基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用

基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用
基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层 ?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型

远探测测井技术发展综述

龙源期刊网 https://www.360docs.net/doc/a48087908.html, 远探测测井技术发展综述 作者:刘晓敏 来源:《中国科技博览》2013年第35期 【摘要】近年来远探测测井技术发展迅速,探测范围扩展到几十米,填补了常规声波测 井和井间地震之间的探测空白。本文首先介绍了当前油气田对远探测技术的极大需求和廣阔的应用前景。然后根据远探测技术的发展过程,介绍电法远探测、单极纵波声波远探测和偶极横波声波远探测技术的原理和各自的使用范围。 【关键词】远探测声波测井 中图分类号:TE 文献标识码:A 文章编号:1009―914X(2013)35―512―03 1 引言 随着石油勘探领域由构造油气藏向复杂油气藏转移,石油、天然气及矿藏勘探难度逐步增加,石油工程技术人员对地球物理勘探技术的要求也越来越高,人们也越来越渴望了解距井眼较远范围内的地层展部发育情况或裂缝、断层等的分布情况。一般的裂缝识别测井方法探测深度太浅,如声成像测井只是探测井壁裂缝,电成像测井探测深度也只有3 cm,XMAC测井也只能定性给出近井壁3 m 以内裂缝发育情况,难以了解储层横向变化或井壁裂缝向外延伸发育情况。在裂缝性储层中测井评价成果常与试油结果发生矛盾[1]。因此,国内外专家学者近几 十年来研究多种方法,用以探测井周围数米到数十米范围内的地层界面、裂缝、断层、溶洞和矿体等地层构造及地质体的大小和走向。这项在井中对构造地质体进行测量,把常规测井技术的测量范围从井周一米左右提高到几十米的测井技术称为远探测测井技术。随着远探测技术的逐渐成熟,远探测测井仪器的逐步完善,远探测成像测井能够对井眼周围几十米范围以内的裂缝、断层或地层界面进行成像分析,在分辨率及探测深度方面填补了测井技术与地震探测之间的空白,为井旁内部油气层的精细描述提供了新的技术手段。 远探测测井技术有着十分广阔的应用前景,可以显示井周围的地质界面;也可以探测井旁的倾斜结构体、裂缝或断层构造等;可以追踪水平井的油储边界;还可在钻井过程中探测钻头前面地层的信息,进行地质导向用以决定钻井的下一步走向和位置。 目前的远探测技术有声和电两种,声波的远探测技术分单极纵波法和偶极横波法两种。下面分别介绍几种远探测技术的研究进展。 2 电法远探测 2.1 电法远探测的原理

正交偶极横波测井

7.正交偶极声波测井 7.1 正交偶极声波测井仪器 图22 偶极声波测井仪器探头(下)和正交偶极声波测井仪器(上)探头比较

7.2 各向异性和横波分裂 物理性质随方向而变的介质称为各向异性介质。对于均匀各向异性介质,一个主轴方向就是物理性质不发生变化的方向 (例如,在此方向上弹性波传播速度是常数). 正交各向同性地层可以由三个互相垂直的主轴方向描述. 物理性质仅随方位方向而变的介质称为方位各向异性介质(TI 介质)。如图23所示,各向同性挠曲模式波从各向同性介质进入方位各向异性介质,将分裂成两个挠曲模式波。 两种模式波的极化(偏振方向)是正交的, 且平行于方位各向异性介质的主轴方向。每一个挠曲波以不同的速度传播:即快波 (FP)、慢波 (SP). 利用正交偶极子测井仪器我们可以确定正交各向同性地层的水平主轴方向。 理想情况下, 应用正交偶极子测井时,假设其中一个主轴平行井轴. 主平面 (对称面) 是跨越一对主轴的平面.如果一个主平面是各向同性, 即在这个平面上的任何一个方向都是主轴方向,我们就说 它是方位各向异性地层(TI 地层)。 理想情况下, 含垂直裂缝系统的地层, 即裂缝面平行于井轴, 类似于TI 介质(这时裂缝面是各向同性面),声波在沿井轴方向传播就类似于在TI 地层中传播。 然而,在实际中有多种地质特征导致声波在这些介质中传播类似于在正交各向同性或TI 介质中传播(见图23). 垂直TI 介质中的横波分裂是方位各向异性地层中的偶极横波测井的理想模型. 仪器激发的偶极横波将分裂成两个沿井轴传播的快波和慢波。 图23横波分裂红色轴表示快主轴、蓝色轴表示慢主轴. 极化(振动方向)就是轴的方向. 蓝色平面是裂缝平面. 引起横波分裂的地质特征: 1. 裂缝 (裂缝系统), 垂直或准垂直. 2. 构造活动区的现场主应力 3. 地层层面不垂直于井轴. 7.3 各向同性介质、TI 介质中的挠曲模式波测量 Shear Wave Splitting P r o p a g a t i o n d i r e c t i o n R S

裂缝测井识别

所谓裂缝识别,主要包含四个含义,即裂缝的真实性、裂缝的有效性、裂缝填充物的性质(即含油气性)、裂缝产状的计算。 裂缝综合分类如下: ?? ? ? ? ? ????? ? ? ? ? ?? ??????????????????????应力释放缝钻井液与地应力压裂缝钻具诱导缝诱导缝网状裂缝)水平缝()低角度缝()斜交缝()高角度缝(低阻(低密度)缝高阻(高密度)缝天然裂缝 裂缝5305753075αααα 常规测井曲线对裂缝的响应 1、微侧向测井 微侧向测井采用贴井壁测量。由于其电极系尺寸小,测量范围小,所以,其测量结果反映了井壁附近的地层情况,对裂缝的发育情况十分敏感。在裂缝发育段,电阻率出现低阻异常,往往表现为以深侧向为背景的针刺状低阻突跳。 2、双侧向测井 从宏观上看,深、浅侧向,尤其是深侧向能反映出井眼周围较大范围内地层总的电性变化,由于探测深度有较大差别,往往出现深、浅侧向值的大小不同,表现为电阻率的“差异”。影响双侧向差异性质及大小的因素较多,但主要是裂缝发育程度、裂缝角度、流体性质因素的影响。 (1) 裂缝发育程度的影响 经验表明,裂缝越发育的地方,双侧向的正差异一般也越大。 (2) 裂缝角度的影响 高角度、垂直裂缝的双侧向为正差异。斜交缝的双侧向不明显。低角度缝、水平缝的双侧向为低阻尖峰。 (3) 流体性质的影响 在淡水钻井液作用下,当地层中的流体为油气时,侵入带的电阻率低于原状地层的电阻率,双侧向出现正差异。如果地层中油裂缝发育,钻井液滤液沿着较大的裂缝侵入较深,但微缝中的油气缺少被驱替;离开井筒越远,地层中的油气呗驱替越少,从而一般仍出现双侧向的正差异。当地层中的流体为水时双侧向差异减小。 (4) 地应力集中的影响 在地应力集中段,岩石变致密,地层电阻率急剧上升,高达上万欧姆米,大大超过一般致密层的电阻率。在钻井过程中,地应力通过井眼释放,造成该井段井壁沿最小主应力方向定向坍塌,使浅侧向值显著降低,从而出现深、浅侧向的正差异。 3、补偿密度测井 为了消除泥饼和井壁不平对密度测量的影响,采用补偿密度测井方法。轮南地区石灰岩块岩性致密,渗透性差,很难形成泥饼,这样,补偿密度测井的密度值也

测井解释识别油、水、气层

用测井曲线判断划分油、气、水层 测井资料是评价地层、详细划分地层,正确划分、判断油、气、水层依据;从渗透层中区分出油、气、水层,并对油气层的物性及含油性进行评价是测井工作的重要任务,要做好解释工作,必须深入实际,掌握油气层的地质特点和四性关系(岩性、物性、含油性、电性),掌握油、气、水层在各种测井曲线上显示不同的特征。 1、油、气、水层在测井曲线上显示不同的特征: (1)、油层: 微电极曲线幅度中等,具有明显的正幅度差,并随渗透性变差幅度差减小。 自然电位曲线显示正异常或负异常,随泥质含量的增加异常幅度变小。 长、短电极视电阻率曲线均为高阻特征。 感应曲线呈明显的低电导(高电阻)。 声波时差值中等,曲线平缓呈平台状。 井径常小于钻头直径。 (2)、气层:在微电极、自然电位、井径、视电阻率曲线及感应电导曲线上气层特征与油层相同,所不同的是在声波时差曲线上明显的数值增大或周波跳跃现象,中子伽玛曲线幅度比油层高。 (3)、油水同层:在微电极、声波时差、井径曲线上,油水同层与油层相同,不同的是自然电位曲线比油层大一点,而视电阻率曲线比油层小一点,感应电导率比油层大一点。 (4)、水层:微电极曲线幅度中等,有明显的正幅度差,但与油层相比幅度相对降低;自然电位曲线显示正异常或负异常,且异常幅度值比油层大;短电极视电阻率曲线幅度较高而长电极视电阻率曲线幅度较低,感应曲线显示高电导值,声波时差数值中等,呈平台状,井径常小于钻头直径。 2、定性判断油、气、水层 油气水层的定性解释主要是采用比较(对比)的方法来区别它们。在定性解释过程中,主要采用以下几种比较方法:

(1) 纵向电阻比较法:在水性相同的井段内,把各渗透层的电阻率与纯水层比较,在岩性、物性相近的条件下,油气层的电阻率较高。一般油气层的电阻率是水层的3倍以上。纯水层一般应典型可靠,一般典型水层应该厚度较大,物性好,岩性纯,具有明显的水层特征,而且在录井中无油气显示。 (2) 径向电阻率比较法:若地层水矿化度比泥浆矿化度高,泥浆滤液侵入地层时,油层形成减阻侵入剖面,水层形成增阻侵入剖面。在这种条件下比较探测不同的电阻率曲线,分析电阻率径向变化特征,可判断油、气、水层。一般深探测电阻率大于浅探测电阻率的岩层为油层,反之则为水层,有时油层也会出现深探测电阻率小于浅探测电阻率的现象,但没有水层差别那样大。 (3) 邻井曲线对比法:将目的层段的测井曲线作小层对比,从中分析含油性的变化。这种对比要注意储集层的岩性、物性和地层水矿化度等在横向上的变化,如下图所示。 (4) 最小出油电阻率法:对某一构造或断块的某一层组来说,地层矿化度一般比较稳定,纯水层的电阻率高低主要与岩性、物性有关,所以若地层的岩性物性相近,则水层的电阻率相同,当地层含油饱和度增加,地层电阻率也随之升高。比较测井解释的真电阻率与试油结果,就要以确定一个电性标准(最小出油电阻率),高于电性标准是油层, 低于电性标准的是水层。从而利用地层真电阻率(感应曲线所求的电阻率)和其它资料,可划分出油(气)、水层。但是应用这种方法时,必须考虑到不同断块、不同层系的电性标准不同,当岩性、物性、水性变化,则最小出油电阻也随之变化。 (5) 判断气层的方法:气层与油层在许多方面相似,利用一般的测井方法划分不开,只能利用气层的“三高”特点进行区分。所谓“三高”即高时差值(或出现周波跳跃);高中子伽马值;高气测值(甲烷高,重烃低)。 根据油、气、水层的这些曲线特征和划分油、气、水层的方法,就可以把一般岩性的、简单明显的油、气、水层划分出来。

测井方法与综合解释综合复习资料要点

《测井方法与综合解释》综合复习资料 一、名词解释 1、水淹层 2、地层压力 3、可动油饱和度 4、泥浆低侵 5、热中子寿命 6、泥质含量 7、声波时差 8、孔隙度 9、一界面 二、填空 1.储集层必须具备的两个基本条件是_____________和_____________,描述储集层的基本参数有____________、____________、____________和____________等。 2.地层三要素________________、_____________和____________。 3.岩石中主要的放射性核素有_______、_______和________等。沉积岩的自然放射性主要与岩石的____________含量有关。 4.声波时差Δt的单位是___________,电阻率的单位是___________。 5.渗透层在微电极曲线上有基本特征是________________________________。 6.在高矿化度地层水条件下,中子-伽马测井曲线上,水层的中子伽马计数率______油层的中子伽马计数率;在热中子寿命曲线上,油层的热中子寿命______水层的热中子寿命。 7.A2.25M0.5N电极系称为______________________电极距L=____________。 8.视地层水电阻率定义为Rwa=________,当Rw a≈Rw时,该储层为________层。 9、在砂泥岩剖面,当渗透层SP曲线为正异常时,井眼泥浆为____________,水层的泥浆侵入特征是__________。 10、地层中的主要放射性核素分别是__________、__________、_________。沉积岩的泥质含量越高,地层放射 性__________。 11、电极系A2.25M0.5N 的名称__________________,电极距_______。 12、套管波幅度_______,一界面胶结_______。 13、在砂泥岩剖面,油层深侧向电阻率_________浅侧向电阻率。 14、裂缝型灰岩地层的声波时差_______致密灰岩的声波时差。 15、微电极曲线主要用于_____________、___________。 16、地层因素随地层孔隙度的增大而;岩石电阻率增大系数随地层含油饱和度的增大 而。 17、当Rw小于Rmf时,渗透性砂岩的SP先对泥岩基线出现__________异常。

利用常规测井曲线进行裂缝识别

利用常规测井曲线进行裂缝识别 崔健1,张星2 1. 中国矿业大学(北京),北京(100083) 2. 冀东油田勘探开发研究院,河北唐山(063004) E-mail :cuijian68@https://www.360docs.net/doc/a48087908.html, 摘 要:本文针对碳酸盐岩储层的裂缝识别和预测,就如何利用常规测井曲线识别裂缝发育段,提出一种行之有效的判别裂缝存在的方法。给出了计算裂缝参数的数学模型,利用获得的裂缝的相关参数对裂缝进行了定量的描述和预测。 并进一步探讨了改进裂缝预测的三种可行性方法。 关键词:裂缝识别,次生孔隙,常规测井,裂缝发育程度,裂缝指数 1. 裂缝研究的目的意义 裂缝性储层是石油勘探开发的重要领域[1] [2]。大量的碳酸盐岩储层、各种类型的古潜山裂缝性储层、致密的砂砾岩储层都有裂缝的存在,是油气储积的有利场所。然而裂缝性油藏勘探开发中如今还存在许多的难题,如裂缝预测技术、裂缝描述及表征、裂缝渗透性预测等问题。原因主要表现在地质上的复杂性:储集空间多样化,且差异大、裂缝储层的非均质性极强、裂缝储层油、气、水分布复杂。其次表现在裂缝成因的复杂性:化学、物理、成岩、构造多方面因素。还有就是裂缝形成期次的复杂性。 裂缝性储层研究要解决的问题主要有两点:1)裂缝在哪儿?-裂缝分布预测;2)哪些裂缝能产油、能高产?-裂缝渗透性预测。 2. 裂缝研究方法 本文以***构造嘉陵江组气藏裂缝预测为例,探讨利用测井数据建立裂缝性油气藏测井解释模型与评价方法[3]。本次研究的构造三维工区面积250 Km2,总井数11口。主要目的层为嘉二、嘉四段。研究目的是利用常规测井资料对裂缝进行识别和预测。 2.1 岩性识别 如表1所示,嘉二岩石的测井响应特征值可以归结为:白云岩具有较小的自然伽玛,较高的补偿中子,中-低电阻率,当孔隙度较高时有较高的声波时差;灰岩表现为高电阻率,中等自然伽玛,低且平直的补偿中子;石膏的测井响应值为极高电阻率,极低自然伽玛,极低且平直的补偿中子;泥岩表现为低-极低电阻率,高-极高自然伽玛,高-极高的声波时差和补偿中子。 表1 不同岩石典型的测井响应值 Tab.1 Typical log response for difference rock type in Jia2 Fields 自然伽马 (API) 声波时差 (us/m) 密度 (g/cm3) 中子 (P.U) 泥质 100-150 360-426 2.4-2.8 40-60 方解石 30-40 154-158 2.7-2.72 0.5-3 白云石 20-30 141-148 2.85-2.87 3-6 石膏 10-20 164-171 2.95-2.98 -2 地层水 0 620 1 100

各种测井方法

一、测井方法的综合概述 测井项目 符号 标准单位 纵向分辨率 测量方式 岩石物理响应机理 地质应用领域 影响因素 井径测井 CAL in 、cm 井眼直径 划分岩性,划分剖面 岩性,钻头直径 自然电位测井 SP mV 6-10ft 地层中自然电流的流动 测两电极及地面参考电极间的电位 划分渗透层,估算泥质含量,地层对比,确定地层水电阻率,确定油水层及油水界面,确定水淹层 地层水矿化度 地层压力 自然伽马测井 GR API 8-12in 总计数率 地层天然GR 放射性强度 划分岩性,进行地层对比,估算泥质含量 层厚,井参数,放射性涨 落误差,测速 自然伽马能谱测井 NGS Ppm,% 8-12in 谱测量率U 、Th 、K 利用、238U 、40K 特征能量 划分岩性,研究流体运移,研究沉积环境,区分粘土矿物 泥浆密度,井径,泥浆性能,地层密度,重晶石 补偿声波测井 BHC Us/ft 声波传播时间 声波时差 消除井径影响,确定岩性和孔隙度 井眼环境,侵入带 声速测井 AC us/ft 声波传播时间 不同介质声波时差的差异 判断岩性,计算孔隙度,气层识别 气层,裂缝,疏松地层及井眼扩径严重的地层 声波全波列测井 AWL Us/ft 纵波首波传播时间,声波全型波列 声波时差 划分岩性、气层,估算孔隙度,判断裂缝 岩性,孔隙度,流体性质 补偿中子测井 CNL % 24in 含氢指数 快中子slowing-down 性质对地层含氢指数的影响 确定地层孔隙度、判断岩性、识别气层 井眼,泥浆矿化度、地层水 矿化度、骨架岩性等 中子寿命测井 TDT us 中子俘获截面,衰减时间 热中子寿命 判断地层含油气性,计算Sw 和Sh 井眼,测井液侵入,储层厚度,背景值 次生伽马能谱测井 GST 脉冲 13-25cm 次生伽马能谱 快中子 计算孔隙度和Sw ,判断岩性,井眼

地层微电阻率扫描成像测井在识别裂缝方面的应用

地层微电阻率扫描成像测井在识别 裂缝方面的应用 目录 摘要 (2) 1. 地层微电阻率扫描成像测井简介 (3) 1.1电极排列及测量原理 (4) 1.2全井眼地层微电阻率扫描成像测井(FMI) (4) 2.利用地层微电阻率成像测井识别裂缝 (5) 2.1. 天然裂缝 (6) 2.1.1非构造裂缝 (6) 2.1.2构造裂缝 (8) 2.2钻井诱生裂缝(诱导裂缝) (10) 结论 (11) 参考文献 (12)

剩余油饱和度评价 摘要 测井技术是油气勘探的“眼睛”。中国的隐蔽性油气藏多,客观要求这双眼睛特别明亮、敏锐,可是常规测井技术只能对地层性质做大致的划分,精度不够。需要一种新的测井手段,就是成像测井。成像测井(imaging logging)是根据钻孔中地球物理场的观测,对井壁和井周围物体进行物理参数成像的方法。广义地说,成像测井应包括井壁成像、井边成像和井间成像。井壁成像测井在技术上最成熟,包括井壁声波成像和地层微电阻率扫描成像。井边成像主要是电阻率成像,所用的方法为方位侧向测井和阵列感应测井。井间成像包括声波、电磁波和电阻率成像,在工程勘察中已得到比较广泛的应用,在石油勘探中也已获得一些成功的实例。这种技术采集信息多,精度高,不受干扰,能准确确定地层的真正电阻率,是解决复杂储层测井评价的有力手段。 地面系统综合化、便携化、网络化。未来的地面系统要具有多种作业功能,不仅可以挂接成像测井仪器和常规测井仪器进行裸眼井测井,还能挂接生产测井、测试、射孔、取芯等工具进行套管井测井,满足全系列测井服务的要求。 井下仪器集成化、高分辨、深探测、高可靠、高时效、低成本。井下仪器测量探头阵列化,变单点测量为阵列测量以适应地层非均质的需要,为储层评价的深入提供丰富信息,奠定提高储层饱和度精度 2

测井岩性识别方法研究_杨玲

2015年第2期(总第317期) NO.2.2015 ( Cumulativety NO.317 ) 1 概述 识别储层岩性最直接最有效的方法是岩心分析,但考虑到油田上的生产效益,深层钻井成本很高,因此不能在每口井中都取心,测井岩性识别方法作为一种简单而有效的技术方法,已经得到了广泛的应用。尤其是近年来岩性识别方法得到了迅猛的发展,2009年李祖兵利用M-N交会图对具有不同结构和构造的同类岩性进行了识别;2010年张伯新以准噶尔盆地六九区石炭系火山岩为研究对象,构建了测井相-岩性建模数据库,应用模糊数学方法建立了工区内火山岩岩性识别标准模型;2013年杨辉运用BP神经网络模型对研究区域复杂岩性进行识别,识别结果与岩心岩性和录井岩性较为相符,对该区域的储层识别和沉积相的研究具有一定的参考价值。2014年刘国全针对沧东凹陷孔二段源储互层型致密储层岩性识别的难点,利用散点图、交会图及ECS测井进行岩性的识别,形成了源储互层型致密油岩性识别的有效方法等。 测井岩性识别方法是根据已有的测井曲线资料来划分地下地层的岩性,传统岩性识别方法的方法为交会图法。测井曲线资料包含有丰富的岩性信息,地下的岩性主要包括岩石的物理组成、排列结构、孔隙度及孔隙流体的性质直接着影响测井曲线的测量结果,其中自然伽马(GR)、自然电位(SP)及泥质含量(Vsh)等测井曲线对地下岩性的变化反应最为灵敏。实际应用中,特定的岩性对应着特定的测井参数组合,因此,测井解释人员可以根据特定的测井参数组合来确定地下地层的岩性。 2 基础数据整理 测井曲线的质量直接影响整个研究工作的顺利开展。实际测量过程中一方面由于环境因素的影响会造成测井资料中出现一些不稳定的跳跃状态,需要对测井曲线进行滤波处理;另一方面由于仪器刻度的不精确性会引起刻度误差,需要进一步做标准化处理。 其中频率直方图是测井标准化处理的一种基础方法,首先选取一套岩性稳定、厚度大、分布范围广的地层作为标准层,然后对选定的标准层分别做自然伽马、补偿声波、补偿密度、补偿中子孔隙度等测井资料频率直方图,确定每项测井资料在每口井的主要分布范围和峰值,确定对应关键井相应的测井资料分布范围和峰值确定校正值并进行校正。 3 常规测井资料识别地层岩性 实际情况中,考虑成本及效率因素,绝大部分油田都采用常规的测井系列,常规的测井资料主要包括自然伽马(GR)、自然电位(SP)、声波时差(DT)、密度(DEN)、电阻率(Rt、Rxo)、放射性(CNL)等岩石物理参数,这些测井曲线包含了地下地层的岩性、物性和含油性信息,是一套比较全面而灵敏的测量组合系统。大量理论及实践资料表明,常规测井识别岩性是可靠并且有效的。 利用常规测井资料识别地层岩性运用最多的是交会图法。交汇图法是选用两种对岩性反应敏感的物理量进行交会来识别地层的岩性,主要是依据不同储层的岩性和流体类型异常在交会图平面上占有不同区域的特点,进行异常划分。常用的有中子-密度交会图、声波时差-密度交会图、中子-声波时差交会图等。交会图具有制作简单、使用方便和快捷的优点,是一种被广泛采用的岩性识别方法。但其缺点是对复杂岩性识别率低。 根据某工区18口井不同岩性测井响应的差别,针对泥岩、砂岩干层、油层、水层及盐岩等5种岩性建立的GR-波阻抗交会图样板,利用该样板可以直观有效地进 测井岩性识别方法研究 杨 玲1 李鹏飞2 (1.山西省煤炭地质114勘查院,山西长治 046011;2.长江大学,湖北武汉 430100) 摘要:地层的岩性是岩石颜色、成分、结构、构造等特征的总和,识别钻井剖面上地层的岩性,尤其是储层的岩性,是石油勘探和开发中的一项重要的基础性工作。其能有效进行测井储层识别,岩性识别是前提,因此,岩性识别方法在油气层识别中占有不可或缺的地位。 关键词:测井技术;岩性识别方法;储层;石油勘探;石油开发 文献标识码:A 中图分类号:P631 文章编号:1009-2374(2015)02-0176-02 DOI:10.13535/https://www.360docs.net/doc/a48087908.html,ki.11-4406/n.2015.0184 - 176 -

测井资料综合解释

测井资料综合解释 目录 绪论 (2) 第一章自然电位测井 (6) 第二章电阻率测井 (11) 第三章声波测井 (26) 第四章放射性测井 (39) 第五章工程测井方法 (61) 第六章生产测井 (82) 第七章测井资料综合解释 (93)

绪论 一、测井学和测井技术的发展测井学是一个边缘科学,是应用地球物理的一个分支,它是用物理学的原理解决地质学的问题,并已在石油、天然气、金属矿、煤田、工程及水文地质等许多方面得到应用。30年代首先开始电阻率测井,到50年代普通电阻率发展的比较完善,当时利用一套长短不同的电极距进行横向测井,用以较准确地确定地层电阻率。60 年代聚焦测井理论得以完善,孔隙度形成了系列测井,各类聚焦电阻率测井仪器也得到了发展,精度也相应得以提高。测井资料的应用也有了长足的发展,随着计算机的应用,车载计算机和数字测井仪也被广泛的应用。到现在又发展了各种成像测井技术。 二、测井技术在勘探及开发中的应用无论是金属矿床、非金属矿床、石油、天然气、煤等,在勘探过程中在地壳中只要富集,就具有一定特点的物理性质,那我们就可以用地球物理测井的方法检测出来。特别是石油和天然气,往往埋藏很深,只要具有储集性质的岩石,就有可能储藏有流体矿物。它不用像挖煤一样。而是只要打一口井,确定出那段地层能出油,打开地层就可以开采。由于用测井资料可以解决岩性,即什么矿物组成的岩石,它的孔隙度如何,渗透率怎么样,含油气饱和度大小。沉积时是处于什么环境,是深水、浅水、还是急流河相,有无有机碳,有没有生油条件,能不能富集。在勘探过程中,可以解决生油岩,盖层问题,也可以对储层给予评价,找到目的层,解释出油、气、水。 在油气田开发过程中,用测井可以监测生产动态,解决工程方面的问题。井中产出的流体性质,是油还是水,出多少水,油水比例如何,用流体密度,持水率都可以说明。注水开发过程中,分层的注入量,有没有窜流,用注入剖面测井都可以解决。生产过程中,套管是否变形,有没有损坏、脱落或变位,管外有无窜槽,射孔有没有射开,都需要测井来解决。对于设计开发方案,计算油层有效厚度,寻找剩余油富集区都离不开测井。测井对石油天然气勘探开发来说,自始至终都是不可缺少的,是必要的技术。它服务于勘探开发的全过程。 三、储层分类及需要确定的参数 1.储集层的分类及特点石油、天然气和有用的流体都是储存在储集层中,储集层是指具有一定储集空间的,并彼此相互连通,存在一定渗透能力的的岩层。储层性质分析与评价是测井解释的主要任务。 1) 碎屑岩储集层 它包括砾岩、砂岩、粉砂岩和泥质粉砂岩等。世界上有40%的油气储集在碎屑岩储 集层。碎屑岩由矿物碎屑,岩石碎屑和胶结物组成。最常见的矿物碎屑为石英,长石和其他碎屑颗粒;胶结物有泥质、钙质、硅质和铁质等。控制岩石储集性质是以粒径大小、分选好坏、磨圆度以及胶结物的成分,含量和胶结形式有关。一般粒径大,分选和磨圆度好,胶结物少,则孔隙空间大,连通性好,为储集性质好。 2) 碳酸盐岩储集层 世界上油气50%的储量和60%的产量属于这一类储集层。我国华北震旦、寒武及奥陶系的产油层,四川的震旦系,二叠系和三叠系的油气层,均属于这类储层。 碳酸盐岩属于水化学沉积的岩石,主要的矿物有石灰石、白云石和过渡类型的泥灰岩。它的储集空间有晶

测井解释计算常用公式

测井解释计算常用公式目录 1. 地层泥质含量(Vsh)计算公式................................................ .. (1) 2. 地层孔隙度(υ)计算公式....................................... (4) 3. 地层含水饱和度(Sw)计算.......................................................... (7) 4. 钻井液电阻率的计算公式...................................................... . (12) 5. 地层水电阻率计算方法 (13) 6. 确定a、b、m、n参数 (21) 7. 确定烃参数 (24) 8. 声波测井孔隙度压实校正系数Cp的确定方法 (25) 9. 束缚水饱和度(Swb)计算 (26) 10.粒度中值(Md)的计算方法 (28) 11.渗透率的计算方法 (29) 12. 相对渗透率计算方法 (35) 13. 产水率(Fw) (35) 14. 驱油效率(DOF) (36) 15. 计算每米产油指数(PI) (36) 16. 中子寿命测井的计算公式 (36) 17. 碳氧比(C/O)测井计算公式 (38) 18.油层物理计算公式 (44) 19.地层水的苏林分类法 (48) 20. 毛管压力曲线的换算 (48) 21. 地层压力 (50) 22. 气测录井的图解法 (51) 附录:石油行业单位换算 (53)

测井解释计算常用公式 1. 地层泥质含量(Vsh )计算公式 1.1 利用自然伽马(GR )测井资料 1.1.1 常用公式 min max min GR GR GR GR SH --= (1) 式中,SH -自然伽马相对值; GR -目的层自然伽马测井值; GRmin -纯岩性地层的自然伽马测井值; GRmax -纯泥岩地层的自然伽马测井值。 1 2 12--= ?GCUR SH GCUR sh V (2) 式中,Vsh -泥质含量,小数; GCUR -与地层年代有关的经验系数,新地层取3.7,老地层取2。 1.1.2 自然伽马进行地层密度和泥质密度校正的公式 o sh o b sh B GR B GR V -?-?= max ρρ (3) 式中,ρb 、ρsh -分别为储层密度值、泥质密度值; Bo -纯地层自然伽马本底数; GR -目的层自然伽马测井值; GRmax -纯泥岩的自然伽马值。 1.1.3 对自然伽马考虑了泥质的粉砂成分的统计方法 C SI SI B A GR V b sh +-?-?= 1ρ (4) 式中,SI -泥质的粉砂指数; SI =(ΦNclay -ΦNsh )/ΦNclay (5) (ΦNclay 、ΦNsh 分别为ΦN -ΦD 交会图上粘土点、泥岩点的中子孔隙度) A 、B 、C -经验系数。 1.2 利用自然电位(SP )测井资料

测井解释

1.测井数据处理常用的原始输入资料有(测井曲线图)、(存放于磁带的数据)、(直接由终端输入的表格数据)和由井场或异地经卫星传送的数据。 2.国外测井公司一般运用(自然伽马曲线)曲线作为深度控制曲线进行深度校正。 3.碎屑岩储集层空隙空间的大小和形状是多样的,按孔隙成因,可将碎屑岩分为粒间空隙、微孔隙和(溶蚀孔隙)、(微裂缝)。 4.对于石油地质和测井来说,有重要意义的粘土矿物只要是高岭石、(蒙脱石)、(伊利石)和混层粘土矿物。 5.按照产状分类,裂缝可以分为高角度裂缝、(低角度裂缝)和(网状裂缝)。 6.按照成因分类,裂缝可以分为构造裂缝、(溶蚀裂缝)、(压溶裂缝)和风化裂缝。 1.Schlumberger公司用户磁带格式是(DLIS) 2.阿特拉斯公司用户磁带格式是(CLS) 3.下列哪一条测井曲线(自然伽马)的平均探测深度约为15CM。 4.下列哪一条测井曲线(岩性-密度测井)的平均探测深度约为5CM。 5.(方解石、白云石)是碳酸盐岩的主要造岩矿物。 6.下列哪种岩石(石膏)的中子孔隙度(%)接近50. 7.对于油基泥浆井,下列哪一种电阻率测井系列(感应测井)比较适用。 8.对于油基泥浆井,下列哪一种测井曲线(自然电位测井)一般不测量。 9.盐水泥浆井中,储层段自然电位曲线一般显示(正幅度差异)。 10.当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率,称为岩石对流体的(有效渗透率)。 1.简述频率交会图的概念。 答:频率交会图就是在x-y平面坐标上,统计绘图井段上各个采样点的A、B两条曲线的数值,落在每个单位网格中的采样点数目(即频率数)的一种直观的数字图形,简称为频率图。 2.简述Z值图的概念。 答:Z值图是在频率交会图基础上引入第三条曲线Z做成的数据图形,Z值图的数字表示同一井段的频率图上、每个单位网格中相应采样点的第三条线Z的平均级别。 3.简述三孔隙度重叠显示可动油气和残余油气的方法原理。 答:由Rt和Rx0曲线按阿尔奇公式或其他饱和度方程得出的Sw和Sx0,可计算地层含水孔隙度Φw和冲洗带含水孔隙度Φx0:Φw=Φ*Sw;Φx0=Φ*Sx0,由Φ、Φx0、Φw三孔隙度曲线重叠,可有效地显示地层的含油性、残余油气和可动油气,即有:含油气孔隙度:Φh=Φ-Φw 残余油气孔隙度:Φhr=Φ-Φx0 可动油气孔隙度:Φhm=Φx0-Φw 因此,Φ与Φx0幅度差代表残余油气,Φx0与Φw幅度差代表可动油气。 4.简述油层水淹后,自然电位测井曲线的响应变化特征。 答:油层水淹后,自然电位基线发生偏移,幅度有可能发生变化。淡水水淹,水淹部位常发生幅度变化(甚至出现正异常),基线偏移。污水水淹,由于注入水与地层水矿化度相差不大,自然电位的基线偏移不明显或无偏移。 5.简述油层水淹后,电阻率测井曲线的响应变化特征。 答:淡水水淹,呈U形曲线变化。污水水淹,Rt随Sw的增加而降低。 1.下图为电流通过纯砂岩水层的等效模型。设r0、r ma、r w分别表示岩石、骨架和孔隙流体的电阻,试根据串并联院里,推导地层因素F的表达式。

测井曲线解释及其含义

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水

电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。 ④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

《测井方法与综合解释》11

葆灵蕴璞 《测井方法与综合解释》综合复习资料 一、名词解释 声波时差: 声波在介质中传播单位距离所需要的时间 孔隙度:岩石孔隙体积在岩石外表总体积的比值,为小数。 地层压力: 地层孔隙流体压力 地层倾角:地层层面法相与大地铅垂轴的夹角 含油孔隙度:含油孔隙体积占地层体积的比值 泥质含量:泥质体积占地层体积的百分数 二、填空题 1.描述储集层的基本参数有孔隙度、渗透度、含油饱和度和有效厚度等。 2.地层三要素走向、倾向、倾角。 3.伽马射线去照射地层可能会产生电子对效应、康普顿效应和光电效应效应。 4.岩石中主要的放射性核素有铀238、钍和钾等。 5.声波时差Δt的单位是微秒/米,电导率的单位是毫西门子/米。 6.渗透层在微电极曲线上有基本特征是微梯度与微点位两条曲线不重合。 7.地层因素随地层孔隙度的减小而增大;岩石电阻率增大系数随地层含水饱和度的增大而增大。 8.当Rw大于Rmf时,渗透性砂岩的SP先对泥岩基线出现正异常。 9.由测井探测特性知,普通电阻率测井提供的是探测范围内共同贡献。对于非均匀电介质,其大小不仅与测井环境有关,还与测井仪器 --和--- 有关。电极系A0.5M2.25N的电极距是_0.5_。 10.地层对热中子的俘获能力主要取决于cl的含量。利用中子寿命测井区分油、水层时,要求地层水矿化度高,此时,水层的热中子寿命小于油层的热中子寿命。 11.某淡水泥浆钻井地层剖面,油层和气层通常具有较高的视电阻率。油气层的深浅电阻率显示泥浆低侵特征。 12.地层岩性一定,C/O测井值越高,地层剩余油饱和度越大。 13.在砂泥岩剖面,当渗透层SP曲线为负异常时,井眼泥浆为_淡水泥浆__,油层的泥浆侵入特征是__泥浆侵入_。 14.地层中的主要放射性核素是_铀__、_钍_、_钾__。沉积岩的泥质含量越高,地层放射性高。 15.电极系A3.75M0.5N 的名称底部梯度电极系_,电极距4米_。

测井解释工作年终工作总结

测井工作总结 1、测井工作量 本次测井时间为2009年11月26日,实测深度184米,测斜点5个,可采煤层1层,具体测井数据如下表: 2、使用仪器设备及刻度 本区使用的仪器设备为陕西渭南煤砖专用设备厂生产的tysc-3q型车载数字测井仪和上海地质仪器厂生产的jjx-3a型井斜仪。定期按规范对仪器进行各级刻度调校,井场刻度、校验结果均符合测井规范要求,并记录在各孔《数字仪井场检查记录表》中。测井资料在室内采用河北省邯郸市工业自动化研究所开发的煤田测井处理程序clogpro v2.0。 3、选取的测井参数及技术条件 根据勘探区内煤岩层的地质、地球物理特征和本次测井所要求的地质任务及以往测井的成果,本区选取了全孔测量:长源距伽马伽马(源距为0.35m)、短源距伽马伽马(源距为0.20m)、三侧向电阻率、自然伽马及声波测井。工程测井包括:井斜和井径。采样间隔为0.05m,按规范要求提升速度均低于最低提升速度,本次测井使用的源种为137cs,源强为56mci,放射性活度为2072mbq。 4、测井定性、定厚解释原则 煤层定性依据视电阻率、密度、声速曲线的高幅值和自然伽玛的 低幅值而定。煤层深度和厚度的解释在1:50曲线上进行。对于可采煤层、伽玛伽玛曲线用相对幅值的1/3—2/5分层定厚,视电阻率曲线依据根部分离点解释,声速曲线和自然伽玛曲线则以相对幅值的半幅点分层定厚。对不可采煤层在1:200曲线上进行综合解释。 对孔内岩性的划分,以自然伽玛曲线和视电阻率曲线为主,参照其它各参数曲线并结合勘探区地质特点在1:200测井曲线上进行综合解释。 5、总结 本次测井工作选择测井参数和技术条件合理,工作方法正确,质量较好,所获资料可靠。篇二:2012年测井监督工作总结 2012年测井监督工作总结 2012年我们在站领导的带领下,认真学习油田公司、采油一厂的有关文件政策,严格执行廉洁自律承诺,严格把关,秉公尽责,提高工作效率。测井监督岗全体员工转换工作思路,围绕提高测试成功率,进行强化现场监督,现场监督发现问题自己能解决的及时协调解决,对于重大事情请示领导进行协调解决,对于测井中出现的问题进行重点抓、抓重点,有效的提高了测试成功率。一.2012年工作量完成情况: 1、2012年测井工作完成情况见表一: 表一 2012年测井报表 2、2011-2012年测井工作量对比见表二: 表二测井工作量对比 3、2012年投捞调配工作完成情况见表三: 表三 2012年投捞调配报表 4、2011年-2012年投捞调配完成率对比 表四 2011-2012年投捞调配完成率对比表 二.测试、测井方面主要做的工作: 2012年,在工作方式上转变观念,对于投捞调配中存在问题的井进行分类管理,比如:钻井影响的、单流阀漏失的、全井无流量的等等,我们把这些井分类统计,然后和注水项目部、开发地质研究所协调分类解决,这样,工作起来思路清楚,有条不紊,解决问题的效率也高,对于遇阻的井我们结合作业起管柱查原因,了解遇阻原因。我们加强现场监督,重点

综合利用测井技术识别测量裂缝

利用测井技术识别和探测裂缝 摘要:裂缝性地层裂缝的测井解释主要包括裂缝带的识别和储层裂缝参数的定量计算两个方面。用测井方法识别储层中的裂缝是目前最常用、最有效的方法,其中裂缝是否有效一直是测井解释的一个难点。在测井方法中,常规的测井方法可以识别裂缝,只是精度不高,成像测井仍是目前最为可靠的裂缝识别依据,而双侧向测井方法可快速、便捷地确定裂缝的有效性。 1.绪论 裂缝,是岩石中由于构造变形或物理成岩作用形成的面状不连续体,在碳酸盐岩、火成岩和泥岩中均有发育,少量见于潜山变质岩中。裂缝不仅是流体的储集空间,还是重要的流体渗滤通道.在致密的砂岩油气藏中,裂缝主要作为渗流通道存在, 大大改善了低孔低渗透储层的生产能力;在碳酸盐岩地层中,裂缝还控制着溶孔、溶洞的发育,影响着地层中原始流体的分布状况和泥浆侵入特性;在火成岩地层中,裂缝是地层产能的最重要、最直接的影响因素.中深部储层由于压实作用多已致密化,天然气的聚集及产出主要依赖于裂缝系统,裂缝的存在势必会对储层的渗透性起到改善作用,形成有开发价值的产层.因此,研究地下裂缝的发育及其分布规律就显得尤为重要. 岩心是最为直接的裂缝资料,但往往存在取心数量有限、收获率低和岩心不定向等三个方面的局限。用测井方法识别裂缝,具有成本低、识别力强和经济效益高等优点,已成为勘探裂缝性油气藏的主要手段. 2.裂缝 按成因分为两种: ①天然裂缝,一般是成岩收缩或构造运动形成的;②钻井诱导,一般是在钻井过程中因频繁起、下钻的震动和地应力场的不均衡造成井壁有规律的开裂。根据裂缝的形成原因,天然裂缝又分为非构造裂缝和构造裂缝两类,非构造裂缝主要是由于岩石失水体积收缩或岩浆冷却过程中体积收缩而形成的收缩裂缝以及压溶作用形成的缝合线。构造裂缝是指在地壳运动过程中,岩石受构造作用力而产生的裂缝,这种裂缝是最广泛存在的裂缝,包括开启裂缝、闭合裂缝2种。开启裂缝是没有充填其它物质的裂缝。在水基泥浆中,裂缝中充填有导电的泥浆,这样裂缝的电阻率就比岩石的电阻率低很多,所以,可以根据电阻率的异常来识别开启裂缝。闭合裂缝是充填有其它矿物的裂缝,它示出由构造应力产生的开启裂缝后来被富含盐的流体循环胶结,因此电阻率较高。钻井诱生裂缝由于钻开地层后,原始地层应力释放,挤压井眼周围的地层,在井壁上产生了钻井诱生裂缝,常见的有3种:钻具振动形成的裂缝、重泥浆压裂缝和应力释放裂缝。 按产状分,裂缝的产状一般表征分为裂缝面与水平面的夹角和裂缝面的倾向。其分类主要根据裂缝面倾角、倾向相互间的组合以及相关的地质资料,目前分为五大类:低角度裂缝、倾斜裂缝、高角度裂缝、低角度网状裂缝及高角度网状裂缝.

相关文档
最新文档