解决三角函数问题的几种方法

解决三角函数问题的几种方法
解决三角函数问题的几种方法

解决三角函数的几种方法

三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳.

1 凑角法

一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答. 例1 求tan 204sin 20?+?的值.

解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20?+??+?-?==?? sin 202(sin 60cos 20cos60sin 20)

cos 20?+??-??==?

. 评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40?-?+?,或者化为sin(3010)2sin(3010)?-?+?+?,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择!

2 降幂法

一些涉及高次三角式的求值问题,往往借助已知及22

sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22

αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值.

解析 由2cos cos 1αα+=,得cos α=,cos α=.由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=,

则263sin sin cos cos αααα+=+,又由2c o s c o s 1αα+=,得2c o s 1c o s αα=-,故322c o s c o s c o s (1c o s )c o s (2c o s )2c o s c o s 3c o ααααααααα+=+=-=-=-,代值可得

265sin sin 2

αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答.

3 对偶法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.

例3 已知(0,)2x π

∈,且222cos cos 2cos 31x x x ++=,求x 的值.

解析 设222cos cos 2cos 3m x x x =++,令222s i n s i n 2s i n 3n x x x =++,则3m n +=,

cos2cos4cos6m n x x x -=++,其中,2cos62cos 31x x =-,

cos 2cos 4cos(3)cos(3)2cos cos3x x x x x x x x +=-++=,2cos3(cos cos3)1m n x x x -=+-,又c o s c o s 3c o s (2)c o s (2)2c o s x x x x x x x x +=-++=,故4cos cos2cos31m n x x x -=-,故可解得1cos cos 2cos3(22)0(1)4

x x x m m =-== .则c o s 0x =,或c o s 20x =,或c o s 30x =,又(0,)2

x π∈,则6x π=或4x π

=. 评注 三角函数中的正弦函数与余弦函数是一对互余函数,有很多对称的结论,如22sin cos 1θθ+=等,因此在解决一些三角求值,求证等问题时,可以构造对偶式,实施配对策略,尝试进行巧妙解答. 例4 求cos

7

π+cos 37π+cos 57π的值. 解:设M =cos 7

π+cos 37π+cos 57π,构造其对偶式 N =sin 7

π+sin 37π+sin 57π.则 M ·N =21sin 27π+21sin 67π+21sin 107

π+sin 47π+sin 67π+sin 87π =21( sin 7

π+sin 37π+sin 57π)=21N . ∴ M =cos 7π+cos 37π+cos 57π=21. 4 换元法

给值求值问题都是给的单角的某一三角函数值,利用换元法可以将问题转化为熟悉的已知单角的三角函数值求值(包括求周期、对称轴、对称中心等)问题.

例5 求sin 75cos 4515ααα+?++?+?()()()的值.

解析 令15αβ+?=,则原式sin(60)cos(30)βββ=+?++?

(sin cos60cos sin 60)(cos cos30sin sin 30)0βββββ=?+?+?-?-=.

评注 教材求值问题往往是已知单角三角函数值求值,而近几年的高考和期末考试试题,则青睐于已知复合角的三角函数值求值,因此备考时要特别注意此点,解答此类问题的换元法或整体思想也都十分重要.对本题,若直接将三部分借助两角和的正弦公式与余弦公式展开,则要繁杂得多.

5 方程法 有时可以根据已知构造所求量的方程解答.

例6 若33cos sin 1x x =+,试求sin x 的值.

解析 令cos sin x x t =+,则21cos sin (1)2x x t =

-,[t ∈.由已知,有 2

221(cos sin )(cos sin cos sin )(1)12

t x x x x x x t --++=+=,即3232(1)(2)0t t t t --=+-=,得1t =-,或2t =(舍去).即cos sin 1x x =+,又22sin cos 1x x +=,整理可得2sin sin 0x x +=,解得sin 0x =或sin 1x =-.

评注 将已知转化为关于sin x 的方程是解题的关键.方程的思想方法是解答诸多三角函数问题的基本大法,如求三角函数的解析式等问题.一般地,若题目中有n 个需要确定的未知数,则只要构造n 个方程解答即可.

6 讨论法

涉及含有参数或正负情形的三角问题,往往需要借助讨论法进行解答.

例7 已知ABC !中,54sin ,cos 135

A B =

=,求cos C . 解析 由5sin 13A =,得12cos 13A =±.当12cos 13A =-时,因为,A B 是ABC !的内角,需要满足0A B π<+<,有0A B ππ<<-<,而余弦函数在区间(0,)π是减函数,得cos cos()cos A B B π>-=-,但124cos cos 135A B =-

<-=,故此情形不合题意. 可以验证12cos 13A =符合题意,故33cos cos()sin sin cos cos 65

C A B A B A B =-+=-=-. 评注 分类讨论是将问题化整为零,进而化难为易的重要思想方法,一般含有绝对值的三角函数问题,涉及未确定象限的角的问题等,都要首先考虑“讨论”!

7 平方法

分析已知和所求,有时借助“取平方”的方法可以实现顺利解题.

例8 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,求cos()αβ-的值.

解析 有sin sin sin αβγ+=-,cos cos cos αβγ+=-,两式两边平方后对应相加,可得2222(sin sin 2sin sin )(cos cos 2cos cos )αβαβαβαβ+++++

22(sin )(cos )1γγ=-+-=,即1cos()2

αβ-=-. 评注 学习数学要掌握一些基本的操作技能,而“取”就是其中的重要一种,除了“取平方”外,常见的还有“取对数”,“取倒数”等操作,需要注意体会.本题就是借助平方关系实现整体消元后解答的.

8 猜想法

有时根据已知数据的特征进行必要的猜想,能更好的解决求值问题.

例9

已知1sin cos 2

αα+=,且α为第二象限角,则sin α= . 解析 由sin 0,cos 0αα><

及22221

sin cos 1,()(122αα+=+-=,可得1sin 2

α=. 评注 实际上,

将sin cos αα+=与22sin cos 1αα+=联立所得二元二次方程组只有两组解,

即1sin ,cos 2αα==

或1cos ,sin 2αα==,依题意只可取前者.学习数学,要培养对数据的敏感性,能根据数据特征进行积极联想,进而适当猜想,能有效提高解题速度,而且猜想是一种重要的推理形式,并不是“胡猜乱想”,要紧扣已知和所求进行.

9 图象法

有时候,借助图象才能更好的解决对应的三角函数问题.

例10 已知函数()sin 1(1)f x A x A =+>的图象与直线y A =在x 轴右侧的与x 轴距离最近的相邻三个交点的横坐标成等比数列,求实数A 的值.

解析 如右图,设三个交点的坐标为(,)B b A ,(,)C c A ,

(,)D d A ,由三角函数图象的对称性,则有22b c π

π+=?=,

3232

c d ππ+=?=,有b c π=-,3d c π=-,又222()(3)34c b d c c c c ππππ==--=-+,解得34c π=.故函数图象经过3(,)4A π,代入可

得2A =.

评注 数和形是数学的两大支柱,三角函数的很多问题都有图形背景,在解决问题时,要充分借助图形进行直观分析,往往能更快捷的实现问题的解答,注意培养做草图的能力.

10 比例法

借助比例的性质,有时可以实现快速解答三角函数问题.

例11 求证 2(cos sin )cos sin 1sin cos 1sin 1cos αααααααα

-=-++++. 解析 若cos 0α=(或sin 0α=),因为sin 1(cos 1),αα≠-≠-或,故sin 1α=,或cos 1α=,验证可知等式成立.

若cos 0α≠,则由2cos (1sin )(1sin )ααα=+-,2

sin (1cos )(1cos )ααα=+-及比例性质a c a c b d b d +==+,可得cos 1sin 1sin cos 1sin cos 1sin cos αααααααα

--+==+++. sin 1cos 1sin cos 1cos sin 1sin cos αααααααα

-+-==+++,代入等式左边可知所证成立. 评注 本题有多种证法,而借助比例的性质的方法显得尤为简捷.涉及分式的三角函数问题,可以考虑借助比例法解答.如关于半角的正切公式sin 1cos tan 21cos sin α

αααα

-==+,按照比例性质,立得1cos sin tan 21cos sin ααααα

-+=++. 10 构造三角形法

例12 求值:sin 220°+cos 2

50°+sin20°cos50°

设△ABC 中,A=20°B= 40°C=120°利用余弦定理求解

原始= sin 220°+sin 240°+sin20°sin40°= sin 220°+sin 240°-2sin20°sin40°cos120°=sin 2120°=3/4

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

7.6用锐角三角函数解决问题(3)

7.6锐角三角函数解决问题(3) 学习目标: 1.掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、角有关的实际问题,培养学生。 2.经历探索实际问题的求解过程,进一步体会三角函数在解决问题过程中的应用. 教学流程提纲 1.仰角、俯角的定义:如图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线 与水平线的夹角叫做俯角。右图中的∠1就是俯角,∠2就是仰角。 2.课本例题讲解 3.课本练习 4.拓展例题 如图,飞机在距地面9km高空上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行一段距离后,在B处测得该小岛的俯角为60°.求飞机的飞行距离. 变式:如上图,飞机在一定高度上飞行,先在A处测得正前方某小岛C的俯角为30°,飞行10km 后,在B处测得该小岛的俯角为60°,求飞机的飞行高度。 本节课2个目标你达成个?分别是:

7.6锐角三角函数解决问题(3)过关检测 1.热气球的探测器显示,从热气球A看一栋高楼顶部B处的仰角为30o,看这栋高楼底部C处的俯角为60o,若热气球与高楼的水平距离为90m,则这栋高楼有多高?(结果保留整数,2≈1.414,3≈1.732) 2.海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45°方向,求此时灯塔B到C处的距离. 3.据黄石地理资料记载:东方山海拔DE=453.20米,月亮山海拔CF=442.00米,一飞机从东方山到月亮山方向水平飞行,在东方山山顶D的正上方A处测得月亮山山顶C的俯角为α,在月亮山山顶C的正上方B处测得东方山山顶D处的俯角为β,如图,已知tanα=0.15987,tanβ=0.15847,若飞机的飞行速度为180米/秒,则该飞机从A到B处需多少时间?(精确到0.1秒)

7.6用锐角三角函数解决问题(2)学案

7.6用锐角三角函数解决问题(2)学案 学习目标: 通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。 教学过程: 一、复习巩固: 1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。 2、在△ABC中,∠C=90°。 (1)已知∠A=30°,BC=8cm,(2)已知∠A=60°,AC=3cm, 求:AB与AC的长; 求:AB与BC的长。 二、例题学习: 问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。小明乘坐最底部的车厢(离地面约0.3m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)? 拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达15.3m? 2、小明将有多长时间连续保持在离地面30.3m以上的空中? 三、练习巩固

, B B A 1、如图,单摆的摆长A B 为90cm ,当它摆动到∠B AB '的位置时,∠BAB '=30°。问这时摆球B ' 较最低点B 升高了多少? 2、已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面32m.求此时跷跷板与地面的夹角. 3、如图,在离水面高度为5米的岸上有人用绳子 拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到0.1米) 四、小结 五、课堂作业

B A O B A 初三数学课堂作业 1、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离A B为 ( ) A. αcos 5 B. αcos 5 C . αsin 5 D. αsin 5 第1题 第3题 第4题 2.(09甘肃定西)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为 ( ) A .8米??B.83米? C .833米? D.433 米 3.(09潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 ??B.253 C.10033 ?D .25253+ 4.已知跷跷板长4m ,当跷跷板的一端碰到地面时,另一端离地面2m 。时跷跷板与地面的夹角为_____ ____。 7.如图,秋千链子的长度为3m,当秋千向两边摆动时,两边摆动的角度均为30°.求它摆动到最高位置与最低 位置的高度之差。 5.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45°方向,求此时灯塔B 到C处的距离. 6. 单摆的摆长AB 为90cm,当它摆动到A B’的位置时, ∠BAB’=11°,问这时摆球B’ 较最低点B 升高了多少(精确到1cm)? sin110.191?≈cos110.982?≈tan110.194?≈

三角函数值表

三角函数值表一常用三角函数值:

二反三角函数值

同角三角函数的基本关系式 1,倒数关系: 1csc sin =?x x 1sec cos =?x x 1cot tan =?x x 2,商数关系: x x x cos sin tan = x x x sin cos cot = 3,平方关系 1cos sin 22=+x x x x 22sec tan 1=+ x x 22csc cot 1=+ 倍角公式:

x x x cos sin 22sin = 2 cos 2sin 2sin x x x = x x x 22sin cos 2cos -= 2 sin 2cos cos 2 2 x x x -= 1cos 22 -=x 12 cos 22 -=x x 2 sin 21-= 2 sin 212 x -= x x x 2tan 1tan 22tan -= 2 tan 12tan 2tan 2x x x -= 半角公式: 2cos 12sin x x -±= 22cos 1sin 2x x -= 2cos 12cos x x +±= 2 2cos 1cos 2x x += x x x x x x x cos 1sin sin cos 1cos 1cos 12tan +=-=+-±= 万能公式: 2 tan 12tan 2sin 2x x x +=

2 tan 12tan 1cos 22 x x x +-= 2 tan 12tan 2tan 2x x x -= 奉送直线有关 1,斜截式 斜率K 和在Y 轴的截距是b b kx y += 2点截式 点()111,y x P 和斜率k ()11x x k y y -=- 3,两点式 点()()222111,,y x P y x P 和 1 21 121x x x x y y y y --=-- 4,截距式 在x 轴上截距是a 1=+b x a x 在y 轴上截距是b 两条直线平行的充要条件:21k k = 两条直线垂直的充要条件:121-=?k k 圆: 圆心在圆点,半径为r 的圆的方程是: 222r y x =+ 圆心在点()b a C ,,半径为r 的圆的方程是: ()()22 2 r b y a x =-+-

《用锐角三角函数解决问题》教案

《用锐角三角函数解决问题》教案1 教学目标 1、了解测量中坡度、坡角的概念. 2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题. 3、进一步培养学生把实际问题转化为数学问题的能力. 重点难点 重点:有关坡度的计算. 难点:构造直角三角形的思路. 教学设计 一、引入新课 如下图所示,斜坡AB 和斜坡A 1B 1哪一个倾斜程度比较大?显然,斜坡A 1B l 的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,1111 B C BC AC AC ,即tan A 1>tan A . 在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度. 二、新课 1.坡度的概念,坡度与坡角的关系. 如图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i =AC BC ,坡度通常用l :m 的形式,例如上图中的1:2的形式.坡面与水平面的夹角叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i =tan B ,显然,坡度越大,坡角越大,坡面就越陡. 2.习题讲解. 1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)

分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决.2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角.和坝底宽AD.(i =CE:ED,单位米,结果保留根号) 三、练习 课本第114页课内练习. 四、小结 会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决. 五、作业 课本117页习题7.6的1、2题. 《用锐角三角函数解决问题》教案2 教学目标 知识与技能 1.通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系. 2.把实际问题转化为数学问题,同时借助计算器进行有关三角函数的计算,并能对结果的意义进行说明. 数学思考与问题解决 经历实际问题数学化的过程,进一步体会三角函数在解决问题中的作用,不断探索解决实际问题的方法和规律. 情感与态度 在独立思考探索解决问题方法的过程中,培养学生不断克服困难,增强应用数学的意识和解决实际问题的能力.

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

三角函数常见问题十种求解策略

三角函数常见问题十种求解策略 导语:三角形中的三角函数问题,是三角函数和解三角形两个知识点的有机结合,也是近年来高考中常见的考点之一。以下是为大家精心的高中数学,欢迎大家参考! 一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90,90)的公式. 1.sin(kπ+α)=(-1)ksinα(k∈Z); 2.cos(kπ+α)=(-1)kcos α(k∈Z); 3.tan(kπ+α)=(-1)ktanα(k∈Z); 4.cot(kπ+α)=(-1)kcot α(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图” 1.sinα+cosα>0(或 2.sinα-cosα>0(或 3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内; 4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内. 三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。 四、“见齐思弦”=>“化弦为一” 已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α. 五、见“正弦值或角的平方差”形式,启用“平方差”公式:

1.sin(α+β)sin(α-β)=sin2α-sin2β; 2.cos(α+ β)cos(α-β)=cos2α-sin2β. 六、见“sinα±cosα与sinαcosα”问题,起用平方法则: (sinα±cosα)2=1±2sinαcosα=1±sin2α,故 1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α; 2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α. 七、见“tanα+tanβ与tanαtanβ”问题,启用变形公式: tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=??? 八、见三角函数“对称”问题,启用图象特征代数关系:(A≠ 0) 1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称; 2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称; 3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数 y=Acot(wx+φ)的对称性质。 九、见“求最值、值域”问题,启用有界性,或者辅助角公式: 1.|sinx|≤1,|cosx|≤1; 2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

常用三角函数值

高中数学常用公式一常用三角函数值:

二反三角函数值 同角三角函数的基本关系式 1,倒数关系: 1c s c s i n =?x x 1s e c c o s =?x x 1c o t t a n =?x x 2,商数关系: x x x c o s s i n t a n = x x x s i n c o s c o t = 3,平方关系 1c o s s i n 2 2 =+x x x x 2 2 s e c t a n 1=+

x x 2 2c s c c o t 1=+ 倍角公式: x x x c o s s i n 22s i n = 2 c o s 2 s i n 2s i n x x x = x x x 2 2s i n c o s 2c o s -= 2 s i n 2 c o s c o s 2 2 x x x -= 1c o s 22 -=x 12 c o s 22 -=x x 2 s i n 21-= 2 s i n 212 x -= x x x 2 t a n 1t a n 22t a n -= 2 t a n 12 t a n 2t a n 2 x x x -= 半角公式: 2 c o s 12s i n x x -± = 2 2c o s 1s i n 2 x x -= 2c o s 12c o s x x +±= 22c o s 1c o s 2 x x += x x x x x x x c o s 1s i n s i n c o s 1c o s 1c o s 12t a n +=-=+-±= 万能公式: 2 t a n 12 t a n 2s i n 2 x x x += 2 t a n 12t a n 1c o s 2 2 x x x +-=

苏科初中数学九年级下册《7.6 用锐角三角函数解决问题》教案 (1)

锐角三角函数的简单应用

板 书 设 计 7.6锐角三角函数的简单应用(1) 教 学 环 节 学生自学共研的内容方法 (按环节设计自学、讨论、训练、探索、创新等内容) 教师施教提要 (启发、精讲、 活动等) 再 次 优 化一、 例题 教学 【【典型例题】 1. “五一”节,小明和同学一起到游乐场游玩. 游乐场的大型 摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的 车厢(离地面约0.5m)开始1周的观光,经过2min后,小明离地 面的高度是多少? (1).摩天轮启动多长时间后,小明离地面的高度将首次达到 10m? (2).小明将有多长时间连续保持在离地面10m以上的空中? 2.1.单摆的摆长AB为90cm,当它摆动到AB’的位置时, ∠ BAB’=11°,问这时摆球B’较最低点B升高了多少(精确到 1cm)? 分析:如图,小 明开始在车厢点 B,经过2min后 到了点C,点C 离地面的高度就 是小明离地面的 高度,其实就是 DA的长度 DA= AE - sin110.191 ?≈cos110.982 ?≈ tan110.194 ?≈ sin110.191 ?≈cos110.982 ?≈tan110.194 ?≈

二、(1)巩固练习3.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离 地面1.5m.求此时跷跷板与地面的夹角(精确到0.1°). 4.如图所示,电工李师傅借助梯子安装天花板上距地面 2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形 面的长都被六条踏板七等分,使用时梯脚的固定跨度为 1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m, 当他攀升到头顶距天花板0.05~0.20m时,安装起比较方便. 他现在竖直站立在梯子的第三级踏板上,请你通过计算判断 他安装是否比较方便? 课后练习 【基础演练】 1.如图,秋千链子的长度为3m,当秋千向两边摆动时,两 边的摆动角度均为30o。求它摆动至最高位置与最低位置的 高度之差(结果保留根号). 让学生小结 60o O A B

课中习利用三角函数解决实际问题

课中习利用三角函数解决实际问题 1.如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG 30,在E处测得∠AFG 60,CE8米,仪器高度CD 1.5米,求这棵树AB 的高度(结果保留两位有效数字,3≈1.732). 2. 如图,在△ABC中,∠A=30°,∠B=45°,AC=3 2,求AB 的长, 习得:解直角三角形,常用的辅助线是:________________________________ ___________________________________________________________________ 3.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:41 .1 2 , 73 .1 3≈ ≈) 第16题图D B A O C A G F E C D 3060 45° 30° C B A 第19题图

(第22题图) A P C B 36.9° 67.5° 4. (2013山东东营,22)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此 时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈3 4 , sin67.5°≈1213,tan67.5°≈12 5 ) 5. 中考几何题目的三角函数 (2011四川南充市,19)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上. (1)求证:⊿ABE ∽⊿DFE;(2)若sin ∠DFE= 31 ,求tan ∠EBC 的值. F E D C B A

相似与三角函数方法解决一类问题

图4 相似与三角函数方法解决一类问题 例1、如图1所示,在△ABC 中,∠ACB=90o,CDAB ,垂足为D , (1)图中有哪些相等的角? (2)求证:①CD 2=AD ?DB ;②AC 2=AD ?AB; ③BC 2=BD ?BA 练习 1、已知:如图2,△ABC 中,∠BAC=90o,AD ⊥BC 于D ,AB=2,BC=3,则DC 的长为( ) A 、8/3 B 、2/3 C 、4/3 D 、5/3 2、如图3,CD 是Rt △ABC 斜边上的高,AD=9,CD=6,则BD=( ) A 、4.5 B 、5 C 、3 D 、4 3、如图4,在Rt △ABC 中, ∠ACB=90°,CD ⊥AB 于D ,若AD=4,BD=1,则CD= 例2、如图5,已知半径为1的1O e 与x 轴交于A B ,两点,OM 为1O e 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式; (2)求切线OM 的函数解析式; (3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在, 请说明理由. A B C D A C B D 图3 y x O A B M O 1 图5 图2 A B C D

练习2 、如图,在平面直角坐标系中,直线y =与x 轴交于点A ,与y 轴交于点C ,抛物 线2(0)3 y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)设动点P 、Q 分别从B 、C 两点同时出发,以相同的速度沿AB 、CB 向A 、B 运动,连结PQ ,设BP=m ,是否存在m 值,使以B 、P 、Q 为顶点的三角形与△BAC 相似,若存在,求出所有的m 值;若不存在,请说明理由. (4)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由. x

三角函数值表及记忆方法

角度 sin cos tan cot sec csc 函数 0 0 1 0 \ 1 \ 15 30 2 45 1 1 60 2 75 90 1 0 \ 0 \ 1 105 120 -2 135 -1 -1 150 2 165 -1 \ 180 0 -1 0 \

195 210 -2 225 1 1 240 -2 255 0 \ -1 270 -1 0 \ 285 300 2 315 -1 -1 330 -2 345

常用三角函数 角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 只想上传这一个表 下面的都是无用的话 不用看了。 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 2 1 sin45°=cos45°= 2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2、列表法: 值 角 函 数 0° 30° 45° 60° 90° sin α 20 21 22 23 24 cos α 2 4 2 3 2 2 2 1 2 tan α 3 3 1或 3 9 √3或 3 27 不存在 cot α 不存在 √3或 3 27 1或3 9 3 3 30? 1 2 3 1 45? 1 2 1 2 60? 3

运用三角函数解决与直角三角 形有关实际问题教案(石凯)

运用三角函数解决与直角三角形有关 实际问题教案 教学目标 1、运用锐角三角函数,解决与直角三角形有关的实际问题。 2、通过运用直角三角形相关知识解决问题, 培养学生的综合运用知识解决问题的能力,体验运用数学知识解决一些简单的实际问题,培养学生用数学的意识。 教学重难点 重点:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化。 难点:将实际问题转化为数学问题,选择合适关系式运用三角函数解决与直角三角形有关的实际问题。 教学过程 一、知识回顾(展示ppt 课件) (一)、在解直角三角形的过程中,一般要用到的一些关系: 1、三边之间的关系: 2、两锐角之间的关系:∠A+∠B=90° 3、边与锐角之间的关系: 正弦函数:c a A A =∠=斜边的对边sin 余弦函数:c b A A =∠=斜边的邻边cos 正切函数:b a A A A =∠∠=的邻边的对边tan (二)特殊三角函数值 α 30° 45° 60° sin α 12 22 32 cos α 32 22 12 tan α 33 1 3 A C B c b a a 2+ b 2= c 2

1.(2011年铜仁21题10分)如图,在A岛周围25海里水域有暗礁,一轮船由西向 东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)。 2.(2015年铜仁22题12分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732) 3.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船 32 .7 1 3

解决三角函数各类问题的十种方法

解决三角函数各类问题的十种方法 三角函数的各类问题,由于涉及的三角公式较多,问题的解法也比较灵活,但也会呈现出一定的规律性,本文拟对其中的解题方法进行总结归纳. 1 凑角法 一些求值问题通过观察角之间的关系,并充分利用角之间的关系,往往是凑出特殊角,可以实现顺利解答. 例1 求tan 204sin 20?+?的值. 解析 原式sin 202sin 40sin 202sin(6020)cos 20cos 20?+??+?-?==?? sin 202(sin 60cos 20cos60sin 20)3cos 20?+??-??==? 评注 三角求值主要借助消除三个方面的差异解答,即消除函数名称差异,或者式子结构的差异,或者角度之间的差异,凑角法体现的就是消除非特殊角与特殊角之间的差异.本题注意若将第一步中的分子化为sin(6040)2sin 40?-?+?,或者化为sin(3010)2sin(3010)?-?+?+?,都没有上面的方法简捷,请同学们进行操作比较,分析原因,并注意凑角也需谨慎选择! 2 降幂法 一些涉及高次三角式的求值问题,往往借助已知及22sin cos 1αα+=,或降幂公式221cos 21cos 2sin ,cos 22 αααα-+==等借助降幂策略解答. 例2 若2cos cos 1αα+=,求26sin sin αα+的值. 解析 由2cos cos 1αα+=,得15cos α-+= ,15cos α--=(舍去).由2cos cos 1αα+=,又可得22cos 1cos sin ααα=-=, 则263sin sin cos cos αααα+=+,又由2cos cos 1αα+=,得2cos 1cos αα=-,故322cos cos cos (1cos )cos (2cos )2cos cos 3cos 1ααααααααα+=+=-=-=-,代值可得26355sin sin 2 αα+=. 评注 若求出cos α的值后直接简单代入,则运算量将大得多,而主动降幂后就截然不同了.涉及非单角形式的三角函数问题,有时也需要考虑降幂进而化为一个角的三角函数形式解答,遇到“高次”问题就特别注意联想“降幂法”解答. 3 配对法 根据一些三角式的特征,适当进行配对,有时可以实现问题的顺利解答.

用锐角三角函数解决问题(2)

课题:锐角三角函数的简单应用(2)——方位角 主备:林金强 课型:新授 编号:90706 班级 姓名 备课组长签名【教学过程】: 教学目标:使学生掌握三角函数的简单应用——对方位角的认识。例题讲解: 例1. 如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 测得B 地的走向是南偏东52°,现A 、B 公路准确对接,则B 地所修公路的走向应该是( ) A 、北偏西52° B 、南偏东52° C 、西偏北52° D 、北偏西52° 例2. 海船以5海里/小时的速度向正东方向行驶,在A 北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 方向,求此时灯塔B 到C 处的距离. 例3.一船以每小时20海里的速度沿正东方向航行。上午8某灯塔位于它的北偏东30°的B 处,上午9时行到C 正北方向,此时它与灯塔的距离是多少海里?( 例4.某民航飞机在大连海域失事,为调查失事原因,的黑匣子,如图所示,一潜水员在A 处以每小时8处测得黑匣子B 在北偏东60°的方向,划行半小时后到达C 处,偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B

例5 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气 旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220 千米的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米, 风力就会减弱一级,该台风中心现在以15千米/时的速度沿北偏东300方向往 C 移动,且台风中心风力不变,若城市所受风力达到或超过四 级,则称为受台风影响. (1)该城市是否会受到这次台风的影响?请说明理由. (2)若会受到台风影响,那么台风影响该城市的持续时间有 多长? (3)该城市受到台风影响的最大风力为几级? 【当堂训练】: 1.如图,A 市东偏北60°方向有一旅游景点M ,在A 市东偏北30?°的公路上向前行800米到C 处,测得M 位于C 的北偏西15°,则景点M 到公路AC?的距离MN 为________米(结果保留根号). 2.如图王英同学从A 地沿北偏西60o方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A .350m B .100 m C .150m D .3100m 3.如图,东西两炮台A 、B 相距2000米,同时发现入侵敌舰C ,炮台A 测得敌舰C 在它的南偏东30゜的方向,炮台B 测得敌舰C 在它的正南方,则敌舰与两炮台的距离分别为_______米(结果保留根号). 4.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,?为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长多少? 学生笔记栏

5.4利用锐角三角函数解决实际问题(2011年)

1. (2011 吉林省长春市) 放在地面上的直角三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示.量得角A 为54°,斜边AB 的长为 2.1m ,BC 边上露出部分BD 长为 0.9m .求铁板BC 边被掩埋部分CD 的长.(结果精确到 0.1m ) 参考数据:sin54°=0.81,cos54°=0.59,tan54°=1.38 答案:解:在△ABC 中,∠C =90,sin BC A AB = , ∵∠A =54,AB =2.1, ∴sin 2.1sin54BC AB A ==? 2.10.81 1.701.=?= ∵BD =0.9, ∴CD= BC -BD =1.701-0.9=0.801≈0.8. 答:铁板BC 边被掩埋部分CD 的长约为0.8m . 20110826100913171449 5.4 利用锐角三角函数解决实际问题 应用题 解决问题 2011-08-26 2. (2011 湖南省岳阳市) 如图,在顶角为30°的等腰三角形ABC 中,AB AC =,若过点C 作CD AB ⊥于点D ,则15BCD ∠=°.根据图形计算tan15=°____________.

答案:23- 20110826090029546709 5.4 利用锐角三角函数解决实际问题 填空题 双基简单应用 2011-08-26 3. (2011 浙江省台州市) 丁丁要制作一个形如图1的风筝,想在一个矩形材料中裁剪出如图2阴影所示的梯形翅膀,请你根据图2中的数据帮丁丁计算出BE ,CD 的长度(精确到个位,317≈.). 答案:解:由120ABC ∠=°可得60EBC ∠=°. 在Rt BCE △中,51CE =,60EBC ∠=°, 因此tan 60CE BE °= , 5130tan 60tan 60CE BE ==≈°° . 在矩形AECF 中,由45BAD ∠=°,得45ADF DAF ∠=∠=°.

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要: (1) 关键词: (2) 1引言 (3) 1.1三角函数起源 (3) 2三角函数的基础知识 (4) 2.1下列是关于三角函数的诱导公式 (4) 2.2两角和、差的正弦、余弦、正切公式 (6) 2.3二倍角的正弦、余弦、正切公式 (6) 3.三角函数与生活 (6) 3.1火箭飞升问题 (6) 3.2电缆铺设问题 (7) 3.3救生员营救问题 (8) 3.4足球射门问题 (8) 3.5食品包装问题 (9) 3.6营救区域规划问题 (10) 3.7住宅问题 (10) 3.8最值问题 (12) 4 总结 (12) Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,总之它在教学和其他领域中具有重要的作用。本文将对一些关于三角函数在解决实际问题中的应用做简单的讨论。 关键词:数学三角函数三角函数的应用

相关文档
最新文档