A Given the highly signi?cant correlation between l 2keV and

l 2500?A found for our AGN sample,we investigate how αOX changes with respect to l 2500?A ,l 2keV ,and redshift.For our optically-selected AGN sample we con?rm a highly signif-icant (13.6σ)anti-correlation between αOX and l 2500?A when controlling for the effects of redshift.The best-?t parameters for the αOX -l 2500?A relation are αOX =(?0.137±0.008)log(l 2500?A )+(2.638±0.240)(2)In Figure 5,we show αOX versus l 2500?A for our full AGN sample.We show the best-?t linear regression found for this sample,given in Equation (2),as a solid line.The residuals for the ?t are given in the bottom panel,with the mean and standard deviation of the mean calculated for sources in each ?log(l 2500?A )=1bin denoted with 3σerror bars.For com-parison purposes we show the αOX -l 2500?A relation found by S05(dotted line

).

F I

G .6.—(top )αOX vs.rest-frame 2keV monochromatic luminosity.The

best-?t line from Equation (3)is shown (solid line ).(bottom )Residuals from the ?t shown in the top panel.The overlaid error bars denote the mean and the 3σstandard deviation of the mean of the residuals calculated for each ?log(l 2keV )=1bin.Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are de-noted with arrows.We ?nd a lower,but still signi?cant (3.0σ)correlation between αOX and l 2keV (controlling for redshift).

3.4.αOX versus l 2keV

The correlation between αOX and l 2keV has been previously examined (Green et al.1995),but the AGN samples used had low X-ray detection fractions and included both radio-loud AGNs and BALQSOs,both of which can obfuscate the in-trinsic X-ray emission of interest here (see §1).In addition,Green et al.(1995)did not check if the correlation between αOX and l 2keV was the result of a true correlation,or a by-product of the known correlation between l 2keV and redshift.The high X-ray detection fraction of our AGN sample al-lows us to examine the correlation between αOX and l 2keV .We ?nd a weaker,but still signi?cant (3.0σ)anti-correlation be-tween αOX and l 2keV when controlling for the effects of red-shift and taking into account the double-censoring present in this relation (i.e.,censoring of both the dependent and inde-pendent variables).The linear-regression methods used pre-viously to derive the parameters of the correlations (EM and Buckley-James regression algorithms)are only strictly valid if double-censoring is not present.However,given the high X-ray detection fraction of our sample,we continue to use the aforementioned EM and Buckley-James regression methods,assuming the independent variable (l 2keV )is detected.Note that our choice of linear-regression techniques does not affect the signi?cance of the anti-correlation presented above.

The best-?t parameters for the αOX -l 2keV relation from the EM regression method are

αOX =(?0.077±0.015)log(l 2keV )+(0.492±0.387)(3)In Figure 6,we show αOX versus l 2keV for our full AGN sample;the best-?t linear regression found for this sample,given in Equation (3),is shown by a solid line.The residuals for the ?t are given in the bottom panel,with the mean and standard deviation of the mean calculated for sources in each ?log(l 2keV )=1bin denoted with 3σerror bars.

The clear trend of higher (i.e.,less-negative)αOX values

10Steffen et

al.

F I

G .7.—(top )αOX vs.redshift.The best-?t line from Equation (4)is shown (solid line ).For comparison,the best-?t line derived by S05(dotted line )is also shown.(bottom )Residuals from the ?t shown in the top panel.The overlaid error bars denote the mean and the 3σstandard deviation of the mean of the residuals calculated for each ?z =1bin.Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are denoted with arrows.We ?nd no signi?cant (1.3σ)correlation between αOX and redshift (controlling for l 2500?A ).

with decreasing l 2500?A seen in Fig 5is not as apparent in the αOX -l 2keV plot.This could be due,in part,to the smaller range in X-ray luminosity covered by the AGNs (?log(l 2keV )=4)compared to the UV luminosity range (?log(l 2500?A )=5).In addition,the scatter in the residuals for the αOX -l 2keV relation is larger than that seen for l 2500?A .

3.5.αOX versus redshift

To test for a possible redshift dependence of αOX we mea-sure the partial correlation of αOX and z ,controlling for l 2500?A .We do not ?nd a signi?cant correlation between αOX and red-shift (1.3σ),consistent with previous αOX studies.The best-?t parameters for the αOX ?z relation are

αOX =(?0.079±0.006)z ?(1.395±0.014)

(4)

In Figure 7,we show αOX versus z for our full AGN sample.We show the best-?t linear regression found for this sample,given in Equation (4),as a solid line.The apparent correlation between αOX and redshift is simply an artifact of the l 2500?A -z correlation.The residuals for the ?t are given in the bottom panel,with the mean and standard deviation of the mean cal-culated for sources in each ?z =1bin denoted with 3σerror bars.For comparison purposes we show the αOX ?z relation found by S05(dotted line ).

In Figure 8,we show the αOX ?αOX (l 2500?A )residuals as a function of redshift (top panel )and the αOX ?αOX (z )residuals as a function of l 2500?A (bottom panel ).It is clear from Fig-ure 8that there is a strong luminosity dependence in the αOX ?αOX (z )residuals,while the αOX ?αOX (l 2500?A )residuals show no strong redshift https://www.360docs.net/doc/a67774320.html,ing ASURV to ?nd αOX as a function of both l 2500?A and redshift,we ?nd the following relation.

αOX =(?0.126±0.013)log(l 2500?A )

?(0.010±0.009)z +(2.311±0.372)

(5)

Equation (5)shows that the coef?cient of z is statistically con-sistent with zero (1.1σ),which agrees with the ?ndings of S05and is consistent with αOX being independent of redshift.We use the αOX ?αOX (l 2500?A )residuals to constrain the maximum possible residual dependence of αOX on redshift,which constrains the maximum amount the ratio of the UV-to-X-ray luminosity can evolve with redshift.We ?nd the best-?t parameters of the residuals to be <αOX ?αOX (l 2500?A )>=(?0.004±0.006)z ?(0.004±0.012).The maximum abso-lute 1σvalue for the slope of the residuals is 0.010z ,which at z =5is equal to 0.05.The ratio between the UV and

X-ray ?ux is,by de?nition,r =f ν(2500?A

)/f ν(2keV )=10

2.606αOX

.Differentiating with respect to αOX ,we get δr/r =2.606ln (10)δαOX ?6δαOX ?0.30,for δαOX =0.05.Thus the the ratio of UV-to-X-ray ?ux has not changed by more than 30%(1σ)over the redshift range z =0?5.

To examine if αOX is independent of redshift over the range of luminosities observed,we divided the AGNs equally into three luminosity bins,with each bin containing 111sources.We plot the αOX ?αOX (l 2500?A )residuals as a function of red-shift for each UV luminosity bin in Figure 9.It is apparent that the COMBO-17sample and the Seyfert 1sample of S05comprise most of the lower-luminosity AGNs (log(l 2500?A )<29.812).The number of COMBO-17AGNs decreases in the moderate UV luminosity bin where the BQS and SDSS AGNs become prevalent (27.8124AGNs and the SDSS sam-ple dominate (log(l 2500?A )>30.795).None of the residuals shows any indications of having a systematic offset,showing that AGNs spanning ?ve decades in UV luminosity show little αOX evolution with redshift.

https://www.360docs.net/doc/a67774320.html,paring αOX -z and l 2keV -z relations

Recent discussions have questioned the validity of measur-ing the redshift evolution of αOX controlling for the effects

of

F I

G .8.—αOX residuals as a function of redshift (top panel )and l 2500?A (bottom panel ).The overlaid error bars denote the mean and the 3σstandard deviation of the mean of the residuals calculated for each ?z =1bin (top panel )or ?log(l 2500?A )=1bin (bottom panel ).Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are denoted with arrows.The systematic residuals in the lower plot indicate that αOX cannot be dependent on redshift alone.

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies

11

F I

G .9.—αOX residuals as a function of redshift shown for three lumi-nosity ranges.Symbols are de?ned as in Figure 3,although all symbols are plotted as open to minimize symbol crowding.Limits are denoted with ar-rows.There is no apparent redshift dependence of the αOX ?αOX (l 2500?A )residuals within any luminosity range.

l 2500?A ,since l 2500?A and αOX are,by construction,correlated (B.Kelly 2005,personal communication).It has been sug-gested that measuring the redshift evolution of l 2keV ,control-ling for l 2500?A ,is a better measure of the evolution of αOX since this relation does not include the aforementioned αOX -l 2500?A correlation.However,it is not clear that the redshift evolution of l 2keV and αOX are necessarily related,even when controlling for the effects of l 2500?A (e.g.,M.Akritas 2005,personal com-munication).We examine the redshift evolution of l 2keV using our sample and ?nd a highly signi?cant partial correlation be-tween l 2keV -z ,controlling for l 2500?A (τ12,3=0.21,σ=8.7).If the l 2keV -z partial correlation is indeed a proxy for αOX -z ,then this result con?icts with our ?nding in §3.5that αOX does not evolve with redshift.We examine this apparent paradox further using both Monte Carlo simulations and a subset of our full data sample that better covers the l 2500?A -z plane.To determine if the l 2keV -z correlation is real or fake,we ran a set of simulations designed to assess the strength of par-tial correlations expected for samples with similar l 2500?A -z distributions.We started by randomly assigning an l 2500?A value in the observed range (29.0

A <32.5)to each AGN in our sample.We then computed l 2keV for each source assuming the ILS bisector relation in Equation 1c,including a random scatter comparable to that observed.We compute the l 2keV -z partial correlation (controlling for l 2500?A )for ten random samples to obtain an average value for the strength and signi?cance of the partial correlation.In these realiza-tions there is no l 2500?A -z dependence,by construction.We ?nd average correlation strength of τ12,3=0.06±0.02with σ=2.2±0.7,signi?cantly lower than for our actual sam-ple.However,if we instead constrain the random l 2500?A to follow the observed l 2500?A -z dependence,the partial tau method ?nds a more signi?cant,but false ,partial correlation of τ12,3=0.17±0.01with σ=7.0±0.5.These sim-ulations suggest that the strength of the correlation between

l 2keV and redshift is an artifact of the strong l 2500?A -z relation in ?ux-limited samples.While the partial-correlation meth-ods of Kendall’s tau are designed to remove the contribution of the third variable (in this case l 2500?A )from the measure-ment of the correlation between the ?rst and second variables (l 2keV and z ),when the correlations between the controlling variable and the ?rst and/or second variable are very strong,apparently signi?cant,but false,partial correlations can arise.To test further the l 2keV -z relation,we limit our analysis to sources with 29.3

3.7.Investigating non-linear αOX correlations

From the previous three sections it is clear that αOX is most signi?cantly correlated with l 2500?A ,but does the slope of this correlation remain the same over the entire range of UV lu-minosities,or is the αOX -l 2500?A relation non-linear?From Figure 4it appears possible that the l 2keV -l 2500?A slope may become steeper at lower luminosities.It is dif?cult to tell from the plot,however,as lower-luminosity sources typically have larger measurement errors.Non-linearity may also be hinted at in the residual plot in Figure 5.While all of the 3σerror bars for the mean residuals in each luminosity bin are consis-tent with zero,there is a slight curve seen in the mean residu-als,peaking around 1030erg s ?1Hz ?1.

We investigate this potential change in the slope of the αOX -l 2500?A relation by dividing the sample in half using the me-dian UV luminosity (log (l 2500?A )=30.352)and calculating the slope of the best-?t line for both the high-luminosity and low-luminosity halves of the sample.We ?nd the coef?cient for the low-luminosity half to be ?atter (?0.098±0.019)than for the high-luminosity half (?0.152±0.019).We use Stu-dent’s t-test to determine if these two slopes are drawn from the same distribution.We ?nd only a 5%probability that the best-?t slopes for the high and low-luminosity halves of the distribution are drawn from the same parent distribution,sug-gesting that the slope of the αOX -l 2500?A relation may be l 2500?A dependent.

We use this same method to determine if the αOX -l 2500?A slope is dependent on redshift.We divide the full sample into low-redshift (z ≤2)and high-redshift (z >2)subsamples,containing 230and 103sources,respectively.We do not ?nd a signi?cant difference in the best-?t slopes for the low-redshift (?0.125±0.012)and high-redshift (?0.147±0.020)https://www.360docs.net/doc/a67774320.html,ing Student’s t-test,we ?nd a 37%chance that the slopes of the low-redshift and high-redshift subsamples are drawn from the same parent distribution.

12

Steffen et al.

4.DISCUSSION AND CONCLUSIONS 4.1.Summary of AGN Sample

In this paper,we examine the correlations between l 2500?A ,l 2keV ,αOX ,and redshift for optically-selected AGNs.We extend the coverage of the luminosity-redshift plane rela-tive to the S05sample by adding 52lower-luminosity AGNs discovered by the COMBO-17survey,46high-luminosity,low-redshift (z <0.5)AGNs from the BQS,and 19high-redshift (z >4)AGNs from recently published,targeted X-ray/optical AGN studies.Radio-loud AGNs and BALQ-SOs are excluded from our sample whenever possible,and the effects of host-galaxy contamination are largely removed for the COMBO-17AGNs using high-resolution ACS obser-vations.These additional AGNs bring the total sample to 333optically-selected AGNs,293(88%)of which have detected X-ray counterparts.

In Table 5we present the statistical properties of the full sample,broken into ?log(l 2500?A )=1bins.The Kaplan-Meier estimator within ASURV was used to calculate the sta-tistical properties of the sources in each bin.The redshift range,mean,RMS error,median,and both 25th and 75th per-centile values are given,along with the value of l 2500?A and αOX calculated from Equations (1c)and (2),respectively,us-ing the mean l 2500?A value given in the appropriate bin.This table also gives both the expected value of l 2keV and αOX for each ?log(l 2500?A )=1bin as well as the spread around the expectation values.From the table,it appears that the spread of l 2keV decreases with increasing l 2500?A for the bins with sta-tistically signi?cant numbers of sources.There is no clear l 2500?A dependence on the spread of αOX .This table is useful in identifying AGNs that may be X-ray weak or assessing the excess associated with jet-linked X-ray emission.

4.2.Results of Partial Correlation Analyses

To measure correlations in our data we employ partial-correlation methods that deal with censored data.We con?rm

that the monochromatic 2500?A

and 2keV luminosities are highly correlated (15.3σ),considering the effects of redshift,

and follow the relation l 2keV ∝l β

2500?A

,where β=0.73±0.01(from the ILS bisector),and not β=1as found in some pre-vious studies.

We investigate how the ratio of the X-ray and UV lumi-nosities,αOX ,is correlated with l 2500?A ,l 2keV ,and redshift for our AGN sample.When taking into account the effects of redshift,we con?rm that the αOX -l 2500?A anti-correlation is highly signi?cant (13.6σ)but ?nd a much smaller,but still signi?cant,anti-correlation for the αOX -l 2keV relation (3.0σ).The discrepancy in the signi?cance of these two correlations is due,in part,to the slope of the l 2keV -l 2500?A relation be-ing less than unity.As can be seen in Figure 4,the range of possible values of l 2keV for a given value of l 2500?A is smaller (and hence the range of αOX values is smaller)than the range of possible values of l 2500?A for a given value of l 2keV .In ad-dition,some AGNs are more variable in the X-ray than they are in the optical/UV ,with long-timescale X-ray observations of Seyfert 1s showing variability ≥100%for some sources (Uttley &McHardy 2004,and references therein),which in-creases the possible ranges of l 2keV even more dramatically for a given value of l 2500?A .

Our analysis did not reveal any signi?cant (1.3σ)evolu-tion of αOX with redshift (when considering the effects of l 2500?A ),which is consistent with the majority of previous αOX studies.However,including the COMBO-17AGNs in

TABLE 4

P ARTIAL C ORRELATION R ESULTS .

Relation

Controlling Kendall’s Signi?cance

Variable

τ12,3

Total Sample

l 2keV vs.l 2500?A z 0.51915.3σαOX vs.l 2500?A z ?0.37713.6σαOX vs.l 2keV z

?0.0803.0σαOX vs.z

l 2500?

A ?0.031

1.3σ

Removed COMBO-17AGNs with Γ<1.6

l 2keV vs.l 2500?

A z 0.505

13.7σαOX vs.l 2500?A z ?0.39613.7σαOX vs.l 2keV z ?0.0793.0σαOX vs.z

l 2500?

A ?0.0040.2σ

N OTE .

—Kendall’s partial-rank correlation is de?ned as τ12,3

=

τ12?τ13τ23

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies

13

τ

F I

G .10.—Best-?t values and ?S =4.61(90%)con?dence contours for the coef?cients A O and A τfor our sample (black cross,solid black con-tour ),the sample of S05(green cross,dotted green contour ),and the samples examined by Avni &Tananbaum (1986)(open orange circle,dot-dashed or-ange contour )and Wilkes et al.(1994)(?lled blue circle,dashed blue con-tour ).Inset:A magni?ed view of the contours for our sample.Both the 68%(?S =2.30)and 90%(?S =4.61)con?dence contours (solid black con-tours )are shown.For comparison,the 68%and 90%con?dence contours of the S05sample are also shown (dotted green contours ).

have considerably smaller l 2500?A values than the optically se-lected,z >4AGNs,and thus we would predict that they would have higher (less negative)values of αOX from Equa-tion (2).Indeed,the αOX residuals shown in Figures 8and 9demonstrate that the X-ray–selected AGNs (crosses )agree fairly well with our conclusion that αOX is dependent on l 2500?A and shows no signi?cant redshift dependence.To test further this conclusion we again ran the partial correlations described in §3,this time including the eight X-ray–selected sources.We ?nd that the signi?cance of most of the correlations pre-sented in Table 4increase ~0.3?0.8σ.The αOX -z partial correlation increases by ~0.7σ,but it is still below the thresh-old of a signi?cant correlation.In addition,while the X-ray–selected AGNs do increase the coverage of the luminosity -redshift plane,it is not clear what effect the different selection biases of the X-ray–selected AGNs will have on these corre-lations.

https://www.360docs.net/doc/a67774320.html,parison with Earlier Studies

The AGN sample presented here enables us to provide the tightest constraints to date on the contributions of l 2500?A and redshift to αOX .To illustrate our improvement over some past studies,we compare our results with those of Avni &Tanan-baum (1986,hereafter AT86),Wilkes et al.(1994),and S05.Note that the ?rst two authors use cosmological look-back time,τ(z ),in units of the present age of the Universe,and not redshift in their calculations.We calculate τ(z )for our sources and use the method outlined in §§3and 4of AT86to calculate con?dence contours.We rename A Z from AT86to A τsince,strictly speaking,it is the coef?cient of cosmolog-ical look-back time which is not a linear function of redshift.

This modi?cation changes Equation (6)of AT8610to

14Steffen et al.

TABLE5

S AMPLE S TATISTICS

log(l2500?A)Range27?2828?2929?3030?3131?3232?33 Number of Sources641841216714 Number of X-ray Detections53882995514

X-ray Detection Fraction83%93%98%82%82%100% Redshift Range0.009?0.2010.009?1.2640.033?2.8700.085?4.1900.472?6.2802.736?4.550

log(l2500?A)

Mean log(l2500?A)27.84728.60429.62230.54031.55232.259 RMS log(l2500?A)0.0810.2500.2380.2860.2920.150

25th Percentile27.75328.50829.45330.28331.26432.120 Median log(l2500?A)27.82528.63029.62530.60931.52332.200

75th Percentile27.89028.78129.80630.79131.74232.330

log(l2keV)

Mean log(l2keV)24.57125.14925.95326.472a27.105a27.600 RMS log(l2keV)0.3180.6210.4310.4180.3330.348

25th Percentile···b24.87325.79226.29626.87927.340 Median log(l2keV)24.46325.22226.01826.46227.06527.730

75th Percentile24.66125.62226.22126.74627.33727.836 Value from Equation(1c)24.74925.23525.88926.47827.12827.582

αOX

MeanαOX?1.253?1.322?1.408?1.568a?1.708?1.788 RMSαOX0.0930.1920.1650.1980.1460.131

25th Percentile?1.343?1.451?1.493?1.657?1.810?1.865 MedianαOX?1.309?1.291?1.402?1.547?1.691?1.786 75th Percentile?1.230?1.184?1.289?1.455?1.609?1.717 Value from Equation(2)?1.189?1.293?1.433?1.559?1.699?1.796

a ASURV changed?rst datum in bin from a censored point to a detection—mean estimate is biased.

b No value is reported due to bias by the upper limit and the small number of sources in this bin.

when the X-ray luminosity is replaced with the optical/UV luminosity.The evolution factor becomes independent of op-tical/UV luminosity[i.e.,e(L UV,z)→e(z)]only when the X-ray and optical/UV emission in AGNs are independent of one another(i.e.,β=0).Thus,aside from this special case, the LDDE observed for X-ray AGN samples implies LDDE for optical AGN samples.

Theβ=0.725slope found for the l2500?A-l2keV rela-tion(Equation1c)evinces that a group of AGNs will span a larger range in UV luminosity than in X-ray luminosity. In other words,optical/UV surveys must cover a larger lu-minosity range than X-ray surveys to probe the same AGN populations.This is apparent when comparing the sky den-sities of AGNs from deep X-ray and optical surveys(see §1).The deep X-ray surveys?nd about an order of mag-nitude more AGNs per square degree than the deepest opti-cal surveys.Some of this discrepancy is attributable to dif-ferent AGN selection effects between the X-ray and optical surveys.Host-galaxy contamination is much more prevalent in the optical regime,as is intrinsic obscuration.However, if we compare the depth probed by the optical and X-ray surveys we see that the optical surveys are missing the low-luminosity AGNs that do not?t into the PLE paradigm.Stud-ies of the XLF?nd the densities of AGNs with L2?8keV= 1042?1044erg s?1peak at lower redshifts than their more luminous cousins,a strong indication of LDDE.This range in hard X-ray luminosity corresponds to a monochromatic l2keV range of log(l2keV)=23.9?25.9,assumingΓ=https://www.360docs.net/doc/a67774320.html,-ing Equation(1c),we?nd the corresponding monochromatic l2500?A range to be log(l2500?A)=26.9?29.7.From Figure3a it is apparent that the optically-selected AGN samples do not extend to faint enough UV luminosities to detect all of these AGNs.Even if we assumeβ=1,we?nd that the optical surveys are still too shallow,but the problem becomes less severe.Assumingβ=1,the range of l2keV covered by the X-ray selected AGN surveys corresponds to a monochromatic l2500?A range of log(l2500?A)=27.8?29.8,an order of mag-nitude higher than we get withβ=0.73.In light of this comparison it is not surprising that LDDE is not required to describe the evolution of the OLF,because optical surveys are not deep enough to probe the AGN luminosities where LDDE becomes apparent in XLF studies.

4.6.Future Studies

This study presents the highest signi?canceα

OX

-l2500?A cor-relations to date,but signi?cant work remains to be done.The signi?cance of the measured correlations could be substan-tially improved by eliminating the intrinsic scatter in our data due to UV and X-ray variability.This could be accomplished with concurrent UV and X-ray observations of AGNs with, e.g.,XMM-Newton.This study could also be extended by including more of the most optically luminous quasars known at z~1?4.The high luminosities of these quasars make them visible at all redshifts,and their inclusion would reduce the paucity of these sources at low-to-moderate redshifts in our current sample.We could also extend our study to in-clude Low Ionization Nuclear Emission-line Regions(LIN-ERs).These low-luminosity AGNs could better constrain the α

OX

-l2500?A relation,and the additional l2500?A“leverage”at low luminosities would help test the possible non-linearα

OX -l2500?A relation suggested by our data.To measure the AGN

emission in LINERs it is essential to minimize the contamina-tion from the host galaxy.To do this,the high-resolution capa-bilities of HST and Chandra are needed to isolate the intrinsic

The X-ray–to–Optical Properties of Optically-Selected Active Galaxies

15

AGN emission within LINERs.Finally,there are currently no compelling physical models that explain the origin of the ob-served αOX -l 2500?A relation.Any theoretical model attempting to describe the emission mechanisms within AGNs must be able to reproduce this observed relation.There is hope that attempts to model the environments around accreting SMBHs from ?rst principles using relativistic magneto-hydrodynamic simulations (e.g.,Hawley et al.1995;De Villiers &Hawley 2003;Krolik et al.2005)will be able to explain the observed αOX -l 2500?A relation,but to our knowledge these simulations have not yet found a physical explanation for the observed αOX -l 2500?A relation.We thank the anonymous referee for helpful comments that improved the manuscript.We thank Wolfgang V oges and Thomas Boller for supplying the 0.5?2keV ROSAT count rates for the RASS BQS sample along with Michael Akri-tas,Ohad Shemmer,and Brandon Kelly for helpful discus-sions.We gratefully acknowledge support from NSF CA-REER award AST-9983783(A.T.S.and W.N.B.),CXC grant GO4-5157A (A.T.S.,W.N.B.,B.D.L.,and D.P.S.),NASA LTSA grant NAG5-13035(I.S.and W.N.B.),the

Royal Society (D.M.A),and MIUR COFIN grant 03-02-23(C.V .)

Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P.Sloan Foun-dation,the Participating Institutions,the National Aeronau-tics and Space Administration,the National Science Founda-tion,the U.S.Department of Energy,the Japanese Monbuka-gakusho,and the Max Planck Society.The SDSS Web site is https://www.360docs.net/doc/a67774320.html,/.

The SDSS is managed by the Astrophysical Research Con-sortium (ARC)for the Participating Institutions.The Par-ticipating Institutions are The University of Chicago,Fermi-lab,the Institute for Advanced Study,the Japan Participation Group,The Johns Hopkins University,the Korean Scientist Group,Los Alamos National Laboratory,the Max-Planck-Institute for Astronomy (MPIA),the Max-Planck-Institute for Astrophysics (MPA),New Mexico State University,Univer-sity of Pittsburgh,University of Portsmouth,Princeton Uni-versity,the United States Naval Observatory,and the Univer-sity of Washington.

Facilities:CXO (ACIS),HST (ACS),Max Plank:2.2m (WFI),VLA,ROSAT (PSPC),Sloan

REFERENCES

Abazajian,K.,et al.2004,AJ,128,502

Akritas,M.G.,&Siebert,J.1996,MNRAS,278,919Alexander,D.M.,et al.2003,AJ,126,539

Anderson,S.F.,&Margon,B.1987,ApJ,314,111Antonucci,R.1993,ARA&A,31,473

Avni,Y .,&Tananbaum,H.1982,ApJ,262,L17Avni,Y .,&Tananbaum,H.1986,ApJ,305,83

Barger,A.J.,Cowie,L.L.,Brandt,W.N.,Capak,P.,Garmire,G.P.,Hornschemeier,A.E.,Steffen,A.T.,&Wehner,E.H.2002,AJ,124,1839Barger,A.J.,Cowie,L.L.,Mushotzky,R.F.,Yang,Y .,Wang,W.-H.,Steffen,A.T.,&Capak,P.2005,AJ,129,578

Bauer,F.E.,Alexander,D.M.,Brandt,W.N.,Schneider,D.P.,Treister,E.,Hornschemeier,A.E.,&Garmire,G.P.2004,AJ,128,2048Bechtold,J.,et al.2003,ApJ,588,119

Boyle,B.J.,Shanks,T.,Croom,S.M.,Smith,R.J.,Miller,L.,Loaring,N.,&Heymans,C.2000,MNRAS,317,1014

Brandt,W.N.,Laor,A.,&Wills,B.J.2000,ApJ,528,637Buckley,J.,&James,I.1979,Biometrika,66,429

Castander,F.J.,Treister,E.,Maccarone,T.J.,Coppi,P.S.,Maza,J.,Zepf,S.E.,&Guzm′a n,R.2003,AJ,125,1689Chanan,G.A.1983,ApJ,275,45

Cowie,L.L.,Barger,A.J.,Bautz,M.W.,Brandt,W.N.,&Garmire,G.P.2003,ApJ,584,L57

Croom,S.M.,Smith,R.J.,Boyle,B.J.,Shanks,T.,Miller,L.,Outram,P.J.,&Loaring,N.S.2004,MNRAS,349,1397

Dempster,A.P.,Laird,N.M.,&Rubin,D.B.1977,Royal Stat.Soc.B,39,1

De Villiers,J.-P.&Hawley,J.F.,2003,ApJ,589,458

Djorgovski,S.G.,Gal,R.R.,Odewahn,S. C.,de Carvalho,R.R.,Brunner,R.,Longo,G.,&Scaramella,R.1998,in Wide Field Surveys in Cosmology,14th IAP meeting held May 26-30,1998,Paris.Publisher:Editions Frontieres.ISBN:2-86332-241-9,p.89.,89Feigelson,E.D.,&Nelson,P.I.1985,ApJ,293,192Giavalisco,M.,et al.2004,ApJ,600,L93Green,P.J.,et al.1995,ApJ,450,51

Hasinger,G.,Miyaji,T.,&Schmidt,M.2005,A&A,441,417Hawley,J.F.,Gammie,C.F.,&Balbus,S.A.,1995,ApJ,440,742Henry,J.P.,et al.1994,AJ,107,1270

Irwin,M.,McMahon,R.G.,&Hazard,C.1991,in ASP Conf.Ser.21:The Space Distribution of Quasars,117

Isobe,T.,Feigelson,E.D.,Akritas,M.G.,&Babu,G.J.1990,ApJ,364,104Isobe,T.,Feigelson,E.D.,&Nelson,P.I.1986,ApJ,306,490Jester,S.,et al.2005,AJ,130,873

Kellermann,K.I.,Fomalont,E.B.,Kelly,J.,Shaver,P.,Rosati,P.,Tozzi,P.,&Mainieri,V .2004,American Astronomical Society Meeting Abstracts,205,

Kelly,B.C.,Bechtold,J.,Siemiginowska,A.,Aldcroft,T.,Elvis,M.,&Sobolewska,M.2005,Memorie della Societa Astronomica Italiana,76,87

Kembhavi,A.,Feigelson,E.D.,&Singh,K.P.1986,MNRAS,220,51Kendall,M.G.1938,Biometrika,30,81

Kendall,M.G.1970,Rank Correlation Methods (Fourth ed.)(Hafner:New York)

Kriss,G.A.,&Canizares,C.R.1985,ApJ,297,177Krolik,J.H.,et al.2005,ApJ,622,1008La Franca,F.,et al.2005,ApJ,635,864

La Franca,F.,Franceschini,A.,Cristiani,S.,&Vio,R.1995,A&A,299,19Lavalley,M.,Isobe,T.,&Feigelson, E.1992,in ASP Conf.Ser.25:Astronomical Data Analysis Software and Systems I,245Lehmer,B.D.,et al.2005,ApJS,161,21

Malkan,M.A.,Green,R.F.,&Hutchings,J.B.1987,ApJ,322,729Miyaji,T.,Hasinger,G.,&Schmidt,M.2000,A&A,353,25

Moran,E.C.,Filippenko,A.V .,&Chornock,R.2002,ApJ,579,L71

Page,K.L.,Reeves,J.N.,O’Brien,P.T.,&Turner,M.J.L.2005,MNRAS,364,195

Pentericci,L.,et al.2003,A&A,410,75

Petric,A.O.,Carilli,C.L.,Bertoldi,F.,Fan,X.,Cox,P.,Strauss,M.A.,Omont,A.,&Schneider,D.P.2003,AJ,126,15Richards,G.T.,et al.2005,MNRAS,360,839Richards,G.T.,et al.2003,AJ,126,1131

Richards,G.T.,et al.2006,submitted to AJ,(astro-ph/0601434)Rix,H.,et al.2004,ApJS,152,163

Schmidt,M.,&Green,R.F.1983,ApJ,269,352Schneider,D.P.,et al.2005,AJ,130,367

Schneider,D.P.,Schmidt,M.,Hasinger,G.,Lehmann,I.,Gunn,J.E.,Giacconi,R.,Tr¨u mper,J.,&Zamorani,G.1998,AJ,115,1230

Shemmer,O.,Brandt,W.N.,Vignali,C.,Schneider,D.P.,Fan,X.,Richards,G.T.,&Strauss,M.A.2005,ApJ,630,729Silverman,J.D.,et al.2005a,ApJ,624,630Silverman,J.D.,et al.2005b,ApJ,618,123Silverman,J.D.,et al.2002,ApJ,569,L1

Steffen,A.T.,Barger,A.J.,Capak,P.,Cowie,L.L.,Mushotzky,R.F.,&Yang,Y .2004,AJ,128,1483

Steffen,A.T.,Barger,A.J.,Cowie,L.L.,Mushotzky,R.F.,&Yang,Y .2003,ApJ,596,L23

Strateva,I.V .,Brandt,W.N.,Schneider,D.P.,Vanden Berk,D.G.,&Vignali,C.2005,AJ,130,387

Tananbaum,H.,et al.1979,ApJ,234,L9

Treister,E.,Castander,F.J.,Maccarone,T.J.,Herrera,D.,Gawiser,E.,Maza,J.,&Coppi,P.S.2004,ApJ,603,36

Ueda,Y .,Akiyama,M.,Ohta,K.,&Miyaji,T.2003,ApJ,598,886

Uttley,P.,&McHardy,I.M.2004,Progress of Theoretical Physics Supplement,155,170

Vanden Berk,D.E.,et al.2001,AJ,122,549

16Steffen et al.

V′e ron-Cetty,M.-P.,&V′e ron,P.2003,A&A,412,399

Vignali,C.,Brandt,W.N.,Fan,X.,Gunn,J.E.,Kaspi,S.,Schneider,D.P., &Strauss,M.A.2001,AJ,122,2143

Vignali,C.,Bauer,F.E.,Alexander,D.M.,Brandt,W.N.,Hornschemeier, A.E.,Schneider,D.P.,&Garmire,G.P.2002,ApJ,580,105

Vignali,C.,Brandt,W.N.,&Schneider,D.P.2003,AJ,125,433 Vignali,C.,Brandt,W.N.,Schneider,D.P.,&Kaspi,S.2005,AJ,129,2519 Walter,R.,&Fink,H.H.1993,A&A,274,105

Wilkes,B.J.,&Elvis,M.1987,ApJ,323,243

Wilkes,B.J.,Tananbaum,H.,Worrall,D.M.,Avni,Y.,Oey,M.S.,& Flanagan,J.1994,ApJS,92,53

Wolf,C.,et al.2004,A&A,421,913

Wolf, C.,Wisotzki,L.,Borch, A.,Dye,S.,Kleinheinrich,M.,& Meisenheimer,K.2003,A&A,408,499Worrall,D.M.,&Birkinshaw,M.2005,in Physics of Active Galactic Nuclei at All Scales,ed.A.D.,J.R.,&L.P.(Springer-Verlag,Berlin),in press; astro-ph/0410297

Worrall,D.M.,Tananbaum,H.,Giommi,P.,&Zamorani,G.1987,ApJ,313, 596

Yang,Y.,Mushotzky,R.F.,Steffen,A.T.,Barger,A.J.&Cowie,L.L.2004, AJ,128,1501

York,D.G.,et al.2000,AJ,120,1579

Yuan,W.,Siebert,J.,&Brinkmann,W.1998,A&A,334,498

Zheng,W.,et al.2001,ApJ,562,152

Zickgraf,F.-J.,et al.1997,A&A,323,L21

APPENDIX

A.PROPERTIES OF ADDITIONAL z>4AGNS

We list the properties of the publicly available sources from Kelly et al.(2005)in Table A1.To our knowledge,details on these sources are not available in the literature.The Chandra data were reduced using the same methods outlined in Vignali et al. (2001).In Table A2,we list the properties of the X-ray–selected AGN presented in§2.2.3.

TABLE A1

P ROPERTIES OF z>4Q UASARS O BSERVED BY Chandra

Object z N H AB1450f2500log(L2500)M B Exp.Time Count rate f SB f2keV log(νLν)2keV log(L HB)αox R

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)

QSO0910+564 4.04 2.7320.7 3.0830.98?25.9228490.34+0.17

?0.121.32+0.67

?0.45

0.9944.1844.4?1.72±0.09<16.6

PC1450+3404 4.19 1.2621.0 2.3330.89?25.7148420.94+0.32

?0.253.49+1.21

?0.93

2.7144.6444.9?1.51+0.08

?0.07

<20.3

SDSS1413+0000 4.08 3.1219.87.0531.35?26.811843 1.17+0.40

?0.324.61+1.58

?1.25

3.494

4.7444.9?1.65±0.07<7.4

SDSS0050?0053 4.33 2.6919.59.7331.53?27.312737 1.15+0.39

?0.294.24+1.44

?1.08

3.384

4.7544.9?1.71±0.07<

5.6

SDSS1444?0123 4.18 3.9219.59.6431.50?27.2100010.40+0.32

?0.191.60+1.28

?0.76

1.2444.3044.5?1.87+0.11

?0.12

<5.4

SDSS2357+0043 4.36 3.2819.87.3831.41?27.0126570.85+0.35

?0.253.47+1.43

?1.03

2.7344.6744.9?1.70±0.08<7.0

N OTE.—(1)Source name;(2)Redshift;(3)Galactic column density,from Dickey&Lockman(1990),in units of1020cm?2;(4)AB magnitude at rest-frame1450?A;(5)?ux density at rest-frame2500?A,in units of10?28erg cm?2s?1Hz?1;(6)log of the monochromatic luminosity at rest-frame2500?A,in units of erg s?1Hz?1;(7)absolute B?band magnitude;(8)Chandra exposure times(in seconds)corrected for detector dead time and high-background periods;(9)observed count rate computed in the soft band,in units of10?3counts s?1;(10)Galactic absorption-corrected?ux in the observed0.5–2keV band,in units of10?15erg cm?2s?1;(11)rest-frame2keV?ux density,in units of 10?32erg cm?2s?1Hz?1;(12)log of the luminosity at rest-frame2keV,in units of erg s?1;(13)log of the2–10keV rest-frame luminosity,corrected for the effect of Galactic absorption,in units of erg s?1;(14)optical-to-X-ray spectral index;errors have been computed following the“numerical method”described in§1.7.3of Lyons(1991);both the statistical uncertainties on the X-ray count rates and the effects of the observed ranges of the X-ray and optical continuum shapes have been taken into account;(15)radio loudness

parameter,de?ned as R=f5GHz/f

4400?A(rest frame).The5GHz?ux density is computed from the1.4GHz?ux density(from FIRST)assuming a radio power-law slope of

α=?0.8,with fν∝να;

TABLE A2

P ROPERTIES OF X-RAY–S ELECTED,z>4AGN S

Object z N H AB1450f2500log(L2500)f SB f2keV log(L2keV)αox Reference

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11) CXOCY J033716.7?050153 4.61 4.8223.8?28.8429.74 1.8?31.8226.76?1.14Treister et al.(2004)

CLASXS J1032414.2+572227 5.400.7324.3?29.0429.650.85?32.0926.60?1.17Steffen et al.(2004);Yang et al.(2004) RX J1052+5719 4.450.5622.6?28.3630.20 2.3?31.7326.83?1.29Schneider et al.(1998)

CXOMP J105655.1?034322 4.05 3.5522.3?28.2430.26 5.2?31.3727.13?1.20Silverman et al.(2005b)

CXOHDFN J123647.9+620941 5.19 1.4823.5?28.7229.940.29?32.5726.09?1.48Barger et al.(2002);Vignali et al.(2002) CXOHDFN J123719.0+621025 4.14 1.4525.2?29.4029.110.26?32.7025.81?1.26Barger et al.(2002);Vignali et al.(2002) CXOCY J125304.0?090737 4.18 2.9623.0?28.5230.00 1.7?31.8826.64?1.28Castander et al.(2003)

CXOMP J213945.0?234655 4.93 3.5521.6?27.9630.67 1.8?31.8026.83?1.47Silverman et al.(2002)

N OTE.—(1)Source name(in order of increasing Right Ascension);(2)Redshift;(3)Galactic column density,from Dickey&Lockman(1990),in units of1020cm?2;(4)AB magnitude at rest-frame1450?A;(5)log of the?ux density at rest-frame2500?A,in units of erg cm?2s?1Hz?1;(6)log of the monochromatic luminosity at rest-frame2500?A,in units of erg s?1Hz?1;(7)Galactic absorption-corrected?ux in the observed0.5–2keV band,in units of10?15erg cm?2s?1;(8)log of the rest-frame2keV?ux density,in units of erg cm?2s?1Hz?1;(9)log of the monochromatic luminosity at rest-frame2keV,in units of erg s?1Hz?1;(10)optical-to-X-ray spectral index;(11)References for X-ray–selected AGN.

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

外国文学名著鉴赏期末论文

外国文学名著鉴赏期末论文院—系:数学学院 科目:外国文学名著鉴赏(期末论文)班级: 08级数学与应用数学A班 姓名:沈铁 学号: 200805050149 上课时段:周五晚十、十一节课

奋斗了,才有出路 ——读《鲁宾逊漂游记》有感小说《鲁宾逊漂游记》一直深受人们的喜爱。读完这篇小说,使我对人生应该有自己的一个奋斗历程而受益匪浅。当一个人已经处于绝境的时候,还能够满怀信心的去面对和挑战生活,实在是一种可贵的精神。他使我认识到,人无论何时何地,不管遇到多大的困难,都不能被困难所吓倒,我们要勇敢的面对困难,克服困难,始终保持一种积极向上、乐观的心态去面对。在当今社会只有努力去奋斗,才会有自己的出路! 其实现在的很多人都是那些遇到困难就退缩,不敢勇敢的去面对它。不仅如此,现在很多人都是独生子女,很多家长视子女为掌上明珠,不要说是冒险了,就连小小的家务活也不让孩子做,天天总是说:“我的小宝贝啊,你读好书就行了,其它的爸爸妈妈做就可以了。”读书固然重要,但生活中的小事也不能忽略。想一想,在荒无人烟的孤岛上,如果你连家务活都不会做,你能在那里生存吗?读完这部著作后,我不禁反问自己:“如果我像书中的鲁宾逊那样在大海遭到风暴,我能向他那样与风暴搏斗,最后逃离荒岛得救吗?恐怕我早已经被大海所淹没;如果我漂流到孤岛,能活几天?我又能干些什么?我会劈柴吗?会打猎做饭吗?我连洗洗自己的衣服还笨手笨脚的。”我们应该学习鲁宾逊这种不怕困难的精神,无论何时何地都有坚持地活下去,哪怕只有一线希望也要坚持到底,决不能放弃!我们要像鲁宾

逊那样有志气、有毅力、爱劳动,凭自己的双手创造财富,创造奇迹,取得最后的胜利。这样的例子在我们的生活中屡见不鲜。 《史记》的作者司马迁含冤入狱,可它依然在狱中完成《史记》一书,他之所以能完成此书,靠的也是他心中那顽强的毅力,永不放弃的不断努力的精神。著名作家爱迪生从小就生活在一个贫困的家庭中,可是他从小就表现出了科学方面的天赋。长大后爱迪生着力于电灯的发明与研究,他经过了九百多次的失败,可它依然没有放弃,不断努力,最后终于在第一千次实验中取得了成功。 鲁宾逊在岛上生活了二十八年,他面对了各种各样的困难和挫折,克服了许多常人无法想象的困难,自己动手,丰衣足食,以惊人的毅力,顽强的活了下来。他自从大船失事后,找了一些木材,在岛上盖了一间房屋,为防止野兽,还在房子周围打了木桩,来到荒岛,面对着的首要的就是吃的问题,船上的东西吃完以后,鲁宾逊开始打猎,有时可能会饿肚子,一是他决定播种,几年后他终于可以吃到自己的劳动成果,其实学习也是这样,也有这样一个循序渐进的过程,现在的社会,竞争无处不在,我们要懂得只有付出才会有收获,要勇于付出,在战胜困难的同时不断取得好成绩。要知道只有付出,才会有收获。鲁宾逊在失败后总结教训,终于成果;磨粮食没有石磨,他就用木头代替;没有筛子,就用围巾。鲁宾逊在荒岛上解决了自己的生存难题,面对人生挫折,鲁宾逊的所作所为充分显示了他坚毅的性格和顽强的精神。同样我们在学习上也可以做一些创新,养成一种创新精神,把鲁宾逊在荒岛,不畏艰险,不怕失败挫折,艰苦奋斗的精

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

2008年浙师大《外国文学名著鉴赏》期末考试答案

(一)文学常识 一、古希腊罗马 1.(1)宙斯(罗马神话称为朱庇特),希腊神话中最高的天神,掌管雷电云雨,是人和神的主宰。 (2)阿波罗,希腊神话中宙斯的儿子,主管光明、青春、音乐、诗歌等,常以手持弓箭的少年形象出现。 (3)雅典那,希腊神话中的智慧女神,雅典城邦的保护神。 (4)潘多拉,希腊神话中的第一个女人,貌美性诈。私自打开了宙斯送她的一只盒子,里面装的疾病、疯狂、罪恶、嫉妒等祸患,一齐飞出,只有希望留在盒底,人间因此充满灾难。“潘多拉的盒子”成为“祸灾的来源”的同义语。 (5)普罗米修斯,希腊神话中造福人间的神。盗取天火带到人间,并传授给人类多种手艺,触怒宙斯,被锁在高加索山崖,受神鹰啄食,是一个反抗强暴、不惜为人类牺牲一切的英雄。 (6)斯芬克司,希腊神话中的狮身女怪。常叫过路行人猜谜,猜不出即将行人杀害;后因谜底被俄底浦斯道破,即自杀。后常喻“谜”一样的人物。与埃及狮身人面像同名。 2.荷马,古希腊盲诗人。主要作品有《伊利亚特》和《奥德赛》,被称为荷马史诗。《伊利亚特》叙述十年特洛伊战争。《奥德赛》写特洛伊战争结束后,希腊英雄奥德赛历险回乡的故事。马克思称赞它“显示出永久的魅力”。 3.埃斯库罗斯,古希腊悲剧之父,代表作《被缚的普罗米修斯》。6.阿里斯托芬,古希腊“喜剧之父”代表作《阿卡奈人》。 4.索福克勒斯,古希腊重要悲剧作家,代表作《俄狄浦斯王》。5.欧里庇得斯,古希腊重要悲剧作家,代表作《美狄亚》。 二、中世纪文学 但丁,意大利人,伟大诗人,文艺复兴的先驱。恩格斯称他是“中世纪的最后一位诗人,同时又是新时代的最初一位诗人”。主要作品有叙事长诗《神曲》,由地狱、炼狱、天堂三部分组成。《神曲》以幻想形式,写但丁迷路,被人导引神游三界。在地狱中见到贪官污吏等受着惩罚,在净界中见到贪色贪财等较轻罪人,在天堂里见到殉道者等高贵的灵魂。 三、文艺复兴时期 1.薄迦丘意大利人短篇小说家,著有《十日谈》拉伯雷,法国人,著《巨人传》塞万提斯,西班牙人,著《堂?吉诃德》。 2.莎士比亚,16-17世纪文艺复兴时期英国伟大的剧作家和诗人,主要作品有四大悲剧——《哈姆雷特》、《奥赛罗》《麦克白》、《李尔王》,另有悲剧《罗密欧与朱丽叶》等,喜剧有《威尼斯商人》《第十二夜》《皆大欢喜》等,历史剧有《理查二世》、《亨利四世》等。马克思称之为“人类最伟大的戏剧天才”。 四、17世纪古典主义 9.笛福,17-18世纪英国著名小说家,被誉为“英国和欧洲小说之父”,主要作品《鲁滨逊漂流记》,是英国第一部现实主义长篇小说。10.弥尔顿,17世纪英国诗人,代表作:长诗《失乐园》,《失乐园》,表现了资产阶级清教徒的革命理想和英雄气概。 25.拉伯雷,16世纪法国作家,代表作:长篇小说《巨人传》。 26.莫里哀,法国17世纪古典主义文学最重要的作家,法国古典主义喜剧的创建者,主要作品为《伪君子》《悭吝人》(主人公叫阿巴公)等喜剧。 五、18世纪启蒙运动 1)歌德,德国文学最高成就的代表者。主要作品有书信体小说《少年维特之烦恼》,诗剧《浮士德》。 11.斯威夫特,18世纪英国作家,代表作:《格列佛游记》,以荒诞的情节讽刺了英国现实。 12.亨利·菲尔丁,18世纪英国作家,代表作:《汤姆·琼斯》。 六、19世纪浪漫主义 (1拜伦, 19世纪初期英国伟大的浪漫主义诗人,代表作为诗体小说《唐璜》通过青年贵族唐璜的种种经历,抨击欧洲反动的封建势力。《恰尔德。哈洛尔游记》 (2雨果,伟大作家,欧洲19世纪浪漫主义文学最卓越的代表。主要作品有长篇小说《巴黎圣母院》、《悲惨世界》、《笑面人》、《九三年》等。《悲惨世界》写的是失业短工冉阿让因偷吃一片面包被抓进监狱,后改名换姓,当上企业主和市长,但终不能摆脱迫害的故事。《巴黎圣母院》 弃儿伽西莫多,在一个偶然的场合被副主教克洛德.孚罗洛收养为义子,长大后有让他当上了巴黎圣母院的敲钟人。他虽然十分丑陋而且有多种残疾,心灵却异常高尚纯洁。 长年流浪街头的波希米亚姑娘拉.爱斯梅拉达,能歌善舞,天真貌美而心地淳厚。青年贫诗人尔比埃尔.甘果瓦偶然同她相遇,并在一个更偶然的场合成了她名义上的丈夫。很有名望的副教主本来一向专心于"圣职",忽然有一天欣赏到波希米亚姑娘的歌舞,忧千方百计要把她据为己有,对她进行了种种威胁甚至陷害,同时还为此不惜玩弄卑鄙手段,去欺骗利用他的义子伽西莫多和学生甘果瓦。眼看无论如何也实现不了占有爱斯梅拉达的罪恶企图,最后竟亲手把那可爱的少女送上了绞刑架。 另一方面,伽西莫多私下也爱慕着波希米亚姑娘。她遭到陷害,被伽西莫多巧计救出,在圣母院一间密室里避难,敲钟人用十分纯朴和真诚的感情去安慰她,保护她。当她再次处于危急中时,敲钟人为了援助她,表现出非凡的英勇和机智。而当他无意中发现自己的"义父"和"恩人"远望着高挂在绞刑架上的波希米亚姑娘而发出恶魔般的狞笑时,伽西莫多立即对那个伪善者下了最后的判决,亲手把克洛德.孚罗洛从高耸入云的钟塔上推下,使他摔的粉身碎骨。 (3司汤达,批判现实主义作家。代表作《红与黑》,写的是不满封建制度的平民青年于连,千方百计向上爬,最终被送上断头台的故事。“红”是将军服色,指“入军界”的道路;“黑”是主教服色,指当神父、主教的道路。 14.雪莱,19世纪积极浪漫主义诗人,欧洲文学史上最早歌颂空想社会主义的诗人之一,主要作品为诗剧《解放了的普罗米修斯》,抒情诗《西风颂》等。 15.托马斯·哈代,19世纪英国作家,代表作:长篇小说《德伯家的苔丝》。 16.萨克雷,19世纪英国作家,代表作:《名利场》 17.盖斯凯尔夫人,19世纪英国作家,代表作:《玛丽·巴顿》。 18.夏洛蒂?勃朗特,19世纪英国女作家,代表作:长篇小说《简?爱》19艾米丽?勃朗特,19世纪英国女作家,夏洛蒂?勃朗特之妹,代表作:长篇小说《呼啸山庄》。 20.狄更斯,19世纪英国批判现实主义文学的重要代表,主要作品为长篇小说《大卫?科波菲尔》、《艰难时世》《双城记》《雾都孤儿》。21.柯南道尔,19世纪英国著名侦探小说家,代表作品侦探小说集《福尔摩斯探案》是世界上最著名的侦探小说。 七、19世纪现实主义 1、巴尔扎克,19世纪上半叶法国和欧洲批判现实主义文学的杰出代表。主要作品有《人间喜剧》,包括《高老头》、《欧也妮·葛朗台》、《贝姨》、《邦斯舅舅》等。《人间喜剧》是世界文学中规模最宏伟的创作之一,也是人类思维劳动最辉煌的成果之一。马克思称其“提供了一部法国社会特别是巴黎上流社会的卓越的现实主义历史”。

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

外国名著赏析论文

题目:浅析从简爱到女性的尊严和爱 学院工商学院 专业新闻学3 学号 姓名闫万里 学科外国文学名着赏析 [摘要] 十九世纪中期,英国伟大的女性存在主义先驱,着名作家夏洛蒂勃朗特创作出了她的代表作--《简爱》,当时轰动了整个文坛,它是一部具有浓厚浪漫主义色彩的现实主义小说,被认为是作者"诗意的生平"的写照。它在问世后的一百多年里,它始终保持着历史不败的艺术感染力。直到现在它的影响还继续存在。在作品的序幕、发展、高潮和结尾中,女主人公的叛逆、自由、平等、自尊、纯洁的个性都是各个重点章节的主旨,而这些主旨则在女主人公的爱情观中被展露的淋漓尽致,它们如同乌云上方的星汉,灼灼闪耀着光芒,照亮着后来的女性者们追求爱情的道路。? [关键词] 自尊个性独特新女性主义自由独立平等 《简爱》是一部带有自转色彩的长篇小说,它阐释了这样一个主题:人的价值=尊严+爱。从小就成长在一个充满暴力的环境中的简爱,经历了同龄人没有的遭遇。她要面对的是舅妈的毫无人性的虐待,表兄的凶暴专横和表姐的傲慢冷漠,尽管她尽力想“竭力赢得别人的好感”,但是事实告诉她这都是白费力气的,因此她发出了“不公平啊!--不公平!”的近乎绝望的呼喊。不公平的生长环境,使得简爱从小就向往平等、自由和爱,这些愿望在她后来的成长过程中表现无疑,

譬如在她的爱情观中的种种体现。? 1.桑菲尔德府? 谭波儿小姐因为出嫁,离开了洛伍德学校,同时也离开了简爱,这使简爱感觉到了“一种稳定的感觉,一切使我觉得洛伍德学校有点像我家的联想,全都随着她消失了”,她意识到:真正的世界是广阔的,一个充满希望和忧虑、激动和兴奋的变化纷呈的天地,正等待着敢于闯入、甘冒风险寻求人生真谛的人们。意识形态的转变促使着简爱走向更广阔的社会,接受社会的挑战,尽管她才只有十八岁。于是,简爱来到了桑菲尔德府,当了一名在当时地位不高的家庭教师。?桑菲尔德府使简爱感受到“这儿有想象中的完美无缺的家庭安乐气氛”,事实证明了她的预感的正确性,。从和简爱相见、相识到相爱的过程当中,简爱的那种叛逆精神、自强自尊的品质深深地征服了罗切斯特,而罗切斯特的优雅风度和渊博知识同样也征服了简爱。最初开始,简爱一直以为罗切斯特会娶高贵漂亮的英格拉姆为妻,她在和罗切斯特谈到婚姻时,曾经义正言辞的对罗切斯特说:“你以为因为我穷,低微,不美,矮小,就没有灵魂了吗?你想错了!我跟你一样有灵魂—也同样有一颗心!我现在不是凭着肉体凡胎跟你说话,而是我的心灵在和你的心灵说话,就好像我们都已经离开人世,两人平等地站在上帝面前—因为我们本来就是平等的。”这充分表现出简爱的叛逆,她这种维护妇女独立人格、主张婚姻独立自主以及男女平等的主张可以看成是他对整个人类社会自由平等的向往追求,罗切斯特正是爱上了她这样的独特个性,同时他也同样重复道:我们本来就是平等的。罗切斯特自始自终爱的是简爱的心灵—有着意志的力量,美德和纯洁的心灵,正是基于如此,简爱才真正的爱着罗切斯特。因为爱情是来不得半点虚假的,一方为另一方付出了真情的爱,假如得到对方的是虚情假意,那么这份爱

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

短歌行赏析介绍

短歌行赏析介绍 说道曹操, 大家一定就联想到三国那些烽火狼烟岁月吧。 但是曹操其实也是 一位文学 大家,今天就来分享《短歌行 》赏析。 《短歌行》短歌行》是汉乐府旧题,属于《相和歌辞·平调曲》。这就是说 它本来是一个乐曲名称。最初古辞已经失传。乐府里收集同名诗有 24 首,最早 是曹操这首。 这种乐曲怎么唱法, 现在当然是不知道。 但乐府 《相和歌·平调曲》 中除《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗 “长歌正激烈”, 魏文帝曹丕 《燕歌行》 “短歌微吟不能长”和晋代傅玄 《艳 歌行》 “咄来长歌续短歌”等句, 认为“长歌”、 “短歌”是指“歌声有长短”。 我们现在也就只能根据这一点点材料来理解《短歌行》音乐特点。《短歌行》这 个乐曲,原来当然也有相应歌辞,就是“乐府古辞”,但这古辞已经失传。现在 所能见到最早《短歌行》就是曹操所作拟乐府《短歌行》。所谓“拟乐府”就是 运用乐府旧曲来补作新词,曹操传世《短歌行》共有两首,这里要介绍是其中第 一首。 这首《短歌行》主题非常明确,就是作者希望有大量人才来为自己所用。曹 操在其政治活动中,为扩大他在庶族地主中统治基础,打击反动世袭豪强势力, 曾大力强调“唯才是举”,为此而先后发布“求贤令”、“举士令”、“求逸才 令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用诗歌 形式,含有丰富抒情成分,所以就能起到独特感染作用,有力地宣传他所坚 持主张,配合他所颁发政令。 《短歌行》原来有“六解”(即六个乐段),按照诗意分为四节来读。 “对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,忧思难忘。何以 解忧,唯有杜康。” 在这八句中,作者强调他非常发愁,愁得不得。那么愁是什么呢?原来他是 苦于得不到众多“贤才”来同他合作, 一道抓紧时间建功立业。 试想连曹操这样 位高权重人居然在那里为“求贤”而发愁, 那该有多大宣传作用。 假如庶族地主 中真有“贤才”话, 看这些话就不能不大受感动和鼓舞。 他们正苦于找不到出路

外国文学名著赏析

外国文学名著赏析 ——对《哈姆雷特》与《堂吉诃德》人物形象及其现实意义的 分析 班级:学号:姓名: 摘要:《哈姆雷特》和《堂吉诃德》是文艺复兴时期涌现出来的一批比较先进的文学作品,通过对两部文学作品的阅读,我们不难发现两部作品所展现出来的人物形象都反映出了当时不同的社会现实,而且两部文学作品都表现出了浓厚的人文主义色彩,并且在当时也带来了不同的社会作用。堂吉诃德是塞万提斯塑造的一个为了打击骑士文学的文学形象,作者通过对堂吉诃德的描写,生动的说明了骑士文学给世人带来的负面影响,从而给骑士文学以致命的打击。莎士比亚笔下的哈姆雷特则是一个孤独的人文主义者,他以失败告终,哈姆雷特的失败向人们揭示了人文主义时代的悲剧。 Abstract: Hamlet a nd Don Quixote were the advanced literary in the Renaissance Period .After read the two novels, it is not difficult to find that different characters in these novels reflected different social problems. And they all expressed the ideas of humanism. These two images also brought different social functions at that time .Don Quixote is one of which Cervantes’s molds in order to attack the knight literature .According to the description of Don Quixote, vivid explain ed that knight literature brought a serious of bad influence to the human beings, thus gives the knight literature by the fatal attack. Hamlet is a lonely humanism, he is end in failure .His failure has indicated the tragedy which in the Humanism Era. 关键词:人文主义、哈姆雷特、人物形象、艺术特色、堂吉诃德、现实意义、悲剧 Key words:humanism; Hamlet; characters; art features; Don Quixote; realistic significance; tragedy 前言: 莎士比亚和塞万提斯都是文艺复兴时期伟大的戏剧家,作为戏剧艺术的大师,他们的作品都达到了世界文学的巅峰。《哈姆雷特》是莎士比亚最著名的悲剧之一,代表了莎士比亚的艺术成就,剧中莎士比亚塑造的著名人物哈姆雷特也被列入了世界文学的艺术画廊。塞万提斯是文艺复兴时期西班牙伟大的作家,在他创作的作品中,以《堂吉诃德》最为著名,影响也最大,是文艺

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

短歌行赏析

短歌行赏析 《短歌行》 对酒当歌,人生几何?譬如朝露,去日苦多。 概当以慷,忧思难忘。何以解忧?唯有杜康。 青青子衿,悠悠我心。但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇?忧从中来,不可断绝。 越陌度阡,枉用相存。契阔谈咽,心念旧恩。 月明星稀,乌鹊南飞。绕树三匝,何枝可依。 山不厌高,海不厌深,周公吐哺,天下归心。 “短歌行”是汉乐府一个曲调的名称,是用于宴会场合的歌辞。曹操集子里现存《短歌行》两首,课文选的是第一首。作为一位政治家兼军事家的诗人曹操,十分重视人才,这首诗抒发了他渴望招纳贤才、建功立业的宏图大愿。 全诗三十二句,分四节,每八句一节。 第一节抒写诗人人生苦短的忧叹。“对酒当歌,人生几何?譬如朝露,去日苦多。”“当”,对着。“去日”,指逝去的岁月。这四句意思是:在边喝着酒,边唱着歌时,忽然感叹道:人生能有多久呢?人生啊,就好比早晨的露水,一会儿就干了,又苦于过去的日子太多了。“慨当以慷,忧思难忘。何以解忧?唯有杜康。”“慨当以慷”是“慷慨”的间隔用法,“当以”,没有实在意义,即指宴会上歌声慷慨激昂。“杜康”相传是发明酿酒的人,这里作酒的代称。这四句意思是:即使宴会上歌声慷慨激昂,诗人内心的忧愁还是难以消除。用什么来消除胸中的忧愁呢?只有借酒浇愁。我们如何理解诗人这种人生苦短的忧叹呢?诗人生逢乱世,

目睹百姓颠沛流离,肝肠寸断,渴望建功立业而不得,因而发出人生苦短的忧叹。这个点我们可从他的另一首诗《蒿里行》中得到佐证:“白骨露于野,千里无鸡鸣。生民百遗一,念之断人肠。” 第二节抒写诗人对贤才的渴求。“青青子衿,悠悠我心”,是引用《诗经?郑风?子衿》中的成句。“青衿”,周代读书人的服装,这里指代有学问的人。“悠悠”,长久的样子,形容思念之情。这两句意思是:你的衣领青青啊,总是让我如此挂念。原诗后两句是:“纵我不往,子宁不嗣音?”意思是:虽然我不能去找你,你为什么不主动给我音信?曹操因为事实上不可能一个一个地去找那些贤才,所以他使用这种含蓄的话来提醒他们,希望贤才主动来归。“但为君故,沉吟至今。”“沉吟”,低声叨念,表示渴念。这两句意思是:只因为你的缘故,让我渴念到如今。“青青子衿,悠悠我心。但为君故,沉吟至今。”四句以女子对心爱的男子的思念比喻自己对贤才的渴求。“呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。”这四句引自《诗经?小雅?鹿鸣》,《鹿鸣》是一首描写贵族盛宴热情款待尊贵客人的的诗歌。前两句起兴,意思是:野鹿呦呦呦呦地叫,欢快地吃着野地里的艾蒿。以下各句描写宾客欢宴的场面,这里引用的两句意思是:我有很多尊贵的客人,席间弹起琴瑟,吹起笙乐。诗人引用这几句诗,表示自己对贤才的热情。 第三节抒写诗人对贤才难得的忧思和既得贤才的欣喜。“明明如月,何时可掇?”“明月”,比喻人才。“掇”,拾取,摘取。意思是:贤才有如天上的明月,我什么时候才能摘取呢?“忧从中来,不可断绝。”因为求才不得,内心不禁产生忧愁,这种忧愁无法排解。“越陌度阡,枉用相存。契阔谈讌,心念旧 恩。”“陌”、“阡”,都是指田间小路,东西向叫“陌”,南北向叫“阡”。“枉”,枉驾,屈驾。“用”,以。“存”,探问,问候。“契阔”,久别重逢。

相关文档
最新文档