纯函数

纯函数
纯函数

2017年中考数学压轴题——纯函数问题

1.(2017·北京C )在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .

(1)求直线BC 的表达式;

(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.

2.(2017·天津A )已知抛物线 23y x bx =+-(b 是常数)经过点(1,0)A -.

(1)求该抛物线的解析式和顶点坐标;

(2)(,1)P m 为抛物线上的一个动点,P 关于原点的对称点为'P .

①当点'P 落在该抛物线上时,求m 的值;

②当点'P 落在第二象限内,2

'A P 取得最小值时,求m 的值.

3.(2017·江西B )已知抛物线C 1:245(0)y ax ax a =-->.

(1)当1a =时,求抛物线与x 轴的交点坐标及对称轴;

(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标;

②将抛物线C 1沿这两个定点所在直线翻折,得到抛物线C 2,直接写出C 2的表达式;

(3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.

4.(2017?南京B )已知函数2(1)y x m x m =-+-+(m 为常数).

(1)该函数的图象与x 轴公共点的个数是( ).

A.0

B.1

C.2

D.1或2

(2)求证:不论m 为何值,该函数的图象的顶点都在函数2(1)y x =+的图象上.

(3)当23m -≤≤时,求该函数的图象的顶点纵坐标的取值范围.

5. (2017江苏泰州A )平面直角坐标系xoy 中,点A 、B 的横坐标分别为a 、2a +,二次函数2(2)2y x m x m =-+-+的图象经过点A 、B ,且a 、m 满足 2a m d -= (d 为常数).

(1)若一次函数1y kx b =+的图象经过A 、B 两点.

①当1a =、1d =-时,求k 的值;

②若1y 随的增大而减小,求d 的取值范围;

(2)当4d =-且2a ≠-、4a ≠-时,判断直线AB 与轴的位置关系,并说明理由;

(3)点A 、B 的位置随着的变化而变化,设点A 、B 运动的路线与y 轴分别相交于点C 、D ,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.

6.(2017山东济宁A )定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.

例如:如图1,点P 在△ABC 的内部,∠PBC=∠A ,∠PCB=∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点M 是曲线C :0)y x =

>上的任意一点,点N 是x 轴正半轴上的任意一点.

(1)如图2,点P 是OM 上一点,∠ONP=∠M, 试说明点P 是△MON 的自相似点; 当点M 的坐

标是,点N 的坐标是时,求点P 的坐标;

(2)如图3,当点M 的坐标是,点N 的坐标是(2,0)时,求△MON 的自相似点的坐标;

(3)是否存在点M 和点N,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

7.(2017·湖南长沙A )如图,抛物线21648(0)y mx mx m m =-+>与x 轴交于A ,B 两点(点B 在点A 左侧),与y 轴交于点C ,点D 是抛物线上的一个动点,且位于第四象限,连接OD 、BD 、AC 、AD ,延长AD 交y 轴于点E .

(1)若△OAC 为等腰直角三角形,求m 的值;

(2)若对任意0m >,C 、E 两点总关于原点对称,求点D 的坐标(用含m 的式子表示);

(3)当点D 运动到某一位置时,恰好使得∠ODB=∠OAD ,且点D 为线段AE 的中点,此时对于

该抛物线上任意一点00(,)P x y 总有:2001506

n +≥---成立,求实数n 的最小值.

8.(2017重庆A 卷A )如图,在平面直角坐标系中,抛物线233

y x x =-与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.

(1)求直线AE 的解析式;

(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,

CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;

(3)点G 是线段CE 的中点,将抛物线233

y x x =-沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.

浅谈整函数与亚纯函数

浅谈整函数与亚纯函数 摘 要: 本文主要介绍整函数,亚纯函数和它们的相关定理,推论以及超越整函数,超越亚纯函数,刘维尔定理,代数学基本定理等等. 关键词: 整函数;超越整函数;亚纯函数;超越亚纯函数;刘维尔定理 The Discussion of Integral Function and Meromorphic Functions Abstract : This paper mainly introduces integral function and its related theorem , corollary , transcendental integral function , meromorphic functions and its related theorem , corollary , transcendental meromorphic functions , and Liuweier theorem , algebra fundamental theorem , etc . Keywords : I ntegral function;Transcendental integral function;Meromorphic function;Transcendental meromorphic functions;Liuweier theorem 1 整函数的概念 定义1 在整个z 平面上解析的函数称为整函数. 例如,多项式,z e ,sin z 等都是整函数. 设()f z 为一整函数,则()f z 只z =∞以为孤立奇点且有 ()0 ()0.n n n f z c z z ∞ == ≤<+∞∑ 定理1 设()f z 为一整函数,则 (1)z =∞为()f z 的可去奇点的充要条件为()f z =常数0c , (2)z =∞为()f z 的m 阶极点的充要条件为是()f z 是一个m 次多项式 ()010.m m m c c z c z c +++≠

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

《信号与系统》题型总结

《信号与系统》题型总结(按内容) 答题时注意审题 一、计算题 (大题) 1 求信号的单双边LT ,单双边ZT, FT ,FS, 单双边ILT ,单双边IZT,IFT (1)定义,(2)性质 2 求卷积、卷积和 3 求系统状态跳跃 (1)物理分析法,(2)冲激函数匹配法 4 时域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应 5 变换域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应 6 求系统函数,求解卷积 (小题) 1 求信号直流、交流分量,信号能量,信号功率 2 用冲激信号的抽样性、乘积运算、卷积性化简 3 求可逆系统,用LTI 系统的性质进行运算 4 FT,LT,ZT 性质的运用(F(s),X(z)求时域信号的极限) 5 求信号带宽 6 求抽样频率与抽样间隔,连续信号的奈奎斯特频率和间隔 7 求系统的稳态响应、瞬态响应 9 基本公式的应用 000(t ) 1 (t-t )0(t t )t d t δδ∞ -∞-==≠? 000()()()()f t t t f t t t δδ-=- 000()0()()(0)0t t t t t δδδ=-≠=, 00()(),()()t t t t t t δδδδ--无意义 δ(t)的抽样性性质 00()()()f t t t dt f t δ+∞-∞-=? ()()t d u t δττ-∞=?()du t t dt δ=()()()dr t u t dt = 00()()()f t t t dt f t δ+∞ -∞''-=-? ()()t t δδ-= 信号功率=直流功率+交流功率 ()()2e f t f t f t +-=()()()2o f t f t f t --=() **11()[()()]()[()()]22r i f t f t f t f t f t f t j =+=-

阿贝尔定理

定理1(阿贝尔第一定理) (1)若幂级数① 在 收敛 ,则幂级数①在 都绝对收敛。 (2)若幂级数① 在 发散, ,则幂级数①在 都发散。 推论 如果幂级数 不是仅在 一点收敛,也不是在整个数轴上都收敛,那么必有一个确定的正数 存在,使得 当 时,幂级数绝对收敛; 当

时,幂级数发散; 当 时,幂级数可能收敛也可能发散。 定理2 有幂级数①,即 ,若 则幂级数①的收敛半径为 定理3(阿贝尔第二定理) 若幂级数①的收敛半径 ,则幂级数①在任意闭区间 都一致收敛。 性质1 若幂级数 与 的收敛半径分别是正数 与

,则r1=r2 性质2 若幂级数 的收敛半径 ,则它的和函数 在区间 连续。 性质3 若幂级数 的收敛半径 ,则它的和函数 由0 到x 可积,且可逐项积分,即 性质4 若幂级数的收敛半径 , 则则它的和函数

在区间 可导,且可逐项微分 阿贝尔与椭圆函数 椭圆函数是从椭圆积分来的。早在18世纪,从研究物理、天文、几何学的许多问题中经常导出一些不能用初等函数表示的积分,这些积分与计算椭圆弧长的积分往往具有某种形式上的共同性,椭圆积分就是如此得名的。19世纪初,椭圆积分方面的权威是法国科学院的耆宿、德高望重的勒让得(A.M.Legen-dre,1752-1833)。他研究这个题材长达40年之久,他从前辈工作中引出许多新的推断,组织了许多常规的数学论题,但他并没有增进任何基本思想,他把这项研究引到了“山重水复疑无路”的境地。也正是阿贝尔,使勒让得在这方面所研究的一切黯然失色,开拓了“柳暗花明”的前途。 关键来自一个简单的类比。微积分中有一条众所周知的公式上式左边那个不定积分的反函数就是三角函数。不难看出,椭圆积分与上述不定积分具有某种形式的对应性,因此,如果考虑椭圆积分的反函数,则它就应与三角函数也具有某种形式的对应性。既然研究三角函数要比表示为不定积分的反三角函数容易得多,那么对应地研究椭圆积分的反函数(后来就称为椭圆函数)不也应该比椭圆积分本身容易得多吗? “倒过来”,这一思想非常优美,也的确非常简单、平凡。但勒让得苦苦思索40年,却从来没有想到过它。科学史上并不乏这样的例证“优美、简单、深刻、富有成果的思想,需要的并不是知识和经验的单纯积累,不是深思熟虑的推理,不是对研究题材的反复咀嚼,需要的是一种能够穿透一切障碍深入问题根柢的非凡的洞察力,这大概就是人们所说的天才吧。“倒过来”的想法像闪电一样照彻了这一题材的奥秘,凭借这一思想,阿贝尔高屋建瓴,势如破竹地推进他的研究。他得出了椭圆函数的基本性质,找到了与三角函数中的π有相似作用的常数K,证明了椭圆函数的周期性。他建立了椭圆函数的加法定理,借助于这一定理,又将椭圆函数拓广到整个复域,并因而发现这些函数是双周期的,这是别开生面的新发现;他进一步提出一种更普遍更困难类型的积分——阿贝尔积分,并获得了这方面的一个关键性定理,即著名的阿贝尔基本定理,它是椭圆积分加法定理的一个很宽的推广。至于阿贝尔积分的反演——阿贝尔函数,则是不久后由黎曼(B.Riemann,1826-1866)首先提出并加以深入研究的。事实上,阿贝尔发现了一片广袤的沃土,他个人不可能在短时间内把这片沃土全部开垦完毕,用埃尔米特(Hermite)的话来说,“阿贝尔留下的后继工作,够数学家们忙上五百年”。阿贝尔把这些丰富的成果整理成一长篇论文《论一类极广泛的超越函数的一般性质》。此时他已经把高斯置诸脑后,放弃了访问哥延根的打算,而把希望寄托在法国的数学家身上。他婉辞了克雷勒劝其定居柏林的建议

对样条函数及其插值问题的一点认识

对样条函数及其插值问题的一点认识 样条函数是计算数学以及计算机辅助设计几何设计的重要工具。1946年,I. J. Schoenberg 著名的关于一元样条函数的奠定性论文“Contribution to the problem of application of equidistant data by analytic functions ”发表,建立了一元样条函数的理论基础。自此以后,关于样条函数的研究工作逐渐深入。随着电子计算机技术的不断进步,样条函数的理论以及应用研究得到迅速的发展和广泛的应用。经过数学工作者的努力,已经形成了较为系统的理论体系。 所谓(多项式)样条函数,乃指具有一定光滑性的分段(分片)多项式。一元n 次且n -1阶连续可微的样条函数具有如下的表示式: 1()()()()N n n j j j s x p x c x x x +==+--∞<<+∞∑[] 011,00,01,,...,,(1),...,(),,...,,n n n n N n N N u un u u u u x x x x x S x x x x ++++ +≥??=??

汉克尔变换和贝塞尔函数

汉克尔变换 通过参变量积分将一个已知函数变为另一个函数。已知?(x),如果 存在(α、b可为无穷),则称F(s)为?(x)以K(s,x)为核的积分变换。 设Jγ(x)为у阶贝塞尔函数,?(x)定义于[0,+∞),则称 为?(x)的у阶汉克尔变换;而称 为h(t)的汉克尔反变换。存在以下性质:

特殊函数(贝塞尔函数):一些高级超越函数的总称,不是代数函数的完全解析函数通称为超越函数。高级超越函数是超越函数中不为初等函数的泛称。特殊函数多半是从寻求某些数学物理方程的解得出的,常见的有:Γ函数、B 函数、超几何函数、勒让德函数、贝塞尔函数等。一些正交多项式,如雅可比多项式、切比雪夫多项式、埃尔米特多项式、拉盖尔多项式等等,通常也列入特殊函数。 贝塞尔函数在18世纪中叶欧拉研究圆鼓膜振动问题时,引进了极坐标形式的波动方程 这里a为常数。采用分离变量法解这个方程,得到贝塞尔微分方程及贝塞尔函数。数年后J.-L.拉格朗日研究行星绕日问题,19世纪初期傅里叶研究圆柱体的热传导问题,都用到贝塞尔函数。所谓贝塞尔微分方程就是形如 的方程,这里v为常数。它的一个解是 称为第一类贝塞尔函数。当v不为整数时,它的另一独立解为 当v为整数n时,则规定 它们称为第二类贝塞尔函数。 设(z)为两个变量z,v的解析函数,满足一对递推公式

则称(z)为圆柱函数。J(z)及Y(z)均为圆柱函数。圆柱函数可以用来解在圆柱面上满足一定边界条件的拉普拉斯方程及波动方程。 设φ0(x),φ1(x),…,φn(x),…为在开区间(α,b))上有定义的实函数系,ω(x)为定义在(α,b))上的非负函数;如果对任何非负整数m≠n恒有 则称{φn(x)}为在区间(α,b))上以ω(x)为权函数的正交系。如果φn(x)恰为n次多项式,那么φn(x)称为正交多项式。 设v>-1,则J(z)的零点均为实数,且有无穷个正零点及负零点,其阶均为1。若以j1,j2,j3,…表示J(z)的正零点按上升顺序的排列,则当v固定时,{J(j n x)}是在(0,1)上以x为权函数的正交系。

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

数学函数的发展史

数学函数的发展史 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

总课题:数学的发展史 子课题:函数的发展史 一、组长:李 组员:刘田仁姬孙 二、指导老师:张 三、班级:高一12班 四、成员简介: 李:性格开朗、刻苦认真担任组长 刘:喜欢英语、大方担任搜集 仁:喜欢信息、刻苦认真担任写作 姬:开朗大方、热情担任搜集 孙:爱好动漫、画画性格外向担任整理 田:开朗大方刻苦认真担任整理 五、选题的原因: 开阔视野,增长见识。提高我们的数学修养‘可以使我们更好的融合在一起,加强团结,了解数学。 六:研究计划: 共六人:姬刘担任搜集 李仁担任写作 孙田整理资料 七:研究成果:

历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分 有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一)1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. 自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二)

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

matlab中常用的函数

A abs 绝对值、模、字符的ASCII码值 acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具 all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图 argnames 函数M文件宗量名asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令 B bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图barh 二维水平直方图 base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串 bone 蓝色调黑白色图阵box 框状坐标轴 break while 或for 环中断指令brighten 亮度控制 C capture ;3版以前?捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具 cdf2rdf 复数特征值对角阵转为实数块对角阵 ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象 chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解

全纯函数

全纯函数 维基百科 全纯函数(holomorphic function)是复分析研究的中心对象;它们是定义在复平面C的开子集上的,在复平面C中取值的,在每点上皆复可微的函数。这是比实可微强得多的条件,暗示著此函数无穷可微并可以用泰勒级数来描述。 解析函数(analytic function)一词经常可以和“全纯函数”互相交换使用,虽然前者有几个其他含义。 全纯函数有时称为正则函数。在整个复平面上都全纯的函数称为整函数(entire function)。“在一点a全纯”不仅表示在a可微,而且表示在某个中心为a 的复平面的开邻域上可微。双全纯(biholomorphic)表示一个有全纯逆函数的全纯函数。 定义 若U为C的开子集而f : U→C是一个函数,我们称f是在U中一点z0复可微(complex differentiable),若极限 存在。 极限取所有趋向z0的复数的序列,并对所有这种序列差的商趋向同一个数 f '(z ). 直观上,如果f在z0复可微而我们从r方向趋向点z0,则函数的像会0 从f '(z0) r方向趋近点f(z0),其中的乘积是复数乘法。 这个可微性的概念和实可微性有几个相同性质: 它是线性的,并服从乘积,商和链式法则。 若f在U中每点z0复可微,我们称f在U上全纯。我们称f在点z0全纯,如果它在z0的某个邻域全纯。 下面是一个等价的定义。一个复函数全纯当且仅当它满足柯西-黎曼方程. 例子 z的所有复系数的多项式函数在C上是全纯的。

所有z的三角函数和所有指数函数也是。 (三角函数事实上和指数函数密切相关并可以通过欧拉公式来用指数函数定义)。 对数函数的主支在集合C - {z∈R : z ≤ 0}上全纯。平方根函数可以定义为 所以任何对数ln(z)全纯的地方,它也全纯。函数1/z在 {z : z≠ 0} 上全纯。 不是全纯的函数的典型例子有复共轭(complex conjugation)和取实部。 性质 因为复微分是线性的,并且服从积、商、链式法则,所以全纯函数的和、积和复合是全纯的,而两个全纯函数的商在所有分母非0的地方全纯。 每个全纯函数在每一点无穷可微。它和它自己的泰勒级数相等,而泰勒级数在每个完全位于定义域U内的开圆盘上收敛。泰勒级数也可能在一个更大的圆盘上收敛;例如,对数的泰勒级数在每个不包含0的圆盘上收敛,甚至在复实轴的附近也是如此。证明请参看证明全纯函数解析。 若把C和R2等同起来,则全纯函数和满足柯西-黎曼方程的双实变量函数相同,该方程组含有两个偏微分方程。 在非0导数的点的附近,全纯函数是共形的(或称保角的)。因为他们保持了小图形的角度和形状(但尺寸可能改变)。 柯西积分公式表明每个全纯函数在圆盘内的值由它在盘边界上的取值所完全决定。 几个变量 多复变函数的复解析函数定义为在一点全纯和解析,如果它局部可以(在一个多盘,也即中心在该点的圆盘的直积)扩张为收敛的各个变量的幂级数。这个条件比柯西-黎曼方程要强;事实上它可以这样表述: 一个多复变量函数是全纯的当且仅当它满足柯西-黎曼方程并且局部平方可积。

二元函数插值的一般方法研究

《二元函数多项式插值的一般方法研究》的开题报告 一.课题研究的背景和意义 (一).插值问题的提出和发展过程 许多实际问题都用函数)(x f y =来表示某种内在规律的数量关系,其中相当一部分函数通过实验或观测得到的.虽然)(x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值),...,1,0)((n i x f y i i ==,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表等.为了研究函数的变化规律,往往需要求出不在表上的函数值.因此,我们希望根据给定的函数表做一个既能反应函数)(x f 的特性,又便于计算的简单函数)(x P ,用)(x P 近似)(x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为)(x P ,并使)()(i i x f x P =对n i ,...,1,0=成立.这样确定的)(x P 就是我们希望得到的插值函数. 对于上述的)(x f y =的函数插值,前人们已经做过很多的研究,典型的有多项式插值、拉格朗日插值、牛顿插值、埃尔米特插值等.但是对于二元函数),(y x f z =的插值还没有一个较广的研究. (二).二元函数插值研究的意义 1. 理论意义: 一元函数插值主要有基函数法、拉格朗日插值法、牛顿插值法、埃尔米特插值等,但是对于二元函数插值乃至n 元插值是不能直接在一元函数插值的基础上直接推广的。多元插值是一个活跃的研究领域,至今已有非常多的多元插值公式,但是可供利用的公式十分少。 所以我们研究二元函数的插值时,可以为n 元函数插值提供新的研究思路,有助于复杂函数的偏导数的求解,也可以是对插值理论的完善。 2. 实际意义: 一元函数插值问题主要是平面的,而二元函数插值是在三维空间上的,这对我们构造三维空间图像有非常大的作用.例如,在现代机械工业中用计算机控制加工机械零件,根据设

半纯函数的无穷级数展开

亚纯函数的无穷级数展开 我们知道,如果?()z 在0z 的邻域内全纯,则?()z 在0z 的邻域内可展成Taylor 级数()n n n z z a 00-∑∞ =;如果z 。是?(z)的一孤立奇点, 它可以在z 。的去心邻域展成Laurent 级数()n n n z z a ∑+∞ -∞ =-0。 亚纯函数是一类非常重要函数,由于它的奇点为极点,我们从Laurent 级数的展开式中得到启发,可否将亚纯函数按其奇点的分布情况展开成无穷级数,答案是肯定的。这样亚纯函数的研究又有了一种工具,下面我们来研究这理论。 设)(z f 为区域D 内的亚纯函数,它可以表为两个全纯函数之比,即 ) () ()(z g Z h z f = . 其中()()z g z h ,是D 内的全纯函数,且()z g 的零点是()z f 的极点,设想()z g 可分解因式如下 ()()...)(21z z z z a z g --= 由此我们对上式施以对数运算,再施以微分运算,就将()z f 展开成如下的形式, ()()∑ ∞ -=k n k k k z z a z f (其中k n 为与极点的级有关的正整数) 即我们依()z f 的极点展开成一分式型级数有关的理论我们不进行

深入讨论。下面我们以亚纯函数tgz 与ctgz 为例说明这种展开方法。由于tgz =ctg (2 π-z ),所以我们只研究ctgz 的展开方法 即可。 我们先研究用微积分学有关理论来展开ctgz 。这种方法的技巧性很强,它需要先把t sin 在实数域内展成无穷乘积,这样会减少在复数域内的许多繁杂的讨论。 因为()mx i mx x i x m sin cos sin cos +=+ 展开左边取实部得 ()()???+???---?=--x x m m m x x m mx m m 331sin cos 3 2121sin cos sin (1) 若12+=n m 是奇数,用公式()k k x x 22sin 1cos -=置换(1)中余弦函数 的偶次幂后,得 ()()x P x x n 2sin sin 12sin ?=+ (2) 其中()u P 为一个n 次幂整多项式。 如果用n u u u ,...,,21表这多项式的根,则此多项式可以用如下方法分解因式 ()()()()???? ??-???? ??-???? ? ?-=---=n n u u u u u u A u u u u u u a u P 1...11 (2121) 从(2)容易定出根n u u u ,...,,21,如果x 使()012sin =+x m ,但0sin ≠x ,则x 2sin 就一定是()u P 的根。1 2,...,1 22,12+++=n n n n x πππ介于0与2 π之间, 且为递增序列,从而 .1 2sin ,...,122sin ,1 2sin 22 22 1+=+=+=n n u n u n u n π ππ

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

Γ分布函数

Γ分布函数算法新解及其应用 李世才吴戈堂林莺 (广西南宁水利电力设计院) 摘要从Γ函数与不完全Γ函数的恒等关系出发,导出了Γ(α)与lnΓ(α)的精确解析式,并在文[1]的基础上导出Γ分布函数新算法的精确解析式。把迄今Γ(α)、lnΓ(α)和Γ分布函数的计算只能应用各种逼近的近似公式现状,提高到精确解析式的计算水平,并归纳为收敛的级数展式和连分式展式的数值计算,使其算法统一成为现实。用新算法的通用数学模型设计的电算程序,对实际工程的计算和文[2~4]中的全部算例及文[5,6]中的有关数表进行了验证比较,结果表明新算法更为优越。 关键词Γ函数Γ分布函数算法新解精确解析式数学模型数值计算。 本文于1996年6月15日收到,广西自然科学基金资助项目,桂科[自]9912010. 统计学、分子结构论、特殊函数、工程水文分析与计算、水文学的汇流计算等应用和研究领域,经常会遇到Γ函数、Γ分布函数和其逆函数的数值计算问题。文[1]对几种常见的数值积分法进行了分析比较,并给出Γ分布函数通用算法的综合解析表达式 (1) 式中α为参变量(α>0),x为自变量(x≥0),T的表达式为 (2) 电算实践表明:一些特殊问题的计算中,需要程序参与计算的各个变量(含常数)都按双精度(16位有效数字)或高精度(任意指定精度)运行,而计算Γ(α)和lnΓ(α)的各种逼近算法公式[1~5]最多只能求得10至12位有效数字,这样即使应用双精度计算P(α,x),最多也只能达到与Γ(α)或lnΓ(α)同样的精度,并且有时会加速计算过程的误差传播和积累,从而导致死循环、迭代过程不收敛、计算结果失真等不良的现象。要解决这些问题,可以将Γ(α)和lnΓ(α)

多源信息融合数字模型

多源信息融合数字模型 研究员、博导 岳天祥 研究员、博导 刘纪远 (中国科学院地理学与资源研究所, 北京100101) 摘 要:研究结果表明,在目前基础条件下,多源信息融合数字模型的实现需要解决现行数字地面 模型和空间插值模型的误差问题、点—面信息有效融合问题、多尺度转换问题和多维GIS面临的理 论问题。建立多源信息融合数字模型的基本步骤可归纳为:(a)建立基于曲面论数字模型的基本方程,(b)运用遥感数据反演数字模型的首次近似表达形式,(c)如果有更新信息,重复以上过程,直至 理论模型与实际需求完全相符。 关键词:曲面论 遥感反演 多源信息融合 数字模型 A Digital Model for Multi-Sources Information Fusion Professor YUE Tianxiang Professor LIU Jiyuan (Institute of Geographical Sciences and Natural Resources Research,C AS,Beijing100101) A bstract:Our re search re sult shows that realization of the digital m odel for multi-sourc es information fusion needs to solve problems of e rrors of existing digital te rrain model and spatial inte rpolation model,virtual fusion of point and surface information,information transformation at various scales,and multi-dimension G I S.The basic ste ps of constructing the digital model include,(a)establishing basic equations of the digital model by means of surface the ory,(b)retrie ving first approximate formulation using remote sensing data,(c)if the re are more available information,the ste p above is repeated until requirement is re ache d. Key words:surface the ory,remote se nsing retrie val,information fusion,digital model 1 引言 七十年代初,美国研究机构发现,利用计算机技术对多个独立的连续声纳信号进行融合后,可以自动检测出敌方潜艇的位置[1]。这一发现使信息融合作为一门独立的技术首先在军事应用中得到青睐,美国相继研究开发了几十个军事融合系统。进入八十年代,研制出了应用于大型战略系统、海洋监视系统和小型战术系统的第一代信息融合系统,它们包括军用分析系统(TCAC)、多平台多传感器跟踪信息相关处理系统(INCA)、全员分析系统(PAAS)、海军战争状态分析显示系统(TOP)、辅助空中作战命令分析专家系统(DAGR)、空中目标确定和截击武器选择专家系统(TATR)、自动多传感器部队识别系统(AMSUI)和目标获取与武器输送系统(TR-WDS)。九十年代研制的主要数据融合系统包括全源信息分 中国科学院知识创新工程项目(No.kzc x2-308-02)

相关文档
最新文档