高中数学数列知识点总结

高中数学数列知识点总结
高中数学数列知识点总结

数列基础知识点

《考纲》要求:

1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项;

2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;

3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。

数列的概念

1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *

或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式

一个数列{a n }的 与 之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.

3.在数列{a n }中,前n 项和S n 与通项a n 的关系为:

=n a ??

???≥==2

1n n a n

4.求数列的通项公式的其它方法

⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法.

⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明.

⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴ -

3

12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…;

⑶ 1,1,2,2,3,3, 解: ⑴ a n =(-1)

n

)

12)(12(1

2+--n n n

⑵ a n =)673(2

12+-n n

(提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

)673(2

1

)43)(1(2

1

1)]53(10741[12+-=

--+=-++++++=n n n n n a n

⑶ 将1,1,2,2,3,3,…变形为

,2

1

3,202,211+++ ,,2

6,215,204 +++ ∴4

)1(122

2)1(11

1

++-++=

-++

=

n n n n n a 变式训练1.某数列{a n }的前四项为0,2,0,2,则以下各式: ① a n =

22[1+(-1)n

] ② a n =n )(11-+ ③ a n = ??

?)

(0

)

(2为奇数为偶数n n 其中可作为{a n }的通项公式的是 ( ) A .① B .①② C .②③ D .①②③ 解:D

例2. 已知数列{a n }的前n 项和S n ,求通项.

⑴ S n =3n

-2

⑵ S n =n 2

+3n +1

解 ⑴ a n =S n -S n -1 (n ≥2) a 1=S 1 解得:a n =???

=≥?-)

1(1)2(3

21

n n n ⑵ a n =??

?≥+=)

2(22)1(5

n n n

变式训练2:已知数列{a n }的前n 项的和S n 满足关系式lg(S n -1)=n ,(n ∈N *

),则数列{a n }的通项公式为 .

解:,110101)1lg(+=?=-?=-n n n n n S S n S 当n =1时,a 1=S 1=11;当n ≥2时,a n =S n -S n -1=10n

-10

n

-1

=9·10

n -1

.故a n =????

?≥?=-)2(10

9)

1(111

n n n

例3. 根据下面数列{a n }的首项和递推关系,探求其通项公式.

⑴ a 1=1,a n =2a n -1+1 (n ≥2) ⑵ a 1=1,a n =113--+n n a (n ≥2) ⑶ a 1=1,a n =

11

--n a n

n (n ≥2) 解:⑴ a n =2a n -1+1?(a n +1)=2(a n -1+1)(n ≥2),a 1+1=2.故:a 1+1=2n

,∴a n =2n

-1.

⑵a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=3n -1+3n -2+…+33

+3+1=)13(2

1-n .

(3)∵n

n a a n n 1

1-=- ∴a n =

?--?-=?????-----1

2

111232211n n n n a a a a a a a a a n n n n n n n

n n 112123=???-- 变式训练3.已知数列{a n }中,a 1=1,a n +1=2

2+n n a a (n ∈N *

),求该数列的通项公式. 解:方法一:由a n +1=

2

2+n n

a a 得 21111

=-

+n n a a ,∴{n a 1}是以111=a 为首项,2

1为公差的等差数列. ∴

n a 1=1+(n -1)·2

1,即a n =12+n 方法二:求出前5项,归纳猜想出a n =

1

2

+n ,然后用数学归纳证明. 例4. 已知函数)(x f =2x

-2-x

,数列{a n }满足)(log 2n a f =-2n ,求数列{a n }通项公式. 解:n a f n a n a n 222)(log 2log 2log 2-=-=-

n a a n

n 21

-=-

得n n a n -+=12 变式训练4.知数列{a n }的首项a 1=5.前n 项和为S n 且S n +1=2S n +n +5(n ∈N *

). (1) 证明数列{a n +1}是等比数列;

(2) 令f (x)=a 1x +a 2x 2+…+a n x n ,求函数f (x)在点x =1处导数f 1

(1). 解:(1) 由已知S n +1=2S n +n +5,∴ n ≥2时,S n =2S n -1+n +4,两式相减,得: S n +1-S n =2(S n -S n -1)+1,即a n +1=2a n +1 从而a n +1+1=2(a n +1)

当n =1时,S 2=2S 1+1+5,∴ a 1+a 2=2a 1+6, 又a 1=5,∴ a 2=11 ∴

1

1

1+++n n a a =2,即{a n +1}是以a 1+1=6为首项,2为公比的等比数列. (2) 由(1)知a n =3×2n

-1

∵ )(x f =a 1x +a 2x 2+…+a n x n

∴ )('x f =a 1+2a 2x +…+na n x n -1

从而)1('f =a 1+2a 2+…+na n

=(3×2-1)+2(3×22

-1)+…+n(3×2n

-1)

=3(2+2×22+…+n ×2n

)-(1+2+…+n) =3[n ×2

n +1

-(2+ (2)

)]-

2

)

1(+n n =3(n -1)·2n +1

2

)

1(+n n +6

1.根据数列的前几项,写出它的一个通项公式,关键在于找出这些项与项数之间的关系,常用的方法有观察法、通项法,转化为特殊数列法等.

2.由S n 求a n 时,用公式a n =S n -S n -1要注意n ≥2这个条件,a 1应由a 1=S 1来确定,最后看二者能否统一.

3.由递推公式求通项公式的常见形式有:a n +1-a n =f(n),

n

n a a 1

+=f(n),a n +1=pa n +q ,分别用累加法、累乘法、迭代法(或换元法).

数列的概念与简单表示法

●三维目标

知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n 项和与n a 的关系

过程与方法:经历数列知识的感受及理解运用的过程。

情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点

根据数列的递推公式写出数列的前几项 ●教学难点

理解递推公式与通项公式的关系 1、 通项公式法

如果数列{}n a 的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。

如数列

的通项公式为 ;

的通项公式为

的通项公式为 ;

2、 图象法

启发学生仿照函数图象的画法画数列的图形.具体方法是以项数 为横坐标,相应的项

纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,

做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在

轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到

大变化而变化的趋势. 3、 递推公式法

知识都来源于实践,最后还要应用于生活用其来解决一些实际问题. 观察钢管堆放示意图,寻其规律,建立数学模型. 模型一:自上而下:

第1层钢管数为4;即:1?4=1+3 第2层钢管数为5;即:2?5=2+3

第3层钢管数为6;即:3?6=3+3 第4层钢管数为7;即:4?7=4+3 第5层钢管数为8;即:5?8=5+3 第6层钢管数为9;即:6?9=6+3 第7层钢管数为10;即:7?10=7+3

若用n a 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且1(3+=n a n ≤n ≤7) 运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。

让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律) 模型二:上下层之间的关系

自上而下每一层的钢管数都比上一层钢管数多1。

即41=a ;114512+=+==a a ;115623+=+==a a 依此类推:11+=-n n a a (2≤n ≤7)

对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。 定义:

递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式 递推公式也是给出数列的一种方法。

如下数字排列的一个数列:3,5,8,13,21,34,55,89 递推公式为:)83(,5,32121≤≤+===--n a a a a a n n n

数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用

表示第一项,

表示第一项,……,用

表示第 项,依次写出成为

4、列表法

.简记为

[范例讲解]

例3 设数列{}n a 满足1111

1(1).n

n a a n a -=?

?

?=+>??

写出这个数列的前五项。 解:分析:题中已给出{}n a 的第1项即11=a ,递推公式:1

11-+

=n n a a

解:据题意可知:3211,211,123121=+==+

==a a a a a ,5

8

,3511534==+=a a a

[补充例题]

例4已知21=a ,n n a a 21=+ 写出前5项,并猜想n a .

法一:21=a 2

2222=?=a 323222=?=a ,观察可得 n n a 2=

法二:由n n a a 21=+ ∴12-=n n a a 即

21

=-n n

a a ∴

11

2322112------=????n n n n n n n a a

a a a a a a ∴ n

n n a a 2211=?=-

[补充练习]

1.根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式 (1) 1a =0, 1+n a =n a +(2n -1) (n ∈N); (2) 1a =1, 1+n a =

2

2+n n

a a (n ∈N);

(3) 1a =3, 1+n a =3n a -2 (n ∈N).

解:(1) 1a =0, 2a =1, 3a =4, 4a =9, 5a =16, ∴ n a =(n -1)2; (2) 1a =1,2a =

32,3a =4221=, 4a =52, 5a =6

231=, ∴ n a =12+n ; (3) 1a =3=1+20

3?, 2a =7=1+21

3?, 3a =19=1+22

3?,

4a =55=1+233?, 5a =163=1+243?, ∴ n a =1+2·31-n ;

Ⅳ.课时小结

本节课学习了以下内容:

1.递推公式及其用法;

2.通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n 项)之间的关系。

等差数列的定义与性质

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+

前n 项和()()

1112

2

n n a a n n n S na

d +-=

=+

性质:{}n a 是等差数列

(1)若m n p q +=+,则m n p q a a a a +=+;

(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2

(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则

21

21

m m m m a S b T --= (5){}n a 为等差数列2

n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数)

n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,

即:当100a d ><,,解不等式组10

n n a a +≥??≤?可得n S 达到最大值时的n 值.

当100a d <>,,由10

n n a a +≤??

≥?可得n S 达到最小值时的n 值.

(6)项数为偶数n 2的等差数列{}

n a ,有

),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,

1

+=

n n

a a S S 偶

奇. (7)项数为奇数12-n 的等差数列{}

n a ,有

)()12(12为中间项n n n a a n S -=-,

n a S S =-偶奇,

1

-=

n n S S 偶

奇. 等比数列的定义与性质

定义:

1

n n

a q a +=(q 为常数,0q ≠),11n n a a q -=.

等比中项:x G y 、、成等比数列2

G xy ?=

,或G =

前n 项和:()11(1)1(1)1n n na q S a q q q

=??

=-?≠?

-?(要注意!)

性质:{}n a 是等比数列

(1)若m n p q +=+,则m

n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n

q . 注意:由n S 求n a 时应注意什么?

1n =时,11a S =; 2n ≥时,1n n n a S S -=-.

求数列通项公式的常用方法

(1)求差(商)法 如:数列{}n a ,122111

25222

n n a a a n +++=+……,求n a 解 1n =时,

11

2152a =?+,∴114a = ① 2n ≥时,12121111

215222

n n a a a n --+++=-+…… ②

①—②得:

122n

n a =,∴1

2n n a +=,∴114(1)2(2)

n n n a n +=?=?≥? [练习]数列{}n a 满足1115

43n n n S S a a +++=

=,,求n a 注意到11n n n a S S ++=-,代入得

1

4n n

S S +=;

又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,113

4n n n n a S S --=-==……· (2)叠乘法

如:数列{}n a 中,1131

n n

a n

a a n +==

+,,求n a 解

3212112123n n a a a n a a a n --=·……·……,∴11

n a a n

=又13a =,∴3n a n =. (3)等差型递推公式

由110()n n a a f n a a --==,,求n a ,用迭加法

2n ≥时,21321(2)

(3)()n n a a f a a f a a f n --=?

?-=?

???-=?

…………两边相加得1(2)(3)()n a a f f f n -=+++……

∴0(2)(3)()n a a f f f n =++++……

[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n

a

答案 :

()1312n

n a =

-

(4)等比型递推公式

1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)

可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+?=+- 令(1)c x d -=,∴1d x c =

-,∴1n d a c ?

?+??-??

是首项为1

1d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -??+

=+ ?--??·,∴1111n n d d a a c c c -?

?=+- ?--??

(5)倒数法 如:11212

n

n n a a a a +==

+,,求n a 由已知得:

1211122n n n n a a a a ++==+,∴11112

n n a a +-= ∴1n a ???

?

??

为等差数列,11

1a =,公差为12,∴()()11111122n n n a =+-=+·, ∴2

1n a n =+

(附:

公式法、利用

{

1(2)1(1)

n n S S n S n n a --≥==

、累加法、累乘法.构造等差或等比1n n a pa q +=+或

1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)

4. 求数列前n 项和的常用方法

(1) 裂项法

把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求

11

1

n

k k k a a =+∑ 解:由

()()11111110k k k k k k d a a a a d d a a ++??

==-≠ ?+??

·

∴11111223111111111111n

n

k k k k k k n n a a d a a d a a a a a a ==+++??

????????=-=-+-++-?? ?

? ? ???????????∑∑…… 11111n d a a +??

=

- ???

[练习]求和:111

112123123n

+

+++

+++++++ (121)

n n a S n ===-

+…………, (2)错位相减法

若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.

如:231

1234n n S x x x nx -=+++++……

① ()23412341n n n x S x x x x n x nx -=+++++-+·……

①—②()2

1

11n n n x S x x x

nx --=++++-……

1x ≠时,()()

2

111n

n

n

x nx S x

x -=-

--,1x =时,()

11232

n n n S n +=++++=

…… (3)倒序相加法

把数列的各项顺序倒写,再与原来顺序的数列相加.

121121n n n n n n S a a a a S a a a a --=++++?

?=++++?

…………相加()()()12112n n n n S a a a a a a -=++++++……

[练习]已知2

2

()1x f x x

=+,则

111(1)(2)(3)(4)234f f f f f f f ??

??

??

++++

++= ? ? ???

??

??

由2

222222

111()111111x x x f x f x x x x

x ?? ?????+=+=+= ?+++????+ ???

∴原式11111(1)(2)(3)(4)111323422

f f f f f f f ????????????=++++++=

+++= ? ? ???????????????????

(附:

a.用倒序相加法求数列的前n 项和

如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的

两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。 b.用公式法求数列的前n 项和

对等差数列、等比数列,求前n 项和S n 可直接用等差、等比数列的前n 项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。 c.用裂项相消法求数列的前n 项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和。

d.用错位相减法求数列的前n 项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{a n ·b n }中,{a n }成等差数列,{b n }成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n 项和。 e.用迭加法求数列的前n 项和

迭加法主要应用于数列{a n }满足a n+1=a n +f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成a n+1-a n =f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出a n ,从而求出S n 。 f.用分组求和法求数列的前n 项和

所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 g.用构造法求数列的前n 项和

所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n 项和。)

数列的综合应用

高考要求

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据

递推公式写出数列的前几项

(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题 (3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题 知识点归纳

1.通项与前n 项和的关系:???

≥-==→-)

2(,)

1(,11n S S n a a S n n n n

2.迭加累加法:

1(),(2)n n a a f n n --=≥若,

)2(12f a a =-则 , )3(23f a a =-,………, )(1n f a a n n =--

1(2)(3)()n a a f f f n ?-=++? 3.迭乘累乘法:

)(1n g a a n n =-若

,)2(12g a a

=则,)3(23g a a =,………,)(1

n g a a n n =- 1

(2)()n

a g g n a ?

=? 4.裂项相消法:)1

1(1))((1C

An B An B C C An B An a n +-+-=++=

5.错位相减法:

n n n c b a ?=, {}n b 是公差d ≠0等差数列,{}n c 是公比q ≠1等比数列 n n n n n c b c b c b c b S ++?++=--112211 1121+-++??+=n n n n n c b c b c b qS 则

所以有13211)()1(+-??+++=-n n n n c b d c c c c b S q 6.通项分解法:n n n c b a ±= 7.等差与等比的互变关系:

{}{}n

a n a

b ?≠成等差数列(b>0,b 1)成等比数列

{}{}n n a ca d ?+≠成等差数列(c 0)成等差数列

{}{}0

log n a n b n a a >?成等比数列成等差数列

{}{}k n n a a ?成等比数列成等比数列

8.等比、等差数列和的形式:

{}Bn An S B An a a n n n +=?+=?2成等差数列 {}(1)(0)n n n a S A q A ≠?=-≠(q 1)成等比数列

9.无穷递缩等比数列的所有项和:

{}1

lim 1n n n a a S S q

→∞

?==-(|q|<1)成等比数列 题型讲解

例1 等差数列{a n }的首项a 1>0,前n 项和为S n ,若S m =S k (m ≠k),问n 为何值时,S n 最大?

解:根据{}Bn An S B An a a n n n +=?+=?2成等差数列,首项a 1>0,若m+k 为偶数,则当n=(m+k)/2时,S n 最大;

若m+k 为奇数,当n=(m+k ─1)/2或n=(m+k+1)/2时,S n 最大 例2 已知关于n 的不等式1/(n+1)+1/(n+2)+…+1/(2n)>3

2

)1(log 121+-a a 对于一切大于1的自然数n 都成立,求a 的取值范围

解:把 1/(n+1)+1/(n+2)+…+1/(2n)看成一个函数f(n),将问题转化为函数f(n)的最小值大于右式 ∵f(n)=1/(n+1)+1/(n+2)+…+1/(2n)

∴f(n+1)- f(n)=〔1/(n+2)+1/(n+3)+…+1/(2n+2) 〕

-〔1/(n+1)+1/(n+2)+…+1/(2n)〕 =1/(2n+2) +1/(2n+1) -1/(n+1) =1/(2n+1) -1/(2n+2) >0

∴f(n+1)> f(n)

∴函数f(n)是增函数,故其最小值为f(2)=7/12, ∴ 7/12>

3

2

)1(log 121+-a a , 解得:1

例3 已知数列{a n },{b n }都是由正数组成的等比数列,公比分别为p,q,其中p>q 且q ≠1, p ≠1, 设C n =a n +b n ,S n 为数列{C n }的前n 项和,求1

lim

-∞→n n

n S S

解:)

1)(1()1)(1()

1)(1()1)(1(1

111111--+----+--=---n n n n n n q p b p q a q p b p q a S S ,以下分两种情况讨论: (1)当p>1时,

∵ p>q>0,∴ 0

n p

q )(lim ∞

→=0,n

n p

)1(lim ∞

→=0,

两边同除以p n

,得:1

lim -∞→n n

n S S =p;

(2)当p<1时,

∵ p>q>o,∴ 0

→lim =0,n

n q ∞

→lim =0, ∴1

lim

-∞→n n

n S S =1

例4 如图所示:已知抛物线y=x 2

,点A n 的坐标为(1,0),将OA n 分为n 等分,分点为A 1,A 2,…A n ─1, 过A 1,A 2,…A n ─1,A n 分别作y 轴的平行线,分别交抛物线于B 1,B 2,B 3, …B n ─1,B n ,再分别以OA 1, A 1A 2,A 2A 3, …A n ─1A n 为宽作n 个小矩形求n 个小矩形的面积之和;求n n S ∞

→lim (即曲边梯形OA n B n 的

面积) 解:S n =

2222)(1)3(1)2(111n

n

n n n n n n n ?++?+?+? =(n+1)(2n+1)/(6n 2

);

n n S ∞

→lim =1/3

本题用极限的思想求曲边梯形的面积,正是高等数学中的思想

例5 等差数列{a n }中,已知公差d ≠0,a n ≠0,设方程a r x 2

+2a r+1x+a r+2=0 (r ∈N)是关于x 的一组方程 ①证明这些方程中有公共根,并求这个公共根;

②设方程a r x 2

+2a r+1x+a r+2=0的另一根记为m r ,证明:数列{1/(m r +1)}是等差数列

解:①依题意,由{a n }是等差数列,有a r +a r+2=2a r+1 (r ∈N),即x=─1时,方程成立,因此方程恒有实数根x=─1;

②设公差为d(化归思想),先解出方程的另一根m r =─a r+2/a r , ∴ 1/(m r +1)=a r /(a r ─a r+2)=─a r /(2d),

∴ 1/(m r+1+1)─1/(m r +1)= 〔─a r+1/(2d)〕─〔─a r /(2d)〕=─1/2, ∴ {1/(m r +1)}是等差数列

例6 数列{a n }的前n 项和S n =na+(n ─1)nb,(n=1,2,…),a,b 是常数,且b ≠0, ①求证{a n }是等差数列;

②求证以(a n ,S n /n ─1)为坐标的点P n 都落在同一直线上,并求出直线方程;

③设a=1,b=1/2,C 是以(r,r)为圆心,r 为半径的圆(r>0),求使得点P 1,P 2,P 3都落在圆外的r 的取值范围

证明:①根据???≥-==→-)2(,)

1(,11n S S n a a S n n

n n 得a n =a+(n ─1)? 2b,

∴{a n }是等差数列,首项为a,公比为2b

②由x=a n =a+(n ─1)?2b, y=S n /n ─1=a+(n ─1)b 两式中消去n,得:x ─2y+a ─2=0, (另外算斜率也是一种办法)

(3)P 1(1,0),P 2(2,1/2),P 3(3,1),它们都落在圆外的条件是: (r ─1)2

+r 2

>r 2

; (r ─2)2

+(r ─1/2)2

>r 2

; (r ─3)2

+(r ─1)2

>r 2

∴ r 的取值范围是(1,5/2─2)∪(0,1)∪(4+6,+∞)

例7 已知数列{a n }满足条件a 1=1,a 2=r(r>0),且{a n a n+1}是公比为q (q>0)的等比数列,设b n =a 2n ─1+a 2n (n=1,2,3,…)

①求出使不等式a n a n+1+a n+1a n+2>a n+2a n+3 (n ∈N) 成立的q 的取值范围; ②求b n 和n

n S 1

lim

∞→,其中S n 为数列b n 的前n 项的和;

③设r=2192

─1,q=05,求数列{

n

n b b 21

2log log +}的最大项和最小项的值

解:①rq n ─1

+rq n >rq n+1

, q>0 ?0

q a a a a a a n

n n n n n ==++++2

121?n n n n n n n n n n a a q a q a a a a a b b 212212212221

21++=++=---+++=q ≠0 ∴ {b n }是首项为1+r,公比为q 的等比数列,从而b n =(1+r)q n ─1

,

当q=1时,S n =n(1+r), n

n S 1

lim

∞→=0;

当0

n S 1

lim

∞→=(1─q)/(1+r);

当q>1时,n

n S 1

lim

∞→=0;

n

n b b 212log log +=f(n)=n n --2.202.19=1+1/(n ─202),

当n ≥21时,f(n)递减,∴ f(n)≤f(21)?1f(n)≥─4; ∴ 当n=21时,

n n b b 212log log +有最大值225;当n=20时,n

n b b 21

2log log +有最小值─4

例8 一个水池有若干出水相同的水龙头,如果所有的水龙头同时放水,那么24分钟可注满水池,

如果开始时全部开放以后隔相等时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且关闭最后一个水龙头放水的时间恰好是关闭前一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?

解:设每个水龙头放水时间依次为x 1,x 2,…x n , 由已知x 2─x 1=x 3─x 2=x 4─x 3=…=x n ─x n ─1,

∴ {x n }为等差数列,又每个水龙头每分钟放水时间是1/(24n), ∴

1)(241

21=+++n x x x n

?x 1+x 2+…+x n =24n; 即n(x 1+x n )/2=24n ?x 1+x n =48, 又x n =5x 1 , ∴ x n =40即最后一个水龙头放水时间是40分钟

例9 某林场原有森林木材量为a ,木材以每年25%的增长速度增长,而每年要砍伐的木材量为r,为使经过20年木材存量翻两番,求每年的最大砍伐量x (取lg2=0.3) 解:用归纳法求解, 第一年存量:1.25a ─x;

第二年存量:1.25(1.25a ─x)─x=a ?1.252

─x(1+1.25);

第三年存量:1.25?[a ?1.252

─x(1+1.25)]─x=a ?1.253

─x(1+1.25+1.252

); ……

第20年末存量:a ?1.2520

─x(1+1.25+1.252

+…+1.2519

)=a ?1.2520

─4x(1─1.2520

) 依题意:a ?1.2520

─4x(1─1.2520

)=4a, 又设y=1.2520

?lgy=20lg1.25=20(1─3lg2)=2 ∴ y=100,即1.2520

=100?x=8a/33 答:每年的最大砍伐量为8a/33

例10 某地区现有耕地面积10000公顷,规划10年后粮食单产比现在提高22%,人均粮食占有量比现在提高10%,如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷) 解法一:以粮食单产比现在提高22%为目标建立数学模型,设现有的人口为A 人,人均粮食占有量为b 吨,平均每年减少耕地x 公顷,由题意可知:

x b A 1010)1.01()01.01(4

10-++≤)22.01(10

4+Ab

解得:22

.110)1.01()01.01(10)22.01(101044?++-+≤x ,

再用二项式定理进行计算可得:x ≤4

解法二:以10年后人均粮食占有量比现在提高10%为目标建立数学模型,粮食单产为a 吨/公顷, 可得:

10

4)

01.01()1010)(22.01(+-+A x a ≥%)101(104

+?A a ?x ≤4 (公顷) 例10 某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?

解:设2001年末的汽车保有量为1a ,以后每年末的汽车保有量依次为....,32a a ,每年新增汽车x 万辆

由题意得)06

.0(94.006.094.011x

a x a x a a n n n n -=-

+=++即

万辆

过即每年新增汽车不应超应有满足故要对一切自然数上式趋于时且当的减函数上式右端是关于解得令6.3,6.3,606

.3,,06.0)94.0130

30(,6006

.094.0)06.030(1

1≤≤∞→?-+≤≤+-

=--x a n n n x a x

x a n n n n n

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-) 2(,) 1(,11n S S n a a n n n 注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化(求通 项) 例2:已知数列}{n a 的前n 项和???≥+==2,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:定义法;函数单调性法 (2)最大(小)项问题: 单调性法;图像法 (3)数列的周期性:(注意与函数周期性的联系)

例3:已知数列}{n a 满足????? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处)

例题: 例4(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1 a n -1 (n ≥2,n ∈N * ),数列{b n }满足b n =1a n -1 (n ∈N *). (1)求证:数列{b n }是等差数列; (2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 ∵a n =2-1 a n -1 (n ≥2,n ∈N * ),b n =1 a n -1 . ∴n ≥2时,b n -b n -1=1a n -1-1 a n -1-1 = 1? ?? ??2-1a n -1-1 -1 a n -1-1 =a n -1 a n -1-1-1a n -1-1 =1. ∴数列{b n }是以-5 2 为首项,1为公差的等差数列.

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

高中数列知识点总结

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 1()2n n n a a S +=na =中间项 1(1)2 n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次函数图像的分点表示形式。 四 性质结论 1.3或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2() +∈N n n ,则,奇偶nd S S =- 1 +=n n a a S S 偶奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -= 数列{a n }是等比数列的一个等价条件是: (1),(0,01n n S a b a b =-≠≠,) 当0q >且0q ≠时,n a 关于n 的图像是指数函数图像的分点表示形式。

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高中数列知识点总结

高中数列知识点总结 Written by Peter at 2021 in January

数列知识点总结 第一部分 等差数列 一 定义式: 1n n a a d --= 二 通项公式:n a 1 ()(1)m a n m d a n d =+-??=+-? 一个数列是等差数列的等价条件:b an a n +=(a ,b 为常数),即n a 是关于n 的一次函数,因为n Z ∈,所以n a 关于n 的图像是一次函数图像的分点表示形式。 三 前n 项和公式: 一个数列是等差数列的另一个充要条件:bn an S n +=2(a ,b 为常数,a ≠0),即n S 是关于n 的二次函数,因为n Z ∈,所以n S 关于n 的图像是二次 函数图像的分点表示形式。 四 性质结论 或4个数成等差数列求数值时应按对称性原则设置, 如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d 2.a 与b 的等差中项2 a b A +=; 在等差数列{}n a 中,若m n p q +=+,则 m n p q a a a a +=+;若2m n p +=,则2m n p a a a +=; 3.若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =- 1+=n n a a S S 偶 奇 ; 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1 -=n n S S 偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。设 12,n A a a a =++?+,122n n n B a a a ++=++?+, 21223n n n C a a a ++=++?+,则有C A B +=2; 5.10a >,m n S S =,则前2m n S +(m+n 为偶数)或12 m n S +±(m+n 为奇 数)最大 第二部分 等比数列 一 定义:1 (2,0,0){}n n n n a q n a q a a -=≥≠≠?成等比数列。 二 通项公式:11-=n n q a a ,n m n m a a q -=

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题) Lesson6 数列 知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d . 3.等差中项 a +b 如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) . (2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为. (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列. 5.等差数列的前n 项和公式 n (a 1+a n )n (n -1) 设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22. 6.等差数列的前n 项和公式与函数的关系 d d 2? S n 2+ a 1-2n . 数列{a n }是等差数列?S n =An 2+Bn ,(A 、B 为常数) . ?? 7.等差数列的最值 在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值. [难点正本疑点清源] 1.等差数列的判定 (1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

高中数列知识大总结(绝对全)

第六章 数列 重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 第一课时 数列 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321 2.?? ? ≥-==-2 11 1n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 212n n n a n 数列与正整数集关系 等差数列 等比数列 特殊数列求和方法 公式法 倒序相加法 错位相减法 裂项相消法 n 定义 通项公式中项 前项的和 递推公式 通项公式 数列

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ), 110(9 7-?), 110 (9 72 -)110 (9 73 -,, )110 (9 7-n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 ) 1(1n n n a -++ = 点拨:本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项数的一般规律,从而求得通项。 题型二 应用?? ? ≥-==-) 2()1(1 1n S S n S a n n n 求数列通项 例2.已知数列{}n a 的前n 项和n S ,分别求其通项公式. ⑴23-=n n S 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 1 3 2-?=n 又11=a 不适合上式,故???≥?==-) 2(32)1(11 n n a n n 三、利用递推关系求数列的通项 【例3】根据下列各个数列{}n a 的首项和递推关系,求其通项公式 ⑴141 , 2 12 11-+ == +n a a a n n 解析:⑴因为1 41 2 1 -+=+n a a n n ,所以 )1 21121 ( 21 1 41 2 1+- -= -= -+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111()257 a a -= -

2019年高一数列知识点总结

2019年高一数列知识点总结 数列是高一数学的重点,以下是整理的高一数列知识点总结,欢迎参考阅读! 求数列通项公式常用以下几种方法: 一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。 例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。 解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n—1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。 二、已知数列的前n项和,用公式 S1(n=1) Sn—Sn—1(n2)

例:已知数列{an}的前n项和Sn=n2—9n,第k项满足5 (A)9(B)8(C)7(D)6 解:∵an=Sn—Sn—1=2n—10,∴5<2k—10 此类题在解时要注意考虑n=1的情况。 三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。 例:已知数列{an}的前n项和Sn满足an=SnSn—1(n2),且a1=—,求数列{an}的通项公式。 解:∵an=SnSn—1(n2),而an=Sn—Sn—1,SnSn—1=Sn—Sn —1,两边同除以SnSn—1,得———=—1(n2),而—=—=—,∴{—}是以—为首项,—1为公差的等差数列,∴—=—,Sn=—, 再用(二)的方法:当n2时,an=Sn—Sn—1=—,当n=1时不适合此式,所以, —(n=1)

—(n2) 四、用累加、累积的方法求通项公式 对于题中给出an与an+1、an—1的递推式子,常用累加、累积的方法求通项公式。 例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12—nan2+an+1an=0,求数列{an}的通项公式 解:∵(n+1)an+12—nan2+an+1an=0,可分解为[(n+1)an+1—nan](an+1+an)=0 又∵{an}是首项为1的正项数列,∴an+1+an≠0,∴—=—,由此得出:—=—,—=—,—=—,…,—=—,这n—1个式子,将其相乘得:∴—=—, 又∵a1=1,∴an=—(n2),∵n=1也成立,∴an=—(n∈N*) 五、用构造数列方法求通项公式

高三复习数列知识点总结

数列专题解析方法 一、数列通项公式的求解 类型一:观察法 例 1: 写出下列数列的一个通项公式 (1)3,5,9,17,33 ,; (2)11,22,33,44, ; 2345 (3)7,77.777.7777. (4)2, 1,10, 17,26, ; 3 7 9 11 (5)3,9,25,65, ; 2 4 8 16 类型二:公式法 (1) a n a1 (n 1)d a m (n m)d 例 2:已知等差数列a n 中,a1 1,a3 3,求a n 的通项公式 n 1 n m (2)a n a1q n1 a m q n m 例 3:已知等比数列a n 中,a2 6,6a1 a3 30, 求a n 的通项公式类型三:利用“ S n ”求解 S1,(n 1) (1) (1) a n n S n S n 1(n 2)

例 4:已知数列a n 的前n项和S n n2 24n(n N* ),求a n 的通项公例 5:已知数列a n 的前n项和为S n,且有a1 3,4S n 6a n a n 1 4S n 1,求a n 的通项公式 例 6:已知数列a n 的前n 项和为S n,且有a1 1,a n 1 2S n 1(n 1), 求a n 的通项公式 例 7:已知正数数列a n 的前n项和为S n ,且对任意的正整数n满足 2 S n a n 1, 求a n 的通项公式 (2)S n S n 1的推广 例 8:设数列a n满足a13a232a33n 1a n n,n N*求a n的通项公 3 式 类型四:累加法 形如a n 1 a n f (n)或a n a n 1 f (n)型的递推数列(其中f(n)是关于n 的函数) (1)若 f (n)是关于n的一次函数,累加后可转化为等差数列求和例 9:a n 1 a n 2n 1,a1 2, 求a n 的通项公式 (2)若 f (n)是关于n的指数函数,累加后可转化为等比数列求和例 10:a n 1 a n 2n,a1 2, 求a n 的通项公式 (3)若 f (n) 是关于n 的二次函数,累加后可分组求和 例11:a n 1 a n n n 1,a1 1, 求a n 的通项公式 (4)若 f (n)是关于n的分式函数,累加后可裂项求和 例 12:a n 1 a n 21,a1 1, 求a n的通项公式 n 2 2n n 类型五:累乘法 形如an1f(n)或an f (n)型的递推数列(其中f(n)是关于n的函数) a n a n 1

高中数列知识大总结(绝对全)

第六章 数列 二、重难点击 本章重点:数列的概念,等差数列,等比数列的定义,通项公式和前n 项和公式及运用,等差数列、等比数列的有关性质。注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、函数与方程思想、分类与讨论思想、化归与转化思想等。 知识网络 四、数列通项n a 与前n 项和n S 的关系 1.∑== ++++=n i i n n a a a a a S 1 321 2.?? ?≥-==-2 1 1 1 n S S n S a n n n 课前热身 3.数列{}n a 的通项公式为 n n a n 2832 -=,则数列各项中最小项是( B ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列{}n a 是递增数列,其通项公式为n n a n λ+=2 ,则实数λ的取值范围是),3(+∞- 5.数列{}n a 的前n 项和142 +-=n n S n ,,则?? ?≥-=-=2 5 21 2 n n n a n

题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,… ⑶1,3,3,5,5,7,7,9,9… 解析:⑴将数列变形为 ),110(9 7-?),110(972-)110(973-,, )110(97 -n ⑶将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,…。可得数列的通项公式为 2 )1(1n n n a -++= 解析:⑴当123,11 11=-===S a n 时, 当)23 ()23(,21 1---=-=≥--n n n n n S S a n 时 132-?=n 又11=a 不适合上式,故???≥?==-) 2(3 2)1(1 1 n n a n n 解析:⑴因为141 2 1 -+ =+n a a n n ,所以 )1 21 121(2114121+--=-=-+n n n a a n n 所以)31 11(2112-=-a a )51 31(2123-=-a a 43111 ()257 a a -=- …,…, 1111 ()22321 n n a a n n --=--- 以上)1(-n 个式相加得 )1 211(211--= -n a a n 即:243 42411--=--=n n n a n 课外练习 解:因为

高中数学必修等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示: 4444444444484444444444476443 4421Λ4434421Λ444344421Λk k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为() *2n n ∈N ,则 ()21n n n S n a a +=+,且 S S nd -=偶奇, 1 n n S a S a +=奇偶.②若项数为() *21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶, 1 S n S n = -奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 2 2.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( ) A .49 B .50 C .51 D .52 3.等差数列1,-1,-3,…,-89的项数是( )

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

高中数学必修等差数列知识点总结和题型归纳

二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( ) A .49 B .50 C . 51 D .52 3.等差数列 1,- 1,- 3,?,- 89的项数是( ) 等差数列 一.等差数列知识点: 知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d 2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2 对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 : ⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示: S n 是其前 n 项的和, k N ,那么 S k , S 2k S k , S 3k S 2k 成 S 3k a 1 a 2 a 3 S k a k a k 1 S 2k a 2k S k a 2k 1 S 3k S 2k a 3k ①若项数为 2n n * , 则 S 2n n a n a n 1 , 且 S 偶 S 奇 S 奇 nd , 奇 an . ②若项数为 2n 1 n S 偶 a n 1 S 奇 n (其中 S 奇 na n , S 偶 n 1 a n ). S 偶 n 1 奇 等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n , 等于( )

(完整版)高中数列知识大总结(绝对全)

. 第一课时 数列 知识要点 一、 数列的概念 1.数列是按一定顺序排列的一列数,记作,,,,321 n a a a a 简记 n a . 2.数列 n a 的第n 项n a 与项数n 的关系若用一个公式)(n f a n 给出,则这个公式叫做这个数列的通项公式。 3.数列可以看做定义域为 N (或其子集)的函数,当自变量由小到大依次取值时对应的一列函数值,它的图像是一群孤立的点。 二、数列的表示方法 数列的表示方法有:列举法、图示法、解析法(用通项公式表示)和递推法(用递推关系表示)。 三、 数列的分类 1. 按照数列的项数分:有穷数列、无穷数列。 2. 按照任何一项的绝对值是否不超过某一正数分:有界数列、无界数列。 3. 从函数角度考虑分:递增数列、递减数列、常数列、摆动数列。 四、数列通项n a 与前n 项和n S 的关系 1. n i i n n a a a a a S 1 321 2. 2 1 1 1 n S S n S a n n n 课前热身 1.数列1,3,6,10,…的一个通项公式为 ( ) A.)1(2 n n a n B .12 n a n C .2)1( n n a n D .2 ) 1( n n a n 2.在数列 ,55,34,21,,8,5,3,2,1,1x 中,x 的值为( ) A .10 B .11 C .12 D .13 3.数列 n a 的通项公式为 n n a n 2832 ,则数列各项中最小项是( ) A .第4项 B .第5项 C .第6项 D .第7项 4.已知数列 n a 是递增数列,其通项公式为n n a n 2 ,则实数 的取值范围是 5.数列 n a 的前n 项和142 n n S n ,,则 典例精析 题型一 归纳、猜想法求数列通项 【例1】根据下列数列的前几项,分别写出它们的一个通项公式 ⑴7,77,777,7777,…

最全数列知识点归纳

最全数列知识点归纳 注意:(1)数列与集合的差异;(2)数列中只有很少一部分是等差或者等比数列,只是我们高中阶段仅仅研究与等差、等比相关联的特殊数列而已。 等差(等比)数列定义:从第2项起,每一项与它前一项的差(比)等于同一个常数。 注:常数,即与n 无关的数 等差数列判断方法: (1)1n n n a a d +-=≥(2) (2)112n n n a a a +-+= (3)An+B n a =(4)2n S An Bn =+ 等比数列判断方法: (1) 1(0)n n n a q q a +=≠≥(2) (2)2 11n n n a a a +-?=(3)n-1n 1q kq (0)n n a a a q ==≠或 (4)n k+kq q n S =-(不为0或1) 数列的通项公式研究的是数列的通项n a (代表项)与序号n 之间的函数关系()f n n a =。 类型一:. eg8:若给出一般数列的某几项或无穷项111 11234 --(),,,...; 类型二:.若已知数列就为特殊的等差、等比数列,或者能够转换成等差、等比数列的情况,公式法 类型三:已知数列n S 与n 一个函数关系。递推法 (注意n a 的表示形式,思考是否需要分类表示) 11 , 1, 2n n n a n a s s n -=?=?-≥? 类型四:已知此数列的递推关系(1n n a a +与的关系)()1n n a a f n +=+的形式,求n a 。 累加法 类型五:已知此数列的递推关系(1n n a a +与的关系)为()1n n a a f n +=?的形式,求n a 。 累乘法 类型六:已知此数列的递推关系为1()n n a pa f n p q +=+(、为常数) 等的形式,求n a 。 构造法 1(1) 32;n n a a +=+1(2) 321;n n a a n +=+-1(3) 33;n n n a a +=+1(4) 3321;n n n a a n +=++- 类型七:已知此数列的递推关系为11n n n n ka a pa qa p q ++=+(、为常数) 等的形式,求n a 。 构造法 11111111n n n n n n n n n n n n n n n n ka a pa qa p q ka a pa qa k a a a a a a a a ++++++++=+?=+?=+ 类型八:已知此数列的递推关系为111n n n n n n n pa m ka a pa qa m a ka t ++++=++?=+等的形式,求n a 。 特征方程 {}112200(); (1),,1(2), (3),n n n n a x px m x x kx t px m x x kx t a x x a a x ??-+=?+=+??+-??????-?? 令方程有两根 则是等比数列 方程有两相等根 则是等差数列方程无实数根则是周期数列 类型九:已知此数列的递推关系为1n n n pa a ka m +=+等的形式,求n a 。取倒数法 11111n n n n n n n pa ka m m k a ka m a pa a a p ++++=?=?=++ ()123f n n n a a a a =+++ +=。 若已知数列就为特殊的等差、等比数列,或者能够转换成等差、等比数列的情况,公式法 类型二:. 若出现“等差、等比加减组合型”的通项,分组求和法 类型三:若出现“等差、等比乘除组合型”的通项,错位相减法 类型四:n a =分式可以使用裂项相消:如:111n(n+1)n (n+1)=-= 裂项相消法 类型五:12-1n n a a a a +=+= 可以使用倒序相加: 类型六:既非等差也非等比但正负相间求和可以使用并项法求和。如:1123456(1)n n +-+-+-+ +- 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A +=或 b a A +=2

相关文档
最新文档