第一讲不等式和绝对值不等式 (4)

第一讲不等式和绝对值不等式 (4)
第一讲不等式和绝对值不等式 (4)

一、基础达标

1.已知h>0,a,b∈R,命题甲:|a-b|<2h;命题乙:|a-1|<h;且|b-1|<h,则甲是乙的()

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

解析显然a与b的距离可以很近,满足|a-b|<2h,但此时a,b与1的距离可以很大,因此甲不能推出乙;若|a-1|<h,|b-1|<2h,则|a-b|=|a-1+1-b|≤|a-1|+|b-1|<2h,故乙可以推出甲.因此甲是乙的必要不充分条件.

答案 B

2.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()

A.|a+b|+|a-b|>2

B.|a+b|+|a-b|<2

C.|a+b|+|a-b|=2

D.不能比较大小

解析当(a+b)(a-b)≥0时,

|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2;

当(a+b)(a-b)<0时,

|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.

综上可知,|a+b|+|a-b|<2.

答案 B

3.对任意x,y∈R,|x-1|+|x|+|y-1|+|y+1|的最小值为()

A.1

B.2

C.3

D.4

解析利用三角不等式直接求解.

∵x,y∈R,∴|x-1|+|x|≥|(x-1)-x|=1,

|y-1|+|y+1|≥|(y-1)-(y+1)|=2,

∴|x-1|+|x|+|y-1|+|y+1|≥3.

∴|x-1|+|x|+|y-1|+|y+1|的最小值为3. 答案 C

4.下列不等式中恒成立的个数是()

①x+1

x≥2(x≠0);

②c

a<

c

b(a>b>c>0);

③a+m

b+m

a

b(a,b,m>0,a<b);

④|a+b|+|b-a|≥2a.

A.4

B.3

C.2

D.1 解析①不成立,当x<0时不等式不成立;

②成立,a>b>c>0?a

ab>

b

ab即

1

b>

1

a,

又由于c>0,故有c

b>

c

a;

③成立,因为a+m

b+m

a

b=

(b-a)m

b(b+m)

>0,(a,b,m>0,a<b),故

a+m

b+m

a

b;

④成立,由绝对值不等式的性质可知:|a+b|+|b-a|≥|(a+b)-(b-a)|=

|2a|≥2a,故选B.

答案 B

5.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为________.

解析利用绝对值的几何意义求解,注意等号成立的条件.由绝对值的几何意义知,|x|+|x-1|是数轴上的点x到原点和点1的距离之和,所以|x|+|x-1|≥1,当且仅当x∈[0,1]时取“=”.

同理|y|+|y-1|≥1,当且仅当y∈[0,1]时取“=”.

∴|x |+|y |+|x -1|+|y -1|≥2.

而|x |+|y |+|x -1|+|y -1|≤2,

∴|x |+|y |+|x -1|+|y -1|=2,

此时x ∈[0,1],y ∈[0,1],∴x +y ∈[0,2].

答案 [0,2]

6.下列四个不等式:

①log x 10+lg x ≥2(x >1);

②|a -b |<|a |+|b |;

③????

??b a +a b ≥2(ab ≠0); ④|x -1|+|x -2|≥1.

其中恒成立的是________(把你认为正确的序号都填上).

解析 ∵x >1,∴log x 10+lg x =1lg x +lg x ≥2,①正确;

ab ≤0时,|a -b |=|a |+|b |,②不正确;

∵ab ≠0,b a 与a b 同号,

∴??????b a +a b =??????b a +????

??a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知|x -1|+|x -2|≥1恒成立,④也正确; 综上①③④正确.

答案 ①③④

7.求函数y =|x -3|-|x +1|的最大值和最小值.

解 法一 ||x -3|-|x +1||≤|(x -3)-(x +1)|=4,

∴-4≤|x -3|-|x +1|≤4.

∴y max =4,y min =-4.

法二 把函数看作分段函数.

y =|x -3|-|x +1|=?????4,x <-1,2-2x ,-1≤x ≤3,-4,x >3.

∴-4≤y ≤4.∴y max =4,y min =-4.

二、能力提升

8.已知设ab >0,有如下四个不等式:

①|a +b |>|a |;

②|a +b |<|b |;

③|a +b |<|a -b |;

④|a +b |>|a |-|b |.

其中正确的是( )

A.①②

B.①③

C.①④

D.②④

解析 ∵ab >0,∴a ,b 同号,

∴|a +b |=|a |+|b |.∴①④正确.

答案 C

9.若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( )

A.5或8

B.-1或5

C.-1或-4

D.-4或8

解析 利用绝对值的几何意义分类讨论,根据解析式特征确定函数最小值点进而求a .

(1)当-1≤-a 2,即a ≤2时,

f (x )=?????-3x -a -1,x ≤-1,

-x -a +1,-1<x <-a 2,3x +a +1,x ≥-a 2.

易知函数f (x )在x =-a 2处取最小值,

即1-a 2=3.

所以a =-4.

(2)当-1>-a 2,即a >2时,

f (x )=?????-3x -a -1,x ≤-a 2,

x +a -1,-a 2<x <-1,3x +a +1,x ≥-1.

易知函数f (x )在x =-a 2处取最小值,即a 2-1=3,故a =8.

综上a =-4或8.

答案 D

10.不等式|a +b ||a |-|b |

≥1成立的充要条件是________. 解析 |a +b |

|a |-|b |≥1?|a +b |-(|a |-|b |)

|a |-|b |≥0 ?(|a |-|b |)·[|a +b |-(|a |-|b |)]≥0.

而|a +b |≥|a |-|b |,

∴|a +b |-(|a |-|b |)≥0.

∴|a |-|b |>0,即|a |>|b |.

答案 |a |>|b |

11.设函数f (x )=????

??x +1a +|x -a |(a >0). (1)证明:f (x )≥2;

(2)若f (3)<5,求a 的取值范围.

(1)证明 由a >0,有f (x )=??????x +1a +|x -a |≥????

??x +1a -(x -a )=1a +a ≥2.所以

f (x )≥2.

(2)解 f (3)=????

??3+1a +|3-a |. 当a >3时,f (3)=a +1a ,

由f (3)<5,得3<a <5+212.

当0<a ≤3时,f (3)=6-a +1a ,

由f (3)<5,得1+52<a ≤3.

综上,a 的取值范围是? ????1+52

,5+212. 12.已知a ,b ∈R 且a ≠0,求证:|a 2-b 2|2|a |≥|a |2-|b |2.

证明 (1)若|a |>|b |, 左边=|a +b ||a -b |2|a |=|a +b ||a -b ||a +b +a -b |≥|a +b ||a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |

, ∴1|a +b |+1|a -b |≤2|a |-|b |

. ∴左边≥|a |-|b |2=右边.

(2)若|a |<|b |,左边>0,右边>0,∴原不等式显然成立.

(3)若|a |=|b |,原不等式显然成立.

综上可知原不等式成立.

三、探究与创新

13.对定义在[-1,1]上的函数f (x ),若存在常数A >0,使得对任意x 1,x 2∈[-

1,1],都有|f(x1)-f(x2)|≤A|x1-x2|,则称f(x)具有性质L.问函数f(x)=x2+3x +5与g(x)=|x|是否具有性质L?试证明.

解f(x)具有性质L,g(x)不具有性质L.

证明如下:

(1)对于f(x)=x2+3x+5,任取x1,x2∈[-1,1],

|f(x1)-f(x2)|=|x21-x22+3(x1-x2)|

=|(x1-x2)(x1+x2+3)|

=|x1-x2||x1+x2+3|

≤|x1-x2|(|x1|+|x2|+3)

≤5|x1-x2|.

故存在A=5,使f(x)具有性质L.

(2)对于g(x)=|x|,

设它具有性质L,任取x1,x2∈[0,1],

则|g(x1)-g(x2)|=||x1|-|x1||=

||x1|-|x2|| |x1|+|x2|=

|x1-x2|

|x1|+|x2|

≤A|x1-x2|,

得A≥

1

|x1|+|x2|

1

A≤|x1|+|x2|≤2.得1

A∈(0,2].

取x1=

1

4A2≤1,x2=

1

16A2≤

1

4,

有|x1|+|x2|=

1

2A+

1

4A=

3

4A<

1

A,

与|x1|+|x2|≥1

A矛盾,

故g(x)=|x|不具有性质L.

绝对值不等式教学设计

含有绝对值的不等式 教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法; (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法; (3)通过证明方法的探求,培养学生勤于思考,全面思考方法; (4)通过含有绝对值符号的不等式的证明,可培养学生辩证思维的方法和能力,以及严谨的治学精神。 教学建议 一、知识结构 二、重点、难点分析 ①本节重点是性质定理及推论的证明.一个定理、公式的运用固然重要,但更重要的是要充分挖掘吸收定理公式推导过程中所蕴含的数学思想与方法,通过证明过程的探求,使学生理清思考脉络,培养学生勤于动脑、勇于探索的精神. ②教学难点一是性质定理的推导与运用;一是证明含有绝对值的不等式的方法选择.在推导定理中进行的恒等变换与不等变换,相对学生的思维水平是有一定难度的;证明含有绝对值的不等式的方法不外是比较法、分析法、综合法以及简单的放缩变换,根据要证明的不等式选择适当的证明方法是无疑学生学习上的难点. 三、教学建议

(1)本节内容分为两课时,第一课时为含有绝对值的不等式性质定理的证明及简单运用,第二课时为含有绝对值的不等式的证明举例. (2)课前复习应充分.建议复习:当时 ; ; 以及绝对值的性质: ,为证明例1做准备. (3)可先不给出含有绝对值的不等式性质定理,提出问题让学生研究:是否等于? 大小关系如何?是否等于?等等.提示学生用一些数代入计算、比较,以便归纳猜想一般结论. (4)不等式的证明方法较多,也应放手让学生去探讨. (5)用向量加减法的三角形法则记忆不等式及推论. (6)本节教学既要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神. 教学设计示例 含有绝对值的不等式 教学目标 理解及其两个推论,并能应用它证明简单含有绝对值不等式的证明问题。 教学重点难点

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab ≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

选修4-5 绝对值不等式教案(绝对经典)

选修4-5 不等式选讲 第1节绝对值不等式 【最新考纲】 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a. 要点梳理 1.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 (2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法 ①|ax+b|≤c?-c≤ax+b≤c; ②|ax+b|≥c?ax+b≥c或ax+b≤-c; (3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. (2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立. 基础自测 1.思考辨析(在括号内打“√”或“×”) (1)若|x|>c的解集为R,则c≤0.()

(2)不等式|x-1|+|x+2|<2的解集为?.() (3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.() (4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.() (5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.() 答案(1)×(2)√(3)×(4)×(5)√ 2.不等式|x-1|-|x-5|<2的解集是() A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5) 解析①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当10,|x-1|

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

绝对值不等式的证明及练习

绝对值不等式的证明 知识与技能: 1. 理解绝对值的三角不等式, 2.应用绝对值的三角不等式. 过程方法与能力: 培养学生的抽象能力和逻辑思维能力;提高分析问题、解决问题的能力. 情感态度与价值观: 让学生通过对具体事例的观察、归纳中找出规律,得出结论,培养学生解决应用问题的能力和严谨的学习态度。 教学重点:理解绝对值的三角不等式 应用绝对值的三角不等式. 教学难点:应用绝对值的三角不等式. 教学过程: 一、引入: 证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质: (1)b a b a +≥+ (2)b a b a +≤- (3)b a b a ?=? (4))0(≠=b b a b a 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理? 实际上,性质b a b a ?=?和)0(≠=b b a b a 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明b a b a +≥+对于任意实数都成立即可。我们将在下面的例题中研究它的证明。 现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大? 显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。在0

含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。 定理(绝对值三角形不等式) 如果,a b 是实数,则a b a b a b -±+≤≤ 注:当a b 、为复数或向量时结论也成立. 特别注意等号成立的条件. 定理推广: 1212≤n n a a a a a a ++++++ . 当且仅当都12n a a a ,,,非正或都非负时取等号. 探究:利用不等式的图形解不等式 1. 111<--+x x ; 2..12≤+y x 3.利用绝对值的几何意义,解决问题:要使不等式34-+-x x

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

两个常用绝对值不等式的应用

两个常用绝对值不等式的应用 教学目标 理解及其两个推论,并能应用它证明简单含有绝 对值不等式的证明问题。 教学重点难点 重点是理解掌握定理及等号成立的条件,绝对值不等式的证明。 难点是定理的推导过程的探索,摆脱绝对值的符号,通过定理或放缩不等式。 教学过程 一、复习引入 我们在初中学过绝对值的有关概念,请一位同学说说绝对值的定义。 当时,则有: 那么与及的大小关系怎样? 这需要讨论当 当 当 综上可知: 我们已学过积商绝对值的性质,哪位同学回答一下? . 当时,有:或. 二、引入新课

由上可知,积的绝对值等于绝对值的积;商的绝对值等于绝对值的商。 那么和差的绝对值等于绝对值的和差吗? 1.定理探索 和差的绝对值不一定等于绝对值的和差,我们猜想 . 怎么证明你的结论呢? 用分析法,要证. 只要证 即证 即证, 而显然成立, 故 那么怎么证? 同样可用分析法 当时,显然成立, 当时,要证 只要证, 即证 而显然成立。 从而证得. 还有别的证法吗?(学生讨论,教师提示)

由与得. 当我们把看作一个整体时,上式逆用可得什么结 论? 。 能用已学过得的证明吗? 可以表示为. 即(教师有计划地板书学生分析证明的过程) 就是含有绝对值不等式的重要定理,即. 由于定理中对两个实数的绝对值,那么三个实数和的绝对值呢? 个实数和的绝对值呢? 亦成立 这就是定理的一个推论,由于定理中对没有特殊要求,如果用代换会 有什么结果?(请一名学生到黑板演) , 用代得, 即。 这就是定理的推论成立的充要条件是什么? 那么成立的充要条件是什么? .

例1求证. 证法:(直接利用性质定理)在时,显然成立. 当时,左边 . 三、随堂练习 1.求证. 答案: 与同号 四、小结 1.定理. 把、、看作是三角形三边,很象 三角形两边之和大于第三边,两边之差小于第三边,这样理解便于记忆,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义,有时也称其为“三角形不等式”. 2.平方法能把绝对值不等式转化为不含绝对值符号的不等式,但应注意两边非负时才可平方,有些证明并不容易去掉绝对值符号,需用定理及其 推论。 3.对要特别重视.

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

解绝对值不等式,涵盖高中所有绝对值不等式解法。

绝对值不等式|||||| a b a b +≤+,|||||| a b a b -≤+ 基本的绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b| ======================= y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 所以函数的最小值是5,没有最大值 ======================= |y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5 由|y|≤5得-5≤y≤5 即函数的最小值是-5,最大值是5 ======================= 也可以从几何意义上理解,|x-3|+|x+2|表示x到3,-2这两点的距离之和,显然当-2≤x≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x到3,-2这两点的距离之差,当x≤-2时,取最小值-5,当x≥3时,取最大值5 解绝对值不等式题根探讨 题根四解不等式2|55|1 x x -+<. [题根4]解不等式2|55|1 x x -+<. [思路]利用|f(x)|0) -a- ?? 求解。 [解题]原不等式等价于2 1551 x x -<-+<, 即 2 2 551(1) 551(2) x x x x ?-+< ? ? -+>- ?? 由(1)得:14 x <<;由(2)得:2 x<或3 x>, 所以,原不等式的解集为{|12 x x <<或34} x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551 y x x y =-+= 与的的图象,解方程2551 x x -+=,再对照图形写出此不等式的解集。 第1变右边的常数变代数式 [变题1]解下列不等式:(1)|x+1|>2-x;(2)|2x-2x-6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x+1>2-x或x+1<-(2-x) 解得x>1 2 或无解,所以原不等式的解集是{x|x> 1 2 } ? ??

含绝对值不等式的解法

学科:数学 教学内容:含绝对值不等式的解法 【自学导引】 1.绝对值的意义是:? ? ?<-≥=)0x (x ) 0x (x x . 2.|x |<a (a >0)的解集是{x |-a <x <a }. |x |>a (a >0)的解集是{x |x <-a 或x >a }. 【思考导学】 1.|ax +b |<b (b >0)转化成-b <ax +b <b 的根据是什么? 答:含绝对值的不等式|ax +b |<b 转化-b <ax +b <b 的根据是由绝对值的意义确定. 2.解含有绝对值符号的不等式的基本思想是什么? 答:解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与解一般不等式或不等式组相同. 【典例剖析】 [例1]解不等式2<|2x -5|≤7. 解法一:原不等式等价于???≤->-7|52|2 |52|x x ∴???≤-≤--<--7|5272522|52x x x 或即????? ≤≤-<>6 12327x x x 或 ∴原不等式的解集为{x |-1≤x < 23或2 7 <x ≤6} 解法二:原不等式的解集是下面两个不等式组解集的并集 (Ⅰ)???≤-<≥-7522052x x (Ⅱ)???≤-<<-7 252052x x

不等式组(Ⅰ)的解集为{x | 2 7 <x ≤6} 不等式组(Ⅱ)的解集是{x |-1≤x <23 } ∴原不等式的解集是{x |-1≤x <23或2 7 <x ≤6} 解法三:原不等式的解集是下面两个不等式解集的并集. (Ⅰ)2<2x -5≤7 (Ⅱ)2<5-2x ≤7 不等式(Ⅰ)的解集为{x | 2 7 <x ≤6} 不等式(Ⅱ)的解集是{x |-1≤x <23 } ∴原不等式的解集是{x |-1≤x <23或2 7 <x ≤6}. 点评:含绝对值的双向不等式的解法,关键是去绝对值号.其方法一是转 化为单向不等式组如解法一,再就是利用绝对值的定义如解法二、解法三. [例2]解关于x 的不等式: (1)|2x +3|-1<a (a ∈R ); (2)|2x +1|>x +1. 解:(1)原不等式可化为|2x +3|<a +1 当a +1>0,即a >-1时,由原不等式得-(a +1)<2x +3<a +1 - 24+a <x <2 2 -a 当a +1≤0,即a ≤-1时,原不等式的解集为?, 综上,当a >-1时,原不等式的解集是{x |-24+a <x < 2 2 -a } 当a ≤-1时,原不等式的解集是?. (2)原不等式可化为下面两个不等式组来解 (Ⅰ)???+>+≥+112012x x x 或(Ⅱ)? ??+>+-<+1)12(012x x x 不等式组(Ⅰ)的解为x >0 不等式组(Ⅱ)的解为x <- 3 2 ∴原不等式的解集为{x |x <- 3 2 或x >0} 点评:由于无论x 取何值,关于x 的代数式的绝对值均大于或等于0,即不可能小于0,故|f (x )|<a (a ≤0)的解集为?. 解不等式分情况讨论时,一定要注意是对参数分类还是对变量分类,对参数分类的解集一般不合并,如(1)对变量分类,解集必须合并如(2). [例3]解不等式|x -|2x +1||>1. 解:∵由|x -|2x +1||>1等价于(x -|2x +1|)>1或x -|2x +1|<-1 (1)由x -|2x +1|>1得|2x +1|<x -1

含有绝对值的不等式典型例题分析

含有绝对值的不等式·典型例题分析 例1 求下列函数的定义域和值域: 分析利用绝对值的基本概念. 解 (1)x+|x|≠0,即|x|≠-x.∴x>0. ∴定义域为(0,+∞),值域为(0,+∞). (2)|x|≥x,x∈R.|x|-x≥0,∴y∈[0,+∞). (3)x+|x|>0,x∈R+.y∈R. 画出函数图象如图5-17所示.不难看出,x∈R,y∈[-1,1]. 说明本例中前三个易错,第四个要分析写出函数表达式,并画出函数图象,此法在求值域时常用. 例2 解不等式|x+1|>|2x-3|-2.

将不等式中的绝对值符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. (1)当x≤-1时原不等式化为-(x+1)>-(2x-3)-2. ∴x>2与条件矛盾,无解. 综上,原不等式的解为{x|0<x<6}. 注意找零点去绝对值符号最好画数轴,零点分段,然后从左向右逐段讨论,这样做条理分明、不重不漏. 例3 解不等式|x2-4|<x+2. 分析解此题的关键是去绝对值符号,而去绝对值符号有两种方法:

二是根据绝对值的性质:|x|<a?-a<x<a,|x|>a?x>a或x<-a,因此本题有如下两种解法. ∴2≤x<3或1<x<2 故原不等式的解集为{x|1<x<3}. 解法二原不等式等价于-(x+2)<x2-4<x+2 例4 求使不等式|x-4|+|x-3|<a有解的a的取值范围. 分析此题若用讨论法,可以求解,但过程较繁;用绝对值的几何意义去求解十分简便. 解法一将数轴分为(-∞,3],[3,4],(4,+∞)三个区间 当3≤x≤4 时,得(4-x)+(x-3)<a,即a>1;

含绝对值的不等式解法练习题及标准答案

含绝对值的不等式解法练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ]

A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准. 例解不等式 -+≥.8 321 2 ||||x x 分析 一般地说,可以移项后变形求解,但注意到分母是正数,所以能直接 去分母.

含有绝对值不等式的解法-典型例题

含绝对值不等式的解法 例1? 解绝对值不等式|x+3|>|x-5|. 解:由不等式|x+3|>|x-5|两边平方得 |x+3|2>|x-5|2, 即(x+3)2>(x-5)2, x>1. ∴? 原不等式的解集为{x|x>1}. 评析? 对于两边都含“单项”绝对值的不等式依据|x|2=x2,可在两边平方脱去绝对值符号.当然,此例可按绝对值定义讨论脱去绝对值符号,但解题繁琐.例2? 对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则实数k的取值范围是(??? ) A.k<3????? ???? B.k<-3????? ??????? C.k≤3????? ??????? D.k≤-3 分析? 要使|x+1|-|x-2|>k对任意实数x恒成立,只要|x+1|-|x-2|的最小值大于k.因|x+1|的几何意义为数轴上点x到-1的距离,|x-2|的几何意义为点x到2的距离,|x+1|-|x-2|的几何意义为数轴上点x到-1与2的距离的差,其最小值为-3,∴? k<-3,∴? 选B. 评析? 此例利用绝对值的几何意义使问题迅速得解,若采用其他方法则解答过程冗长.例3? 解不等式|3x-1|>x+3. 分析? 解此类不等式,要分x+3≥0和x+3<0两种情况讨论. 解:当x+3≥0,即x≥-3时,原不等式又要分-3≤x< 和x≥ 两种情况求解:当-3≤x< 时,-3x+1>x+3,即x<- ,此时不等式的解为-3≤x<- ;① 当x≥ 时,3x-1>x+3,即x>2,此时不等式的解为x>2.②

又当x+3<0,即x<-3时,不等式是绝对不等式.③ 取①、②、③并集知不等式的解集为 {x|x<- ,或x>2}. 例4? 解不等式? |x-5|-|2x+3|<1 解:x=5和x=- 分别使上式两个绝对值中代数式的值为零,它们将数轴分成三段: 于是,原不等式变为 (Ⅰ)? 或(Ⅱ) 或(Ⅲ) 解(Ⅰ)得? x<-7,解(Ⅱ)得5; (Ⅰ)(Ⅱ)(Ⅲ)的并集{x|x<-7或x> }即为原不等式的解集. 说明? 解这类绝对值不等式(仅限绝对值符号里面是一次式)可分如下几个步骤:第一步令每个绝对值号里的一次因式等于零求出相应的根;第二步把这些根按从小到大的顺序排号并把数轴分成相应的若干个区间;第三步根据所分区间去掉绝对值符号,组成若干个不等式组,最后分别解每个不等式组,取结果的并集就是原不等式的解.

相关文档
最新文档