RE J1034+396 The origin of the soft X-ray excess and QPO

RE J1034+396 The origin of the soft X-ray excess and QPO
RE J1034+396 The origin of the soft X-ray excess and QPO

a r X i v :0807.4847v 1 [a s t r o -p h ] 30 J u l 2008

Mon.Not.R.Astron.Soc.000,1–10(2008)Printed 30July 2008

(MN L A T E X style ?le v2.2)

RE J1034+396:The origin of the soft X-ray excess and QPO

Matthew Middleton 1,Chris Done 1,Martin Ward 1,Marek Gierli′n ski 1and Nick Schurch 1

1

Department of Physics,University of Durham,South Road,Durham DH13LE,UK

30July 2008

ABSTRACT

The X-ray quasi-periodic oscillation (QPO)seen in RE J1034+396is so far unique

amongst AGN.Here we look at the another unique feature of RE J1034+396,namely its huge soft X-ray excess,to see if this is related in any way to the detection of the QPO.We show that all potential models considered for the soft energy excess can ?t the 0.3–10keV X-ray spectrum,but that the energy dependence of the rapid variability (which is dominated by the QPO)strongly supports a spectral decomposition where the soft excess is from low tem-perature Comptonization of the disc emission and remains mostly constant,while the rapid variability is produced by the power law tail changing in normalization.The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries,but low temperature Comptonization of the disc spectrum is not generally seen in these systems.The main exception to this is GRS 1915+105,the only black hole binary which routinely shows super-Eddington luminosities.We speculate that super-Eddington accretion rates lead to a change in disc structure,and that this also triggers the X-ray QPO.Key words:accretion,accretion discs –galaxies:active –X-rays:galaxies

1INTRODUCTION

The discovery of a signi?cant quasi-periodic oscillation in the X-ray light curve of a Narrow Line Seyfert 1AGN RE J1034+396(Gierli′n ski et al.2008)strengthens arguments stressing the similar-ities in the physics of the accretion ?ow between supermassive and stellar mass black holes.Previous evidence for a simple correspon-dence between AGN and the black hole binaries (BHB)included similarities in the broadband shape of the X-ray variability power spectra,with characteristic break timescales scaling with mass (e.g.M c Hardy et al.2006),but the characteristic QPOs often seen in BHB light curves remained undetected until now (Vaughan &Utt-ley 2005;Leighly 2005).

The QPOs in BHB can be split into two main groups,at high and low frequencies,respectively.While there is as yet no clear mechanism for producing either set of QPOs (or the correlated broad band variability)there are many pointers to their origin from the observations.Most clearly,their amplitude increases with in-creasing energy.The BHB spectra typically contain two compo-nents,a disc and tail,and this increasing amplitude is consistent with the QPO (and all the rest of the rapid variability)being as-sociated with a variable tail while the disc remains constant.This shows that QPOs are produced by some mode of the hot coronal ?ow rather than a mode of the thin disc.(see e.g.the reviews by Van der Klis 2004;McClintock &Remillard 2006;Done,Gierli′n ski &Kubota 2007).

The rest of the QPO properties are more complex.The high frequency (HF)QPO may have a constant fundamental frequency

(though it is seen at 3:2harmonic ratios of this),which may re-late to the mass of the black hole.By contrast,the frequency (and

other properties)of the low frequency (LF)QPO change dramati-cally with mass accretion rate,correlating with the equally dramatic changes in the source spectra.Typically these show that at low mass accretion rates compared to Eddington,L/L Edd ?1,the LF QPO is at low frequencies,but is weak and rather broad.The correspond-ing energy spectra are dominated by a hard power law (photon in-dex Γ<2)which rolls over at around 100keV (low/hard spectral state).As the mass accretion rate increases,the low frequency QPO increases in strength and coherence as well as frequency,while the power law spectrum softens and the disc increases in strength rel-ative to the power law.The QPO is at its highest frequencies,is strongest and most coherent where the spectrum has both a strong disc component and a strong soft tail of emission to higher ener-gies (Γ>2.5).After this,the LF QPO frequency remains more or less constant as the tail declines and hardens to Γ~2.2,leav-ing the spectra dominated by the disc component (high/soft state),though it becomes harder to follow the QPO as increasing contri-bution from the stable disc (thermal dominant state)swamps the signal from the variable tail.(e.g.McClintock &Remillard 2006and references therein)

The only major difference expected in scaling these models up to the supermassive black holes in AGN is the decrease in disc tem-perature down to the UV band.The X-ray spectra of AGN spectra should then be always dominated by the tail,irrespective of spec-tral state (e.g.Done &Gierli′n ski 2005).The predicted change in shape of the tail with spectral state/mass accretion rate gives an ex-

c

2008RAS

2M.Middleton,C.Done,M.Ward,M.Gierli′n ski,N.Schurch

planation for the variety of spectral properties seen in unobscured subtypes AGN such as Broad Line AGN,Narrow Line Seyfert1’s (NLS1)and LINERs(e.g.Middleton et al.2008).The generally hard X-ray spectra seen in LINERS could be explained as a low L/L Edd?ow(e.g.Yuan et al.2008but see Maoz2007),while broad line AGN with a strong UV disc component and weak X-ray Γ~2tail would be analogous to the high/soft state in BHB.The NLS1probably have the highest mass accretion rates,so have lower mass for a given luminosity(Boroson2002),and their steeper X-ray spectra(Brandt,Mathur&Elvis1997;Leighly1999;Shemmer et al.2006)make them natural counterparts for the very high state (Pounds,Done&Osborne1995;Murashima et al.2005;Middle-ton et al.2007,M c Hardy et al.2007)where all QPOs(both high and low frequencies)are strongest.Intriguingly,RE J1034+396is a NLS1,so its QPO detection is consistent with these scaling models.

All this supports models where the underlying physics of the accretion?ow is very similar between BHB and AGN.However, the scaling clearly breaks down under more detailed study of the X-ray spectra from high mass accretion rate objects.These should have spectra dominated by the steep tail which is typical of the high and very high states,with no disc emission in the X-ray band.Yet all the high mass accretion rate AGN show an excess below1keV (Gierli′n ski&Done2004;Brocksopp et al.2006).This’soft X-ray excess’is completely inconsistent with the expected disc compo-nent,both as its temperature is higher than predicted from the mass and mass accretion rate of these AGN(e.g.Bechtold et al.1987), and as its shape is much smoother than a sharply peaked disc spec-trum(Czerny et al.2003;Gierli′n ski&Done2004).Either the soft X-ray excess is an additional component which breaks the scal-ing between AGN and BHB,or it is produced by some external distortion of the intrinsic emission.Obviously it is very important to distinguish between these alternatives and the objects with the strongest soft excesses offer the most stringent constraints.

RE J1034+396has one of the largest soft excesses known, which appears to connect smoothly onto the enormous EUV peak of its spectral energy distribution(Middleton et al.2007).The size and temperature of this peak is extreme even amongst NLS1’s (Puchnarewicz et al.2002,Casebeer et al.2006;Middleton et al. 2007),and an obvious question is whether this extreme soft excess is somehow linked to the detection of the QPO.Here we use XMM-Newton data on RE J1034+396to test the various models for the soft X-ray excess,and speculate on its connection to the QPO.

2THE ORIGIN OF THE SOFT EXCESS IN HIGH MASS ACCRETION RATE AGN

There are multiple models for the origin of the soft X-ray excess seen ubiquitously in high mass accretion rate AGN.The most ob-vious possibility is that it is related somehow to the disc.One way to do this is if the mass accretion rate is super Eddington,so the disc spectrum is distorted by advection of radiation in the very op-tically thick?ow.Such slim discs(Abramowicz et al.1988)have spectra which are less peaked than a standard disc(Waterai et al. 2000)so give a better?t to the shape of the soft excess(Mineshige et al.2000;Wang&Netzer2003;Haba et al.2008).Another way to modify the shape of the(standard or slim)disc emission is if it is Comptonized by low temperature electrons(Czerny&Elvis 1987;Kawaguchi2003),perhaps produced by a hotter skin form-ing over the cooler disc(Czerny et al.2003).However,the derived temperature for this skin is remarkably similar for all objects at0.1–0.2keV despite a large range in black hole mass(and hence disc temperature:Czerny et al.2003;Gierli′n ski&Done2004,Crummy et al.2006).This argues against it being related to the disc,so it is unlikely to be a true continuum component.

Instead,a constant energy is most easily explained through atomic processes,in particular the abrupt increase in opacity in partially ionized material between~0.7–2keV due to O VII/O VIII and Fe transitions.This results in an increase in transmitted?ux below0.7keV,which could produce the soft excess either from absorbtion in optically thin material in the line of sight,or from re?ection by optically thick material out of the line of sight.In both models the observed smoothness of the soft excess requires large velocity smearing(velocity dispersion~>0.3c)in order to hide the characteristic sharp atomic features,but with this addition then both re?ection and absorption models?t the shape of the soft excess equally well(Fabian et al.2002,2004;GD04;Crummy et al.2006;Chevallier et al.2006;Schurch&Done2006;Middle-ton et al.2007;Dewangan et al.2007,D’Ammando et al.2008). Such high velocities are naturally produced only close to the black hole,so both absorption and re?ection models predict that the soft excess arises in regions of strong gravity.However,both models also require some extreme,and probably unphysical,parameters. In the re?ection model,the inferred smearing can be so large that the required emissivity must be more strongly centrally peaked than expected from purely gravitational energy release,perhaps pointing to extraction of the spin energy itself.The amount of re-?ection required to produce the soft excess can also be extreme. Quasi-isotropic emission sets a limit to size of the soft excess of no more than a factor of2–3above the harder continuum emis-sion(Sobolewska&Done2007),yet the strongest observed soft excesses are a factor4larger than this(a factor8?10above the extrapolated continuum),requiring that the intrinsic illuminating spectrum is strongly suppressed(e.g.Fabian et al.2002).This issue becomes even more problematic when incorporating any pressure balance condition(such as hydrostatic equilibrium)as this strongly limits the section of the disc in which partially ionized material can exist,hence makes a much smaller soft excess(Done&Nayakshin 2007;Malzac,Dumont&Mouchet2005).

Conversely,in the smeared absorption model,pressure bal-ance rather naturally produces the required partially ionized zone (Chevallier et al.2006).However,these models also imply ex-treme velocities,with a peak out?ow velocity of~0.8c required in order to smooth away the characteristic absorption features from a smooth wind which covers the source(Schurch&Done2007, 2008).This is much larger than the maximum velocity of~0.2-0.4c produced by models of a radiation driven disc wind(Fukue 1996),so the absorber must instead be associated with faster mate-rial in this description.The obvious physical component would be a jet/magnetic wind,yet the amount of material is probably far too large to be associated with either of these(Schurch&Done2007; 2008).

Thus there are physical problems with all of these models: the Comptonized disc cannot explain the narrow range in inferred temperatures,smeared re?ection cannot produce the strongest soft excesses seen if the disc is in hydrostatic equilibrium,and smeared absorption requires a fast wind/jet which is not readily associated with the properties of any known component.

An alternative possibility for the absorption model is that the characteristic absorption features are masked by dilution instead of smearing,perhaps due to the wind becoming clumpy so that it partially covers the source(Boller et al.1996;Tanaka et al.2004; Miller et al.2007;2008).These models lack diagnostic power as the potential complexity of the wind means that any number of par-

c 2008RAS,MNRAS000,1–10

RE J1034+396:The origin of the soft X-ray excess and QPO3

tial absorbers can be added until the model?ts the observed spec-tra.Nonetheless,this may correspond to the more messy reality of high Eddington fraction winds from UV luminous discs(Proga& Kallman2004).Some of the clumps could even have high enough column to produced signi?cant re?ected emission as well(Malzac et al.2005;Chevallier et al.2006),giving a complex mix of re-?ection and partial absorption from a range of different columns, velocities and ionization states of the material.

It is important to distinguish between these very different po-tential origins of the soft excess as they make very different predic-tions about the environment and geometry of the accreting material close to the black hole.The extreme broad iron lines required in the pure re?ection models are not required in the absorption mod-els(either smeared:Sobolewska&Done2007;Done2007or par-tial covering:Miller et al.2008)as the broad feature redwards of the iron line is?t instead by continuum curvature.All the absorp-tion models require the presence of material above the inner disc, probably in the form of a wind,whereas the re?ection models in-stead suggest a clean line of sight to the inner disc.The large ve-locity shear in the smeared wind model requires that the material is strongly accelerated,so it potentially carries an enormous amount of kinetic energy(Chevallier et al.2006;Schurch&Done2006) with corresponding impact on AGN feedback/galaxy formation.

Spectral?tting alone cannot distinguish between these very different spectral models in the0.3–10keV bandpass(Crummey et al.2007;Sobolewska&Done2007;Middleton et al.2007;Miller et al.2007;2008).Variability gives additional information,but the smeared re?ection and smeared absorption models are known to be able to predict similar variability patterns(Ponti et al.2005; Gierli′n ski&Done2006).Here for the?rst time we?t all of these models to the data and calculate their predicted variability to see which description of the soft excess best matches the simultaneous constraints from both spectral and variability data.

3DATA EXTRACTION

XMM-Newton observed RE J1034+396on2007-05-31and2007-06-01for about93ks(observation id.0506440101,revolution no. 1369).We extracted source and background light curves and no-ticed background?ares and data gaps in the?nal7ks.Therefore, we excluded this data segment from analysis and used84.3ks of clean data starting on2007-05-3120:10:12UTC for further analy-sis.

3.1Spectra

We selected data from the PN(patterns0–4)and MOS(patterns 0–12)in a region of radius45arcsec.The data are very similar in shape to a previous16ks XMM-Newton observation,but are much higher quality due to the longer exposure.Because of the extreme softness of this particular source both MOS and PN were piled up so we excised the central regions of the image out to7.5arcsec radius so as not to be affected by this.Background was taken from 6source free regions of the same size.

We use only the MOS data in the0.3–10keV range for spec-tral?tting as there are well known discrepancies at soft energies between the PN and MOS spectra which makes simultaneous?t-ting of these two instruments very dif?cult.

We use XSPEC version11.3.2,and?x the minimum galactic absorption at1.31×1020cm?2in all?ts,but also allow a separate

C

o

u

n

t

r

a

t

e

(

s

?

1

)

Time (ks)

C

o

u

n

t

r

a

t

e

(

s

?

1

)

Figure1.Light curve of XMM-Newton(all detectors added together)obser-vation of RE J1034+396in(a)0.3–10and(b)1–10keV band.Clearly the ‘dip’occurring~50ks into the observation has little effect upon the light curve at high energies.The starting time of this observation was2007-05-31 20:10:12UTC.

neutral absorption column to account for additional absorption in the host galaxy.

3.2Energy dependence of the variability:rms spectra

A successful model must be able to describe both the spectrum and the variability.Fig.1a shows the full light curve for these data,with the clear QPO which is remarkably coherent in the latter part of the observation(25–85ks:G08).There is also a large scale drop in?ux at40–55ks.This looks very similar to an occultation event such as those recently recognised in other AGN(McKernan&Yaqoob 1998;Gallo et al.2004;Risaliti et al.2007;Turner et al.2008). Fig.1b shows the light curve in the high energy bandpass,where this dip is not present.This shows that there is clearly energy de-pendent variability in this event which is not present in the rest of the light curve.Thus the variability is complex and made from more than one component.

We explore this further by calculating the root mean square fractional variability amplitude(hereafter we will use the term ‘rms’for simplicity)as a function of energy(see Edelson et al. 2002;Markowitz,Edelson&Vaughan2003and Vaughan at el. 2003).We?rst calculate this for the total light curve with100-s binning.Fig.2a shows this rms spectrum rising smoothly with en-ergy.This behaviour is quite unlike the rms spectra seen from other NLS1’s although these can show a variety of shapes,including?at (e.g.Gallo et al.2007;O’Neill et al.2007),?at with a peak at2keV (Vaughan&Fabian2004;Gallo et al.2004;Gallo et al.2007),and falling but with a peak at2keV(Ponti et al.2006;Gallo et al.2007; Larsson et al.2008).

The rms is dominated by noise above~4keV as the count rate at high energies is very low due to the steep spectrum.In order to extend the rms to higher energies we extract light curves from the full source region,without excising the core to correct for pileup

c 2008RAS,MNRAS000,1–10

4M.Middleton,C.Done,M.Ward,M.Gierli′n ski,N.

Schurch

Figure 2.Rms spectra.Panel (a)shows the rms from the data with the PSF core excised (black triangles).The rms rises linearly with energy but the uncertainties at high energies are large due to the low number of counts.Better statistics at high energy can be obtained by including all the data (red crosses).Pileup transfers photons from low energy to high energy,but the lack of variability in the data at low energy means that this effect dilutes the high energy rms.Thus these data give a lower limit on the variability at high energies.Panel (b)shows the different rms patterns produced from different timescale variability using all the data.The red crosses show the total variability as in (a),while the black squares show the long timescale variability (11.2–5000μHz),the blue circles show the rms of the QPO alone (frequency of 270μHz)and the green triangles show the rms of the rapid variability,including the QPO (135–5000μHz).

(red points in Fig.2b).This means that some fraction of the hard photons originate from much lower energies,but the steeply rising rms spectrum means that the variability of these pileup photons is rather small.Thus pileup adds an approximately constant offset to the hard spectrum,and so should dilute the variability seen at high energies.Instead,the rms spectrum continues to rise in a rather smooth fashion at high energies (red points in Fig.2b),showing that this is a good lower limit to the total variability at high energies.The smooth increase of the rms as a function of energy seems initially most likely to be from a single component.However,there is clear evidence of different processes contributing to the vari-ability from the different energy dependence seen in the dip event (Fig.1).We explore this by re-calculating the rms on a range of timescales by changing the bin time,?T ,of the light curves.The rms is the square root of the integrated power in the light curve from frequencies of 1/T to 1/(2?T )Hz,where T =84300s is the length of the light curve.Thus the original binning of 100s means that the rms at each energy is the integral of the power spectrum from 11.2to 5000μHz.We compare this to the rms of the long timescale variability by increasing the binning to 3700s (the QPO period),i.e.corresponding to the frequency range 11.2–135μHz.This is shown by the black data in Fig.2b,and has a very different shape to the total rms (red points),with a similar amount of variability at low energies,but a sharp break around 0.7keV so that the variabil-ity at high energies is much lower.Subtracting this long timescale rms from the total rms (in quadrature)gives the rms of the rapid variability (including the QPO at 270μHz),i.e.the integral of the power spectrum from 135to 5000μHz (green points in Fig.2b).This has a sharp rise with increasing energy at low energies.We can compare this directly to the rms of the QPO by calculating this from the folded light curve (blue points).This is indeed very simi-lar in shape and normalization to the rms of rapid variability.This is expected as the QPO forms a large fraction (more than half)of

the variability power in this frequency range.However,the shape at high energies is marginally different,with the rapid variability ap-pearing to continue rising with energy while the QPO saturates at an rms of ~0.2.Given the potential problems with pileup,and the size of the uncertainties,this difference is probably not signi?cant.

4SIMULTANEOUS CONSTRAINTS FROM SPECTRA AND V ARIABILITY In the following sections we take each model for the soft excess and ?t it to the 0.3–10keV spectrum.The models are listed in Table 1.The ?t results are shown in Table 2.Then we inspect this best-?tting model to see how varying these components might produce the observed energy dependence of the variability.We focus here on the rapid variability,which is dominated by the QPO,as it is clear that the longer timescale variability may contain contributions from multiple processes.We calculate the simulated rms spectra by randomly varying a spectral model parameter with the mean equal to the best-?tting value and a certain standard deviation (Gierli′n ski &Zdziarski 2005).We calculate the rms spectrum at high energy resolution,but then bin this to the same resolution as the rms for direct comparison.

4.1Separate component for the soft excess:DISK ,SLIM and

COMP

We ?rst test the models where the soft excess is a separate emis-sion component.A standard accretion disc spectrum (DISKBB in XSPEC )is much more strongly peaked than the data,giving a very poor ?t,χ2ν=517/211,showing that this is an unacceptable de-scription of the broad band curvature.Instead we test models of an advective (slim)disc,however the best estimates for mass give a

c

2008RAS,MNRAS 000,1–10

RE J1034+396:The origin of the soft X-ray excess and QPO

5

Figure 3.Spectral models for a separate component for the soft excess:The upper panel shows the deconvolved spectra,while the lower panel shows residuals to the ?t.(a)uses an advective disc to describe the soft excess while (b)uses a Comptonized disc (green solid curve).Both models require a separate power law to ?t the spectrum above 2keV (red dashed line)to produce the total spectrum (blue solid line).The lower panel shows the residuals to the model ?t.It is clear that the smooth curvature of the soft excess rules out the simple advective disc model,while it is well described by the Comptonized disc.

mass accretion rate of ~0.3L Edd ,not formally high enough for advection to be important.Theoretical calculations show that the spectrum of a slim disc can be approximated by sum of blackbod-ies,similar to the standard disc models,but with T ∝r ?p ,where 0.5

limit is a fully advection dominated disc:Waterai et al.2000).Fig.3a shows that such models (DISKPBB ,available as an additional local model for XSPEC )are still not broad enough to match the shape of the soft excess (χ2ν=457/210).Instead,a low temperature Comptonization component (COMPTT )gives a reason-able ?t to the data,except for the features below ~0.6keV (Fig.3b).Hereafter we refer to this model as COMP .

It is plain from the residuals to this ?t (lower panel of Fig 3b)that there are weak atomic features at low energies,especially at ~0.6keV .Adding a series of narrow Gaussians gives a reduction in χ2of ~30for signi?cant emission features at ~0.55,0.74and 0.87keV .These are consistent with He–like O Ly αand He-and H-like O radiative recombination continua i.e.indicating photoion-ized material.However,there are no corresponding narrow lines in the RGS data,so these features must be intrinsically broad.Their equivalent width is 10eV ,so these have negligible impact on the derived continuum which is the subject of this paper.

In BHB the power law tail is generically very variable,while the disc is remarkably constant (Churazov et al.2000).If the soft excess is really related to the disc and is constant,then we expect the low energy variability to be suppressed,as observed,because of increasing dilution of the variable power law by the constant soft excess at low energies.

We quantify this effect by taking the same Comptonization plus power law model as ?ts the spectrum of the soft excess,and

Figure 4.Variability of a Comptonized disc and power law:The upper panel

shows the mean spectrum (solid blue curve)and ±1σvariability (dotted red curves).The lower panel shows the rms produced by this variability (dark thick blue horizontal lines)compared to that seen in the data on short (light green crosses).Panel (a)shows the patterns produced by varying the power law in normalization while keeping the Comptonized disc constant.The rapid increase in dilution of the power law variability below 1keV exactly matches the rapid drop on short timescales.This is very strong evidence that this spectral decomposition is correct.(b)shows the pattern produced by changing the optical depth of the Comptonized disc by 1.5per cent,whilst keeping the power law constant.This gives a fairly good match to the observed long timescale variability (shown as black crosses in the lower panel).

varying the normalization of the power law tail by 20per cent.This gives a constant rms where the tail dominates (above 2keV)and a dramatically increasing suppression of the variability below this,as the fractional contribution of the constant soft excess increases (Fig.4a).This looks very similar to the drop observed at low ener-gies in rms of the rapid variability (and QPO).This provides very strong evidence that a two component model is the correct spectral decomposition as both the spectrum and spectral variability can be easily described in this model.The soft excess is a separate com-ponent above the power-law tail at low energies,and the rapid vari-ability (including the QPO)is a modulation of the tail.

The longer timescale variability can also be ?t in this model.The data show a rise in rms with energy to ~1keV so this can-not be produced by simply by varying the norm of the Comp-tonized disc.Instead,varying the optical depth or temperature leads to spectral pivoting about the peak of the seed photons (at ~3kT seed ≈0.15keV).Fig.4b shows how changing the optical depth by 1.5per cent can produce this characteristic rise,which is then diluted by the constant power law above ~0.8keV .While this does indeed match the broad shape of the long timescale rms,we caution that there should also be some contribution to this from partial covering if the dip in the light curve is indeed an occultation event.

c

2008RAS,MNRAS 000,1–10

6M.Middleton,C.Done,M.Ward,M.Gierli′n ski,N.

Schurch

Figure 5.As for

Fig.3but for a re?ection origin for the soft excess.(a)has a steep power law (red dashed line)and its ionized,smeared re?ection (light green curve)while (b)has the steep power law illuminating two separate re?ectors,one of which is similarly ionized to that in (a)and one which is predominantly neutral.The residuals clearly show that at least two re?ectors are required to describe the spectrum in this model.

4.2Smeared Re?ection models:REF 1and REF 2

We next explore how the re?ection model for the soft excess can ?t both the spectrum and spectral variability.We use the constant density re?ection models of Ballantyne,Iwasawa &Fabian (2001)(available as a table model in XSPEC ).These models (described in more detail in Ross &Fabian 2002)become inaccurate for Γ>2.5(Done &Nayakshin 2007),so instead we use the spectra tabulated for Γ=2.2,and multiply the model by E ?(Γ?2.2),where E is energy.This code also converts the normalization of the re?ected emission to that of the illuminating power law so that the amount of re?ection is parameterized by the solid angle of the illuminated material,?/2πand inclination (Done &Gierli′n ski 2006),which

we ?x at 30?

.We smear this using the convolution version of the LAOR code for the velocity structure of an extreme Kerr spacetime (Laor 1991).

Fig.5a shows that this is a very poor ?t to the data (χ2ν=612/210),as a single ionization state re?ector cannot simultane-ously produce both the hard tail and the shape of the soft excess.This is a common feature in good signal-to-noise data:multiple re?ectors are required,one to ?t the soft excess,another to ?t the iron line,dispelling a key attraction of the model (Crummy et al.2006).Nonetheless,a double re?ector can indeed ?t the data well (Fig.5b),where the hard tail/iron line region requires a neu-tral re?ector (modelled using the THCOMP code:˙Zycki,Done &

Smith 2000as the REFLION code does not extend down to the very low ionization states required).We hereafter refer to this model as REF 2.

This is a very different spectral deconvolution to the one where the soft excess is a separate Comptonized component (COMP ).The spectrum at low energies is now modelled by the intrinsic power law,and instead there is a ‘hard excess’at high energies which is

Figure 6.As for Fig.4but for the double re?ection model for the soft excess.(a)shows the rms produced by pivoting the illuminating power law spectral index about the peak in seed photon ?ux at 3kT seed ~0.15keV when both re?ectors respond to this illumination.This gives a linear rise in rms as a function of energy,which does not match the sharper rise around 0.8keV seen in the rapid variability.(b)shows that this can be roughly matched if the ionized re?ector which contributes mainly at low energies remains constant while the more neutral re?ector responds to the power law pivoting.

formed by dramatically enhanced,strongly smeared,neutral re?ec-tion.

The only way to produce a steeply rising rms is to pivot the power law about its peak in seed photons (around 0.15keV ,as be-fore).This gives a linearly rising rms as shown in Fig.6a,assuming both re?ectors respond to this changing illumination (though we ?x the ionization of each component for simplicity).

While this would ?t the overall rms shown in Fig.2b,it plainly cannot match the two very different shaped components which underlie the variability.The rapid variability rms shape does not rise linearly with energy,there is a clear in?ection point around ~0.8keV .This has an obvious origin in the separate Comptonized disc models discussed above,as this is the energy at which this component starts to dominate the spectrum and hence dilute the variability.However,it is possible to match this in the re?ection model by assuming that the ionized re?ector remains constant.Fig.6b shows how this dilutes the variability towards lower en-ergies,giving a fairly good ?t to the rapid variability rms.

Constant re?ection components are a feature of these models for the soft excess in other AGN,and may arise from strong light bending effects (Miniutti &Fabian 2004).This simultaneously ex-plains the lack of variability together with enhanced amplitude and extreme smearing.However,our spectral deconvolution and vari-ability require that the constant re?ector is the one which is not enhanced relative to the illuminating power law,making this model appear somewhat contrived in RE J1034+396.

4.3Smeared Absorption Models:SWIND and XSCORT

We now ?t the smeared absorption models.These assume the source is completely covered by a partially ionized wind from

c

2008RAS,MNRAS 000,1–10

RE J1034+396:The origin of the soft X-ray excess and QPO

7

Figure 7.As for

Fig.3but for a smeared absorption origin for the soft ex-cess.(a)has a steep power law (dashed red line)which is distorted by a velocity smeared absorber which completely covers the source (solid blue curve).This produces a very good ?t to the spectrum,but requires a large ve-locity dispersion in the material.(b)shows instead the results using the ex-pected velocity dispersion from a line driven disc wind.The velocity spread of 0–0.3c is not suf?cient to smear out the characteristic atomic features.

the disc,which has a large velocity shear to smear out the char-acteristic strong absorbtion lines.We ?rst use the simple SWIND model (available on the local models page for XSPEC )of Done &Gierli′n ski (2004;2006),where the absorption from a partially ion-ized column of material is convolved with a Gaussian velocity ?eld.This is an excellent ?t to the data (Fig.7a),but the best ?t veloc-ity dispersion goes to the upper limit of 0.5c allowed in the model.The gaussian form of the velocity dispersion means that this corre-sponds to a velocity shear greater than the speed of light,which is obviously unphysical (see Middleton et al.2007,Schurch &Done 2007a,b).

Instead we ?t more physical wind absorption models,calcu-lated from the XSCORT code,which accelerate the wind from 0to 0.3c,and use this internal velocity ?eld self-consistently in the photoionization code.These models have only been calculated for a small number of parameters (Schurch &Done 2007a),so can-not be properly ?t to the data.However,we have taken the model with parameters closest to those required by the soft excess spectral shape,and then corrected for the different spectral index,as in Sec-tion 4.2.Fig.7b shows that while this gives a strong soft excess,the velocity shear is insuf?cient to smooth the strong atomic features in the 0.7–3keV band into the observed smooth rise,so this gives a very poor ?t to the data (χ2ν=2153/212).Thus the absorption does not arise in a line driven disc wind,but instead must be connected to much faster moving material in this model.

We explore the variability properties of the fast wind Fig.7a,since the more physical wind (Fig.7b)does not ?t the data.Be-cause the whole spectrum is again made from the intrinsically steep power law,then simply pivoting this at the peak ?ux of the seed photons gives a linearly rising rms (Fig.8a),similar to that of Fig.6a.Instead,allowing the ionization of the fast wind to change in response to this changing illumination means that the variabil-ity is enhanced over the range where the partially ionized material has most effect on the spectrum i.e.0.7–2keV (Gierli′n ski &Done 2006).Fig.8b shows how this does not produce enough enhance-ment of the variability to follow the sharp rise in rms at ~0.7keV

Figure 8.As for Fig.4but for a smeared absorption model for the soft ex-cess.(a)shows the rms produced by pivoting the illuminating power law

spectral index about the peak in seed photon ?ux at 3kT seed ~0.15keV without changing the ionization of the absorber.Similarly to Fig.6,this lin-ear rise in rms as a function of energy does not match the sharper rise around 0.8keV seen in the rapid variability.(b)shows that this low energy rise can be matched if the ionization responds to the changes in illumination as this enhances the variability over 0.7–2keV where the absorption dominates.However,this also predicts that the variability drop above 2keV ,which is not seen in the data.

and it also predicts that this enhancement does not affect the spec-trum above ~2keV so the rms at high energies is also too small.

Thus while the smeared absorption model is a good ?t to the spectrum,it cannot easily match the variability patterns seen,mak-ing it a less attractive solution.

4.4Partial covering models:IONPCF 1and IONPCF 2

If instead the absorption is clumpy then it can lead to clouds which partially cover the source.These can be ionized as they are illumi-nated by the central source,so we model this using partial covering by partially ionized material (ZXIPCF ,available as an additional model for XSPEC ).This ?ts the data fairly well (Fig.9a)for a col-umn with very low ionization covering 75per cent of the source.We call this model IONPCF 1.A second partially ionized,partial covering component is marginally signi?cant (?χ2=12for 4ad-ditional parameters),but this must be out?owing,with a blueshift of 0.12±0.01c .This is similar to the velocities sometimes seen in highly ionized K αabsorption lines from iron in high mass accre-tion rate AGN (e.g.the compilation Reeves et al.2008),and also close to the theoretical expectations of the maximum velocity of a UV line driven disc wind (Proga et al.2004).Hereafter we call this model IONPCF 2.

Similarly to Fig.6a and Fig.8a,pivoting the power law at the peak ?ux of seed photons gives a linearly rising rms (Fig.10a)which does not match the sharper rise in rms seen in the data.Again,dilution by a constant component at low energies is re-quired,so Fig.10b shows the variability pattern produced by as-suming that the ionized absorption component at low energies re-mains constant while the rest of the spectrum varies as before.

c

2008RAS,MNRAS 000,1–10

8M.Middleton,C.Done,M.Ward,M.Gierli′n ski,N.

Schurch

Figure 9.As for Fig.3but for a partial covering model for the soft excess.

(a)has an intrinsically steep power law,part of which is strongly absorbed by nearly neutral material (light green curve)and part of which is unab-sorbed (dashed red line).(b)shows a marginally better ?t to the spectrum,where there is a second absorbed component from material which is ion-ized,so it also contributes at low

energies.

Figure 10.As for Fig.4but for the partial covering model for the soft excess.(a)shows the rms produced by pivoting the illuminating power law spectral index about the peak in seed photon ?ux at 3kT seed ~0.15keV without changing the ionization of the absorber.Similarly to Fig.6a and Fig.8a,this linear rise in rms as a function of energy does not match the sharper rise around 0.8keV seen in the rapid variability.(b)shows that this low energy rise is better ?t if the ionized absorber which contributes at low energies is held constant while the power law pivots,but the model’s predicted rise at ~0.8keV is still stronger than is observed.

COMP

Γ

2.28+0.13

?0.10

289/210

N PL (×10?4)4.9+0.8

?0.3

kT e (keV)0.26±0.03

N comptt

10.6+1.2

?0.8

REF 2

Γ

3.61+0.08

?0.04

268/206

N PL (×10?4)9.4+0.3

?2.4

?1/2π0.43+1.05

0.10

R in ,12.1+1.0

?0.8

lg ξ3.02+0.16

?0.07?2/2π56+15?18

R in ,2

3.2+0.4

?1

IONPCF 2

Γ

3.68+0.09

?0.13233/206

N PL (×10?4)165+367?69

lg ξ1

0.7+0.4

?0.9N H,1(1022cm ?2)12+2?5

f 10.80±0.06

lg ξ2

2.72+0.05

?0.5N H,2(1022cm ?2)153+13?14

f 20.63+0.07

?0.09v 2/c

0.12±0.01

RE J1034+396:The origin of the soft X-ray excess and QPO9 DISK Standard disc WABS(DISKBB+POWERLAW)

SLIM Advective disc WABS(DISKPBB+POWERLAW)

COMP Comptonized component WABS(COMPTT+POWERLAW)

SWIND Smeared wind absorption WABS*SWIND(POWERLAW)

XSCORT Ionized absorption/emission WABS(XSCORT)

REF1Ionized re?ection(single)WABS(POWERLAW+CONLINE*REFLBAL(POWERLAW))

REF2Ionized re?ection(double)WABS(POWERLAW+CONLINE(THCOMP)+CONLINE*REFLBAL(POWERLAW))

IONPCF1Single ionized partial covering ZXIPCF*WABS(POWERLAW)

IONPCF2Double ionized partial covering ZXIPCF*ZXIPCF*WABS(POWERLAW)

10M.Middleton,C.Done,M.Ward,M.Gierli′n ski,N.Schurch

ponent,connecting smoothly onto the EUV peak of the spectral energy distribution and extending out to~1keV.This does not have an obvious counterpart in the typical black hole binary systems.These can show convincingly clean disc spectra(thermal dominant state,high/soft state,ultrasoft state),or higher temper-ature Comptonization(10–20keV:very high state,intermediate state,steep power law state),but generally they do not show low temperature Comptonization(see e.g.Done,Gierli′n ski&Kubota 2007).However,most of these systems have L/L Edd<1,so they may not be a good guide to the spectra of super Eddington?ows. The disc structure should change at such high mass accretion rates, with strong winds potentially increasing the amount of material in the corona,leading to mass loading of the acceleration mechanism and decreasing energy per particle.Whatever the origin,a similar process of low temperature disc Comptonization probably happens in the unique galactic black hole binary GRS1915+105.This is the only black hole binary in our Galaxy which consistently shows super Eddington luminosities(Done,Wardzi′n ski&Gierli′n ski 2004),and it can show spectra which are dominated by a huge, low temperature Comptonized disc component,with a weak power law tail to higher energies.Fig.11shows how one of these spectra from GRS1915+105(the lowωstate in?g.7of Zdziarski et al. 2005)?ts almost exactly onto the XMM-Newton spectrum of RE J1034+396with a shift in energy scale by a factor20.This gives a mass estimate for RE J1034+396of~2×106M⊙from scaling the disc temperature as M?1/4,which seems quite reasonable (Puchnarewicz et al.2002).

Understanding the origin of the soft excess in RE J1034+396 may not necessarily solve the problem of the soft excess in general. The spectral energy distribution of this object is plainly rather dif-ferent from that in most other high mass accretion rate AGN in that the soft excess contains a large fraction of the bolometric luminos-ity of the source(Middleton et al.2007).Spectral distortion models (re?ection or absorption)are clearly more likely to explain a fea-ture carrying only a small fraction of the bolometric luminosity. Instead,the continuous EUV/soft X-ray excess in RE J1034+396 clearly favours a common origin for the disc and soft excess,un-like that for most other quasars,where the UV and soft X–rays do not appear to smoothly connect to each other in individual objects (Haro-Corzo et al.2007).

7CONCLUSIONS

The combined constraints from the spectrum and variability show the soft excess in RE J1034+396is most likely a smooth extension of the accretion disc peak in the EUV probably arising from low temperature Comptonization of the disc.This remains more or less constant on short timescales,diluting the QPO and rapid variability seen in the power law tail at the low energies where the soft ex-cess dominates.As in the black hole binary systems,the QPO is a feature of the tail not of the disc.

The conclusion that the soft excess is a low temperature Comptonization of the disc emission may not necessarily be more widely applicable to other NLS1.The spectrum of RE J1034+396 is unique,so extrapolating results from this object may not be justi-?ed.In particular,if this object has a very high(super Eddington?) mass accretion rate then it could enter a new accretion state(per-haps analogous to the unique galactic binary GRS1915+105and the Ultra Luminous X-ray sources:Roberts2008)which may also be the trigger for its so far unique QPO.A different origin for the soft excess in RE J1034+396has the advantage that it would not require some unknown physical mechanism to restrict the temper-ature of the continuum in all objects to a narrow range(Gierli′n ski &Done2004),though does require a coincidence that this tem-perature in RE J1034+396is so close to that ubiquitously seen for the soft excess.Nonetheless,it is clearly possible that in selecting the most extreme soft excess object,we have also selected the one where the the soft excess has a different origin. REFERENCES

Abramowicz M.A.,Czerny B.,Lasota J.P.,Szuszkiewicz E.,1988,ApJ, 332,646

Ballantyne D.R.,Iwasawa K.,Fabian A.C.,2001,MNRAS,323,506 Bechtold J.,Czerny B.,Elvis M.,Fabbiano G.,Green R.F.,1987,ApJ,314, 699

Boller T.,Brandt W.N.,Fink H.,1996,A&A,305,53

Boroson T.A.,2002,ApJ,565,78

Brandt W.N.,Mathur S.,Elvis M.,1997,MNRAS,285,L25 Brocksopp C.,Starling R.L.C.,Schady P.,Mason K.O.,Romero-Colmenero E.,Puchnarewicz E.M.,2006,MNRAS,366,953 Casebeer D.A.,Leighly K.M.,Baron E.,2006,ApJ,637,157 Chevallier L.,Collin S.,Dumont A.-M.,Czerny B.,Mouchet M.,Gonc?alves

A.C.,Goosmann R.,2006,A&A,449,493

Churazov E.,Forman W.,Jones C.,B¨o hringer H.,2000,A&A,356,788 Crummy J.,Fabian A.C.,Gallo L.,Ross R.R.,2006,MNRAS,365,1067 Czerny B.,Elvis M.,1987,ApJ,321,305

Czerny B.,Niko?ajuk M.,R′o˙z a′n ska A.,Dumont A.-M.,Loska Z.,˙Zycki P.T.,2003,A&A,412,317

D’Ammando F.,Bianchi S.,Jim′e nez-Bail′o n E.,Matt G.,2008,A&A,482, 499

Dewangan G.C.,Grif?ths R.E.,Dasgupta S.,Rao A.R.,2007,ApJ,671, 1284

Done C.,2007,PThPS,169,248

Done C.,Gierli′n ski M.,2005,MNRAS,364,208

Done C.,Gierli′n ski M.,2006,MNRAS,367,659

Done C.,Nayakshin S.,2007,MNRAS,377,L59

Done C.,Gierli′n ski M.,Kubota A.,2007,A&ARv,15,1

Done C.,Wardzi′n ski G.,Gierli′n ski M.,2004,MNRAS,349,393 Edelson R.,Turner T.J.,Pounds K.,Vaughan S.,Markowitz A.,Marshall

H.,Dobbie P.,Warwick R.,2002,ApJ,568,610

Fabian A.C.,Ballantyne D.R.,Merloni A.,Vaughan S.,Iwasawa K.,Boller T.,2002,MNRAS,331,L3

Fabian A.C.,Miniutti G.,Gallo L.,Boller T.,Tanaka Y.,Vaughan S.,Ross R.R.,2004,MNRAS,353,1071

Fukue J.,1996,PASJ,48,631

Gallo L.C.,Boller T.,Tanaka Y.,Fabian A.C.,Brandt W.N.,Welsh W.F., Anabuki N.,Haba Y.,2004,MNRAS,347,269

Gallo L.C.,Brandt W.N.,Costantini E.,Fabian A.C.,2007,MNRAS,377, 1375

Gierli′n ski M.,Done C.,2004,MNRAS,349,L7

Gierli′n ski M.,Zdziarski A.A.,2005,MNRAS,363,1349

Gierli′n ski M.,Done C.,2006,MNRAS,371,L16

Gierli′n ski M.,Middleton M.,Ward M.,Done C.,2008,Natur,in press (arXiv:0807.1899)

Haba Y.,Terashima Y.,Kunieda H.,Ohsuga K.,2008,PASJ,60,487 Haro-Corzo S.A.R.,Binette L.,Krongold Y.,Benitez E.,Humphrey A., Nicastro F.,Rodr′?guez-Mart′?nez M.,2007,ApJ,662,145 Kawaguchi T.,2003,ApJ,593,69

Laor A.,1991,ApJ,376,90

Larsson J.,Miniutti G.,Fabian A.C.,Miller J.M.,Reynolds C.S.,Ponti

G.,2008,MNRAS,384,1316

Leighly K.M.,1999,ApJS,125,317

Leighly K.M.,2005,Ap&SS,300,137

Malzac J.,Dumont A.M.,Mouchet M.,2005,A&A,430,761

Maoz D.,2007,MNRAS,377,1696

Markowitz A.,Edelson R.,Vaughan S.,2003,ApJ,598,935

c 2008RAS,MNRAS000,1–10

RE J1034+396:The origin of the soft X-ray excess and QPO11 McClintock J.E.,Remillard R.A.,2006,in:Compact stellar X-ray sources.

W.Lewin,M.van der Klis(Eds.).Cambridge Astrophysics Series,No.

39,Cambridge University Press,157

M c Hardy I.M.,Koerding E.,Knigge C.,Uttley P.,Fender R.P.,2006,

Natur,444,730

McKernan B.,Yaqoob T.,1998,ApJ,501,L29

Middleton M.,Done C.,Gierli′n ski M.,2007,MNRAS,381,1426

Middleton M.,Done C.,Schurch N.,2008,MNRAS,383,1501

Miller L.,Turner T.J.,Reeves J.N.,George I.M.,Kraemer S.B.,Wingert

B.,2007,A&A,463,131

Miller L.,Turner T.J.,Reeves J.N.,2008,A&A,483,437

Miniutti G.,Fabian A.C.,2004,MNRAS,349,1435

Mineshige S.,Kawaguchi T.,Takeuchi M.,Hayashida K.,2000,PASJ,52,

499

Murashima M.,Kubota A.,Makishima K.,Kokubun M.,Hong S.,Negoro

H.,2005,PASJ,57,279

O’Neill P.M.,Nandra K.,Cappi M.,Longinotti A.L.,Sim S.A.,2007,

MNRAS,381,L94

Ponti G.,Miniutti G.,Cappi M.,Maraschi L.,Fabian A.C.,Iwasawa K.,

2006,MNRAS,368,903

Pounds K.A.,Done C.,Osborne J.P.,1995,MNRAS,277,L5

Proga D.,Kallman T.R.,2004,ApJ,616,688

Puchnarewicz E.M.,Mason K.O.,Siemiginowska A.,Fruscione A.,Co-

mastri A.,Fiore F.,Cagnoni I.,2001,ApJ,550,644

Reeves J.,Done C.,Pounds K.,Terashima Y.,Hayashida K.,Anabuki N.,

Uchino M.,Turner M.,2008,MNRAS,385,L108

Risaliti G.,Elvis M.,Fabbiano G.,Baldi A.,Zezas A.,Salvati M.,2007,

ApJ,659,L111

Roberts T.P.,2008,Proc.ESAC faculty workshop on X-rays from nearby

galaxies,MPE Report295,42

Ross R.R.,Fabian A.C.,Ballantyne D.R.,2002,MNRAS,336,315

Shemmer O.,Brandt W.N.,Netzer H.,Maiolino R.,Kaspi S.,2006,ApJ,

646,L29

Schurch N.J.,Done C.,2006,MNRAS,371,81

Schurch N.J.,Done C.,2007,MNRAS,381,1413

Schurch N.J.,Done C.,2008,MNRAS,386,L1

Sobolewska M.A.,Done C.,2007,MNRAS,374,150

Tanaka Y.,Boller T.,Gallo L.,Keil R.,Ueda Y.,2004,PASJ,56,L9

Turner T.J.,Reeves J.N.,Kraemer S.B.,Miller L.,2008,A&A,483,161

van der Klis M.,2005,AN,326,798

Vaughan S.,Fabian A.C.,2004,MNRAS,348,1415

Vaughan S.,Uttley P.,2005,MNRAS,362,235

Vaughan S.,Edelson R.,Warwick R.S.,Uttley P.,2003,MNRAS,345,

1271

Wang J.-M.,Netzer H.,2003,A&A,398,927

Watarai K.-y.,Fukue J.,Takeuchi M.,Mineshige S.,2000,PASJ,52,133

Yuan W.,Zhou H.Y.,Komossa S.,Dong X.B.,Wang T.G.,Lu H.L.,Bai

J.M.,2008,arXiv,806,arXiv:0806.3755

Zdziarski A.A.,Gierli′n ski M.,Rao A.R.,Vadawale S.V.,Miko?ajewska

J.,2005,MNRAS,360,825

˙Zycki P.T.,Done C.,Smith D.A.,2001,MNRAS,326,1367

c 2008RAS,MNRAS000,1–10

Origin软件使用说明

Origin软件使用说明 2010-09-30 05:33:30| 分类:默认分类|举报|字号订阅 1.序 Origin软件主要是用来做数据绘图用的。本文将主要介绍origin的初级使用方法,为许多刚开始使用origin写实验报告的同学提供入门帮助。与某些软件使用说明书系统介绍不同的是,本说明侧重于实际问题的解决。 2.基本入门操作 现在介绍最最最基本的使用方法。 比如说你现在有一组数据想做图(其中a列代表一系列点的x坐标,b列代表该系列点的y坐标,c列代表另一系列点的y坐标(x坐标同第一系列点))。 a b c 1 1 3 2 2 6 3 3 9 4 4 12 5 5 15 6 6 18 7 7 21 打开origin,会看到data1数据窗口,在窗口里空白处点右键->add new column,会看到表格增加一列,上面的数据输入表格里。下面开始根据数据绘图。 选菜单兰中的plot->scatter(这里选scatter,line,line+symbol...都可以,只不过出来的样式不一样,大家自己选选体会一下就可以了)。这是跳出一个select columns for plotting的窗口,问你哪列数据做x轴,那列做y轴。我们点左面的A[x],然后点中间的<->X,示意A是X轴,再点B[Y],再点<->Y,示意B列做y轴。这时点Add按钮,告诉程序说第一组数据是以A为x轴,B为Y轴。这时,再单击C[Y],点<->Y按钮,单击Add按钮,示意第二组点时以A列为X轴,C列为Y轴。最后点OK。这时会看到跳出一个Graph窗口,里面有坐标轴何我们要的点。 我们这两组数据均是线性的,接下来我们拟和直线。先拟和第一组,选菜单蓝里的data看看g1 data1....是不是被勾上了(默认应该时被勾上的),如果勾上了说明现在对的是第一组数据进行操作。点菜单兰analysis->fit linear,这时会看到拟和出来直线了。拟和第二组,选菜单蓝里的data->g2 data2,把第二组选中,这时对应的操作是对第二组的。同上analysis->fit linear。可以看到第二组也被拟和成直线了。 如果数据不是线性的,那么就拟和成非线性的,analysis->fit sigmoidal(S型) 或 guassian(高斯拟和)或nonliner curve fit中的fitting wizard(选一个你觉得合适的形状进行拟和)。这样最最最基本的origin作图就做出来了。 最后存盘,file->save project as...就可以了。 如果想要copy到word里怎么办?这里有几种方法,我介绍两种。 a.在做好的图旁边点右键,选copypage(如果没有的话,说明你右键点错地方了,多换几个地方点点)。然后在word 里面粘贴就好了,这样比较方便,不过有时候图会变形。 b.在菜单兰里file->export page,可以输出各种格式的,对于图片格式来说,我试了几个感觉tif的要比bmp和jpg 的要好,那么我们就输出tif格式的,把下面的show export option勾上,点保存。如果是想插到word里面,的话,DPI 选72比较合适,如果是打印实验报告的话,color depth里直接选monochrome的就可以了(毕竟不要彩打),点ok,就输出一个tif文件,最后在word里面插入这个文件就ok了。 3.图的细节修饰与美化 一般做图都应该有要求的,要规范。以前我也不太清楚怎么算规范,后来听了王迅院士的一个报告,关于科技论文的写作,里面提到了怎么规范的画图,这样才知道原来图这么画看起来才好看。下面我介绍一下怎样按照王讯院士提到的几个标准来作图。

origin基本操作介绍

Origin操作方法报告 彭佳1120152242 一、画简单的二维图线 1.双击已下载好的软件,打开Origin 8.0,得到如下初始主界面。 2.给Book1的第一列A(X)添加一组数,如从小到大依次增大的自然数。 将鼠标移至上左击一下,选中第一列,再在上右击一下,弹出子菜单,选择,得到要求数据。

3.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的平方。 同理右击后,选择,得到如左下图所示界面。 在第一个空白对话框中输入Col(A)^2,再点击,得到所需数据。 4.给Book1添加新的列。 方法一:单击Standard工具条上的【Add New Columns】按钮; 方法二:在Worksheet的空白处右击,从子菜单中选择【Add New Columns】;

方法三:选择【Column】:【Add New Columns】,弹出如下对话框,填写要添加的列数,单击【OK】即可。 5.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的开方。 同上3打开【Set Column Values】界面后,选择开方函数,将函数的运算原数据填为第一列,单击OK即可。

6.用上述三列数据做简单的二维图。 单击Standard工具条上的【New Graph】按钮,建立一个新的Graph。 激活Graph 1,按如下操作绘图。 再单击Add按钮,得下图。即同一Graph中的2条曲线信息。 单击【Apply】可以预览图像,觉得图像无误后,单击【OK】即可得到初步的二维图。

再单击如下【New Legend 】按钮,更新曲线Legend 。 7.自定义曲线类型。 点击上图中的按钮可将曲线设置为不同类型,如下图。 8.屏蔽曲线中的数据 双击其中一条曲线,弹出菜单界面,点击【Drop Line 】,如下操作后,点击【Apply 】预览,【OK 】即可完成修改。 B A

origin8使用指南

Origin 8.0 基本功能来源:李航minus_L的日志 本人非技术宅,所以写的东西也就是大物实验要用到的,面向对象为数院大一同学们,所以内容肯定不多。外加已经快一年没用过了,写的肯定不全,请大神轻喷。有问题就留言,我能解决就解决,解决不了的还请看到这篇文章的大牛解决一下~ --------------------------------------------------- 1、安装 安装程序什么的我记得大物主页上貌似有,下载安装就好,应该不用教了。 2、界面 A是整个工程,一级实验应该是用不到的;B是窗口的列表,你所有的数据、图标窗口全都在这里;C就是窗口了。其他工具栏什么先不用去管他,用到再说。

3、数据录入 基本与excel类似,并且和excel兼容,从excel中复制过来的数据可以直接粘贴。 至于上面的“Long Name”(名称)、“Units”(单位)、“Comments”(注释),会在画图的时候用到。 如果有多组数据,比如光电效应那个实验,也可把数据放在一个表里。如图

右键图表空白区域,点击“Add New Column”,就会多出一栏。 数据都填好以后,就可以绘图了。

4、绘图 一级大物实验用到Origin的基本都是绘图,所以这里主要讲一下绘图。 最简单的,绘制散点图,也就是把原始数据画出来。 用拖选或按住ctrl的方法选中两列(注意:要选标题,就是A(x)那个位置),右键->Pl ot->Symbol->Scatter。

这样,就画出了散点图(右边那个东西点ok无视掉就好)。 但是一般来说大物作业不可能让你画完散点图就没事了,有分一下两种情况 a)曲线连接 曲线连接的话刚才就不能点Scatter了,应该点右键->Plot->Linel->Spline。

origin基本作图技巧

实战origin 复旦bbs,chemistry 序 Origin软件主要使用来做数据绘图用的。本系列文章将主要介绍origin的初级使用方法,为许多刚开始使用origin写试验报告的同学提供入门帮助。并不像某些软件使用说明书籍那样系统的讲解,而是着重面向解决实际问题。 前一段时间有人说origin要严打(我觉得只要自己小心处理,他根本无法抓住你用的是什么版),介绍了其他几款数据绘图软件,据说也都很好。不过我从来没用过,这5年多来一直使用的是origin,对其使用方法也略有所得,也只能介绍介绍这款软件。 这里使用的是origin7.0+Peak Fitting Module 7.0(这个东西虽然装了 ,不过从来没用过,安装方法参考他的readme文件)。安装时请参考他的intruction.txt,里面有serial no.的。 基本入门操作 现在介绍最最最基本的使用方法。 比如说你现在有一组数据想做图(其中a列代表一系列点的x坐标,b列代表该系列点的y坐标,c列代表另一系列点的y坐标(x坐标同第一系列点))。 a b c 1 1 3 2 2 6 3 3 9 4 4 12 5 5 15 6 6 18 7 7 21 打开origin,会看到data1数据窗口,在窗口里空白处点右键->add new column,会看到表格增加一列,上面的数据输入表格里。下面开始根据数据绘图。

选菜单兰中的plot->scatter(这里选scatter,line,line+symbol...都可以,只不过出来的样式不一样,大家自己选选体会一下就可以了)。这是跳出一个select columns for plotting的窗口,问你哪列数据做x轴,那列做y轴。我们点左面的A[x],然后点中间的<->X,示意A是X轴,再点B[Y],再点<->Y,示意B列做y轴。这时点Add按钮,告诉程序说第一组数据是以A为x轴,B为Y轴。这时,再单击C[Y],点<->Y按钮,单击Add按钮,示意第二组点时以A列为X轴,C列为Y轴。最后点OK。这时会看到跳出一个Graph 窗口,里面有坐标轴何我们要的点。 我们这两组数据均是线性的,接下来我们拟和直线。先拟和第一组,选菜单蓝里的data 看看g1 data1....是不是被勾上了(默认应该时被勾上的),如果勾上了说明现在对的是第一组数据进行操作。点菜单兰analysis->fit linear,这时会看到拟和出来直线了。拟和第二组,选菜单蓝里的data->g2 data2,把第二组选中,这时对应的操作是对第二组的。同上analysis->fit linear。可以看到第二组也被拟和成直线了。 如果数据不是线性的,那么就拟和成非线性的,analysis->fit sigmoidal(S型) 或 guassian(高斯拟和)或nonliner curve fit中的fitting wizard(选一个你觉得合适的形状进行拟和)。这样最最最基本的origin作图就做出来了。 最后存盘,file->save project as...就可以了。 如果想要copy到word里怎么办?这里有几种方法,我介绍两种。 1.在做好的图旁边点右键,选copypage(如果没有的话,说明你右键点错地方了,多换几个地方点点)。然后在word里面粘贴就好了,这样比较方便,不过有时候图会变形。还有一个致命缺点就是,我前面也提到了,容易被人家抓住你用的是盗版origin。 2.在菜单兰里file->export page,可以输出各种格式的,对于图片格式来说,我试了几个感觉tif的要比bmp和jpg的要好,那么我们就输出tif格式的,把下面的show export option勾上,点保存。如果是想插到word里面,的话,DPI选72比较合适,如果是打印实验报告的话,color depth里直接选monochrome的就可以了(毕竟不要彩打),点ok,就输出一个tif文件,最后在word里面插入这个文件就ok了。 图的细节修饰与美化(1) 一般做图都应该有要求的,要规范。以前我也不太清楚怎么算规范,后来听了王迅院士的一个报告,关于科技论文的写作,里面提到了怎么规范的画图,这样才知道原来图这么画看起来才好看。下面我介绍一下怎样按照王讯院士提到的几个标准来作图。

Origin 基础教程

Origin 9.0 基础教程 ————Origin 9.0 “快易行”(上) 前言 长话短说,学一款软件有两种方法,一种是拿着“从入门到精通”这类的书慢慢啃,啃完了就精通了,但除了高数我一点一点地啃完,其它的都没成功过。另一种是先入门,几分钟或者个把小时内学会主线,剩下地再慢慢来,没必要全都会,根据自己的需求再学。所以当时就想到了“快易行”这个概念:快速、容易、行得通。讲重点,好上手,实用,复杂点的部分自己再慢慢来,这是本文的宗旨,也希望能达到这样的效果。 其实网络上的资源很多,我做的只是一个筛选加工的工作,找了许多材料,把好的挑出来,呈现给大家那些看一遍就懂的教程,用自己的话整合这些资源。红色是重点,大家阅读的时候留意一下。 下面提到的文本、书籍及视频均来源于网络,仅用于学习与交流,严禁用于其它用途,大家可以自行搜索,如果没找到,请联系我,新浪微博:4麦儿。 一、基本介绍 Origin是Origin Lab公司出品的较流行的专业函数绘图软件,是公认的简单易学、操作灵活、功能强大的软件,既可以满足一般用户的制图需要,也可以满足高级用户数据分析、函数拟合的需要。自1991年问世以来,Origin以其操作简便,功能开放,很快成为国际流行的分析软件之一,获得了广泛的认可与应用。 目前市面上较流行的版本有7.5、8.0、8.5、9.0,其中7.5由于出来的时间比较早,配套的讲解教程和视频比较多,同时软件功能简单实用,很容易上手。7.5版本另一个特点是它有汉化版,所以推荐初

学Origin软件时,同时安装7.5和另一个高级版,方便熟悉界面,听懂教程讲解。Origin上手很容易,用不了多久就可以卸载7.5了,权当作一个Origin的有道翻译版。 图1.1 四六级没过,第一次打开软件,不开心 图1.2 还是汉化版看起来亲切,但以后一定要用英文版,毕竟很多重要的软件是没有汉化的,

最好的origin使用教程

第一章 Origin基础知识 Origin是美国Microcal公司出的数据分析和绘图软件,编写此介绍时的最高版本为7.0 https://www.360docs.net/doc/af8465822.html,/ 特点:使用简单,采用直观的、图形化的、面向对象的窗口菜单和工具栏操作,全面支持鼠标右键、支持拖方式绘图等。 两大类功能:数据分析和绘图。数据分析包括数据的排序、调整、计算、统计、频谱变换、曲线拟合等各种完善的数学分析功能。准备好数据后,进行数据分析时,只需选择所要分析的数据,然后再选择响应的菜单命令就可。Origin的绘图是基于模板的,Origin本身提供了几十种二维和三维绘图模板而且允许用户自己定制模板。绘图时,只要选择所需要的模板就行。用户可以自定义数学函数、图形样式和绘图模板;可以和各种数据库软件、办公软件、图像处理软件等方便的连接;可以用C等高级语言编写数据分析程序,还可以用内置的Lab Talk语言编程等。 一、工作环境

1.1 工作环境综述 类似Office的多文 档界面,主要包括 以下几个部分: 1、菜单栏顶 部一般可以实 现大部分功能 2、工具栏菜单栏 下面一般最常 用的功能都可以通 过此实现 3、绘图区中 部所有工作 表、绘图子窗口等 都在此 4、项目管理器下 部类似资源管 理器,可以方便切 换各个窗口等

5、状态栏底 部标出当前的 工作内容以及鼠标 指到某些菜单按钮 时的说明 工作表矩 阵绘图 1.2 菜单栏 菜单栏的结构取决于当前的活动窗口 工作表菜单

绘图菜单 矩阵窗口 菜单简要说明: File 文件功能操作打开文件、输入输出数据图形等 Edit 编辑功能操作包括数据和图像的编辑等,比如复制粘贴清除等,特别注意undo功能 View 视图功能操作控制屏幕显示, Plot 绘图功能操作主要提供5类功能: 1、几种样式的二维绘图功能,包括直线、描点、直线加符号、特殊线/符号、条形图、柱形图、特殊条形图/柱形图和饼图 2、三维绘图 3、气泡/彩色映射图、统计图和图形版面布局 4、特种绘图,包括面积图、极坐标图和向量 5、模板:把选中的工作表数据到如绘图模板 Column 列功能操作比如设置列的属性,增加删除列等

origin使用指南

本人非技术宅,所以写的东西也就是大物实验要用到的,面向对象为数院大一同学们,所以内容肯定不多。外加已经快一年没用过了,写的肯定不全,请大神轻喷。有问题就留言,我能解决就解决,解决不了的还请看到这篇文章的大牛解决一下~ ---------------------------------------------------? 1、安装 安装程序什么的我记得大物主页上貌似有,下载安装就好,应该不用教了。 2、界面 A是整个工程,一级实验应该是用不到的;B是窗口的列表,你所有的数据、图标窗口全都在这里;C就是窗口了。其他工具栏什么先不用去管他,用到再说。3、数据录入 基本与excel类似,并且和excel兼容,从excel中复制过来的数据可以直接粘贴。至于上面的“Long Name”(名称)、“Units”(单位)、“Comments”(注释),会在画图的时候用到。 如果有多组数据,比如光电效应那个实验,也可把数据放在一个表里。如图 右键图表空白区域,点击“Add New Column”,就会多出一栏。 数据都填好以后,就可以绘图了。

4、绘图 一级大物实验用到Origin的基本都是绘图,所以这里主要讲一下绘图。 最简单的,绘制散点图,也就是把原始数据画出来。 用拖选或按住ctrl的方法选中两列(注意:要选标题,就是A(x)那个位置),右键->Plot->Symbol->Scatter。 这样,就画出了散点图(右边那个东西点ok无视掉就好)。 但是一般来说大物作业不可能让你画完散点图就没事了,有分一下两种情况 a)曲线连接 曲线连接的话刚才就不能点Scatter了,应该点右键->Plot->Linel->Spline。 可以很清楚的画出曲线的走势。 默认使用Spline来画,还可以用B-spline,Bezier曲线等。如果要改变,双击图像,把右边折叠的全展开,点最后一个,在Line选项卡Connect选项中选择。 效果自己尝试。(注意:有的曲线画出来以后可能不光滑,这样必须要换一个,老师要求用光滑曲线连接) b)拟合 拟合的话,需要先画散点(看前面),再如图:Analysis->Fitting->FitLiner->Ope n Dialog 有兴趣的同学可以研究一下里面的选项,如果赶时间的话直接ok。

origin基本操作介绍

Origin操作方法报告 彭佳 1120152242 一、画简单的二维图线 1.双击已下载好的软件,打开Origin 8.0,得到如下初始主界面。 2.给Book1的第一列A(X)添加一组数,如从小到大依次增大的自然数。

将鼠标移至上左击一下,选中第一列,再在上右击一下,弹出子菜单,选择,得到要求数据。 3.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的平方。 同理右击后,选择,得到如左下图所示界面。 在第一个空白对话框中输入Col(A)^2,再点击,得到所需数据。 4.给Book1添加新的列。

方法一:单击Standard工具条上的【Add New Columns】按钮; 方法二:在Worksheet的空白处右击,从子菜单中选择【Add New Columns】; 方法三:选择【Column】:【Add New Columns】,弹出如下对话框,填写要添加的列数,单击【OK】即可。

5.将Book1的第二列B(Y)设置为第一列A(X)中对应数据的开方。 同上3打开【Set Column Values】界面后,选择开方函数,将函数的运算原数据填为第一列,单击OK即可。 6.用上述三列数据做简单的二维图。 单击Standard工具条上的【New Graph】按钮,建立一个新的Graph。 激活Graph 1,按如下操作绘图。

再单击Add 按钮,得下图。即同一Graph 中的2条曲线信息。 单击【Apply 】可以预览图像,觉得图像无误后,单击【OK 】即可得到初步的二维图。 再单击如下【New Legend 】按钮,更新曲线Legend 。 7.自定义曲线类型。 B A

Origin使用手册

【附录】 Origin在大学物理实验中的应用 认识Origin 由于高级图表绘制和数据分析能力是科学家和工程师必需掌握的,而Origin是当今世界上最著名的科技绘图和数据处理软件之一,与其它科技绘图及数据处理软件相比,Origin 在科技绘图及数据处理方面能满足大部分科技工作者的需要,并且容易掌握,兼容性好,因此成为科技工作者的首选科技绘图及数据处理软件. 目前,在全球有数以万计的公司、大学和研究机构使用OriginLab公司的软件产品进行科技绘图和数据处理. 打开Origin,在菜单View > Toolbars中可以看到许多选项,勾中后可以看到在菜单区出现很多图标,这显示了Origin丰富的操作功能.当然,如果浏览一下各个菜单,可以发现更多的功能. 图1 工具栏显示 1. 输入数据 我们以光敏电阻实验中的《光敏电阻在一定照度下的伏安特性》为例,说明Origin的作图方法,需要说明的是Origin的作图功能十分强大,我们在这里介绍的只是最基本的部分.我们采用的版本是Origin7.5.Origin6.0的操作在有些方面与7.5相差较大,所以我们建议使用7.5的版本. 打开Origin后,在下方出现几个窗口,类似资源管理器的作用.双击“Data1”打开数据表,然后可以输入您作图用的数据.如果先要对直接测量值进行计算,我们强烈建议使用Excel进行数据计算,因为Excel的计算功能比Origin强大,更因为Excel是一个世界通用 58

59 的表格计算软件,了解和使用它非常必要.但在科学作图时用Origin 要方便得多,所以应该把两者结合起来.实际上Origin 本身就有与Excel 链接的功能,但在中文操作系统中有时会出现问题,所以还是分别打开为好. 我们可用copy/paste 命令在Excel/Origin 之间传递数据.可在Excel 中选中要粘贴的数据,直接粘贴到Origin 的数据表中,粘贴的方法与在Excel 中的操作一致. 从实验中得到的数据如表1,粘贴好的画面如图2所示.如数据列不够多,可单击增加列的图标,见图2.为了方便同学们练习,我们把这张数据表放在了网上,是Excel 形式的.这样同学们就不必费神敲击键盘了.网址:pec .sjtu .edu .cn >实验预习系统>基本物理实验>Origin 使用教程.数据表名称是【Origin 作图-光敏电阻的伏安特性】. 表1 光敏电阻在一定照度下的伏安特性 U (V ) I ph (mA ) α = 0° I ph (mA ) α = 30° I ph (mA ) α = 60° I ph (mA ) α = 90° 2 1.496 1.269 0.699 0.022 4 3.00 3 2.540 1.400 0.045 6 4.528 3.835 2.11 4 0.069 8 6.072 5.146 2.827 0.093 10 7.644 6.467 3.555 0.117 12 9.130 7.809 4.290 0.143 14 10.846 9.274 5.027 0.168 16 12.528 10.680 5.782 0.193 18 14.214 12.179 6.550 0.218 20 15.730 13.280 7.178 0.273

一些使用origin编辑的技巧看

一些使用origin作图的小小技巧

重叠峰的分离 几个单独的峰由于靠得很近,会导致形成一个重叠峰的形成。如果想计算几个峰之间的面积比的话,就需要先把这个重叠峰分离成几个单独的峰。举个例子,比如在做聚合物多晶x射线衍射的时候,不同晶型的衍射峰与无定形部分的衍射峰彼此重叠,这些峰对应的面积比与它们之间的含量比成线性关系。通过计算晶体衍射峰的面积与无定形衍射峰的面积,就可以大致的到聚合物的结晶度。 将数据作图后(注意,这里的数据一般间隔的非常近,所以作出的图点与点之间也比较连续),检查菜单 栏data中看需要分峰的数据是否被勾上了。没勾的话就选中。※注意,如果数据的x范围很大,而需要分峰的部分很小,比如,整个数据的x轴的范围是0-100,而需要分的重叠峰的位置在40-60,其他部分均为平的基线或其他无关的峰,那么我们就需要在worksheet表格里把0-40,以及60-100的数据都删掉,只留40-60这段范围的数据。这步是一定要做的,否则分出来的峰非常不准。※ 删除不需要的数据后,在graph窗口中可以看到只留下了重叠峰的数据图,这时点菜单栏中的analysis->fit multi peaks->guassian or lorentzian(这两个什么区别我也不是很清楚,感觉作出来的图是一样的),选中一个拟和方法后,会跳出一个对话框number of peak,问你要分成几个峰,输入个数确定后,又跳出一个对话框问你估计的半峰宽。这里用它的默认的就好了。 然后在图上观察你认为的几个单独峰的位置,双击你认为的位置后,会出现一条垂直的虚线,直至将几个峰的

origin 使用技巧

1.请教怎样反读出origin曲线上全部数据点? 如,我用10个数据点画出了一条origin曲线,并存为project的.OPJ格式。但,现在我想利用OPJ文件从这条曲线上均匀的取出100个数据点的数值,该如何做? 注:要一切都使用origin软件完成,不用其他曲线识别软件。 https://www.360docs.net/doc/af8465822.html,/bbs/viewthread.php?tid=1390313 Answer: ORIGIN中,在分析菜单(或统计菜单)中有插值命令,打开设置对话框,输入数据的起点和终点以及插值点的个数,OK!生成新的插值曲线和对应的数据表格。 2. origin中非线性拟合中logistic模型的疑问? origin 中非线性拟合中的logistic模型为 y = A2 + (A1-A2)/(1 + (x/x0)^p) 其初始参数设置为 sort(x_y_curve); //smooth(x_y_curve, 2); x0 = xaty50( x_y_curve ); p = 3.0; if( yatxmin( x_y_curve ) > yatxmax( x_y_curve ) ) { A1 = max( y_data ); A2 = min( y_data ); } else { A1 = min( y_data ); A2 = max( y_data ); } 而据我看到的logistic的模型都是(自己origin中自定义的) y =A1/(1+(A1/A2-1)*exp(-k*x))

也就是说origin 中的logistic有4个数值需要确定,而自定义的有3个数值 从结果来看,没有太大区别,但为什么函数不一样呢? 不是学数学,高人能否详细说明下。 https://www.360docs.net/doc/af8465822.html,/bbs/viewthread.php?tid=1391522 Answer: 你可以看一下这个文档,里面有数种不同形式的logistic 模型: https://www.360docs.net/doc/af8465822.html,/web/packages/drc/drc.pdf 当然,这是一个R (https://www.360docs.net/doc/af8465822.html,) 包的文档,但不妨碍你看其中的公式。 R 是开源的啊,以GPL 发布,可以从https://www.360docs.net/doc/af8465822.html,上了解更多。3.如何用origin做出附件中的图:其中标注的三角形、方块是怎么整上去的?https://www.360docs.net/doc/af8465822.html,/bbs/viewthread.php?tid=1393739 Answer: 选中左侧竖工具条中的 draw tool(显示是几个点,第七个工具),移动到你要标注的位置双击,就产生了一个点,依次标注完方块。再标注三角的第一个点,标注完后改成三角,以后标注的就都是三角了。改动点的类型的方法和正常画曲线方式一样。 4.如何用origin做出附件图中的坐标轴(带刻度)? https://www.360docs.net/doc/af8465822.html,/bbs/viewthread.php?tid=1397419 Answer: 你把刻度改成那样不就行了。8.0的具体方法是双击坐标轴,title & format --> 选左边那个bottom,然后在右边把axis改为at position=。同理,然后选左边的left,把axis也改为at position=。 5. origin能否读取导入曲线的坐标? 一张bmp格式的图片,图片内容是坐标系和拟合曲线,但是不知道用什么软件绘制的。请问能否将该图片导入origin,读出曲线上任意一点的数据? https://www.360docs.net/doc/af8465822.html,/bbs/viewthread.php?tid=1398227 Answer: (1). 1.ORIGIN有一个图形数字化插件可完成该任务。2.有许多专门的图形数字化软件也可完成此任务。个人感觉专门的比插件也用、便捷。推荐WINDIG25

Origin使用的一些高级经验

Origin使用的一些高级经验 1.怎么求非自然数为底的幂函数 Origin中的自然数的幂函数很容易,用EXP函数就可以了,但是其它幂函数没有,例如:将一列数据转变为以10为底,数列为幂指数,用10^col(A)就可以了。 2.如何输入σ,±这样的符号 添加文本,然后点击Ctrl+M,选择你所需的字符,插入就行了。 3.自定义公式拟和技巧 origin7.0中虽然提供了强大的拟合曲线库外,但在实际使用中,你可能会发觉在所提供的曲线库中没有你想要拟合的公式。这时你就可以使用用户自定义公式进行拟合。过程如下: (1)打开主工具栏中analysis的non-linear curve fit....,这时会出来一个选择公式界面。 (2)选择编辑公式,需要你提供公式名称以供系统保存;还要提供参数的个数及主变量及因变量符号。 (3)按你需要的公式写在编辑框内,注意千万别写错了。写完后按save进行保存。 (4)现在开始拟合:在action中选dataset,提供主变量和因变量的一些相关参数。 (5)在action中选simulate,在参数中填上你根据数据及其它一些条件确定的粗略的初始参数以及拟合起始点的位置及拟合点数,然后按下create curve就会在图上出现一条拟合曲线,但这往往与期望值差距较大,因此接下来需要进行参数优化。 (6)参数优化采用试错法,根据曲线形状逐渐改变参数,注意,多参数时改变任何一个参数都会改变曲线形状,因此可以一次变一个参数,直到达到满意的形状。 (7)在action中选fit,按下Chi-sqr和10-lit。 (8)在action中选results,按下param worksheet生成拟合曲线及数据。此时可以关闭拟合界面。 (9)在图左上角右键点1,选add/remove plot,将多余的曲线删除,将nlsf系列曲线留下。拟合数据可在param worksheet中看到。 这样就完成了一次自定义曲线拟合。 4.如何将三个纵坐标放在一个图中 加两个图层的方法设置三个纵坐标,在想要移动的y坐标轴上点右键打开坐标轴对话框,然后选title&format---axis下拉框选at position=然后在下面的框里输入想要移动多远就可以了 5.怎样画直线穿越Y轴的图 (1)先把你的图线画出来,这时你的图中纵轴自然在最左边 (2)点击纵轴,水平拖动其到x=0的位置,这样则图线不变化,仅仅是纵轴移动到了坐标的原点。 对于横轴,也可以将其上下拖动到需要的位置,如坐标原点。 另外,用鼠标拖动的时候,如果不好控制水平,或者竖直方向 也可先点中对象(坐标轴等),然后按住 SHIFT键不放,点键盘上的上下或者左右方向键,即可较好的控制移动的距离。 或者: (1)双击纵轴,打开坐标轴操作窗口 (2)点击打开TITLE&FORMAT (3)在AXIS下拉选项中选择AT POSITION= (4)在其下栏中输入数据即可 6.Origin中中文间距不一的问题 升级到7.5版本,问题解决 7.怎样把“行”的数据画到X或Y轴上? 选定一行数据,复制之后,在Origin中,在一列中选定一些格(不是选定一列,必须等于或大于原始数据的量,否则数据便少),然后粘贴就行了。 附:内置函数 abs : 绝对值 acos : x 的反余弦 angle(x,y) : 点(0,0)和点(x,y)的连线与 x 轴之间的夹角 asin : x 的反正弦 atan : x 的反正切 J0 : 零次贝塞耳函数 J1 : 一次贝塞耳函数 Jn(x,n) : n 次贝塞耳函数 beta(z,w): z > 0, w > 0 β函数 cos: x的余弦 cosh : 双曲余弦 erf : 正规误差积分 exp : 指数 ftable(x,m,n) : 自由度为 m,n 的 F 分布 gammaln : γ 函数的自然对数 incbeta(x,a,b) : 不完全的β函数 incf(x,m,n): m,n自由度上限为 x 的不完全 F 分布 incgamma(x,a) : 不完全γ 函数 int : 被截的整数 inverf : 反误差函数 invf(x,m,n) : m 和 n自由度的反 F 分布

使用origin绘图的简单教程

使用origin绘图的简单教程 每年到修改论文的时候,发现很多同学不懂图形和数据处理,出来的图形惨不忍睹。有的人想学没处学,有的根本不想学,最后的结果是研究生给本科生干活,老师给学生干活。所以有空的时候,想以这种方式写一点数据处理技术,给自己的未来减负。 1.Origin如何输出图表以及在word中如何插入 在word中插入origin的图表,一种是携带数据的,就是说点击它可以进入origin 进行修改,这种适合文章还没定稿之前;另外一种直接就是图片格式的图表,无法进行数据修改,只能进行图片编辑,适合投稿的时候使用,这样别人就无法窥探你的数据。 1.携带数据方式 最简单的方法就是在origin图表页面直接按ctrl+c,然后在word里按ctrl+v,也就是万能的粘贴-复制=_= 还可以点击origin菜单栏edit-copy page,然后在word里粘贴 第三种方法稍微麻烦点,origin直接保存project,在word里插入-对象-由文件创建-浏览,选择刚刚保存的.opj格式的文件即可。 2.图片格式origin菜单栏file-export page,保存的时候可以选择你要保存的类型, 可以选择需要的格式,比如jpg、gif图片格式等,DPI分辨率一般设置为300就足够了。 (我用的中文绿色版的,嘿嘿) 下面在word里直接插入图片,相信这一步大家都会,呵呵。 PS: 用ORIGIN编制了一个曲线图,将图标添加进WORD里面之后,曲线中的汉字说明都变成了“?”。。 解决方法是在origin中选择的汉字字体不是宋体,改为宋体就可以了另外,建议用高版本的origin 2.origin软件如何对jpg图片添加文字 首先把JPG图片导入origin中,在origin中新建个Layout,然后File >Import Image…… 将图片导入到Layout,将图片调整好大小比例。 点击左侧工具栏上的“T”(Text Tool)按钮,在图片上你要插入文字的位置点击,此时可以输入文字了。修改完成后,File > Export Page 同样将图片导出即可 3.origin如何在画出的曲线上取点,通过一组数据拟合出一条曲线,现在想在曲线上取点, 并做标记 可以点击Origin 左侧工具栏上的”田“ 工具图标,然后点击在你的曲线上,这样就选择了一个数据点,相应的X,Y 坐标值也会显示出来。然后按键盘上的左右箭头键,在你的曲线上移动光标,找到你想要标记的点,比如X = 50 ,相应的Y 值也会显示出来。 记录下X,Y值,然后在数据栏中新添两栏数据,分别输入X ,Y的值。

相关文档
最新文档