第26讲 平面向量的数量积及应用

第26讲 平面向量的数量积及应用
第26讲 平面向量的数量积及应用

第二十六讲—平面向量的数量积及应用

一.课标要求:

1.平面向量的数量积

①通过物理中"功"等实例,理解平面向量数量积的含义及其物理意义;

②体会平面向量的数量积与向量投影的关系;

③掌握数量积的坐标表达式,会进行平面向量数量积的运算;

④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2.向量的应用

经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。

二.命题走向

本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。

平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。

预测2010年高考:

(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。

(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;

三.要点精讲

1.向量的数量积

(1)两个非零向量的夹角

已知非零向量a 与a ,作=,=,则∠A OA =θ(0≤θ≤π)叫与的夹角;

说明:(1)当θ=0时,a 与b 同向;

(2)当θ=π时,与反向;

(3)当θ=2

π时,与垂直,记⊥; (4)注意在两向量的夹角定义,两向量必须是同起点的,范围0?≤θ≤180?。

(2)数量积的概念 已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·

︱b ︱cos θ叫做a 与b 的数量积(或内积)。规定00a ?= ;

向量的投影:︱b ︱cos θ=||

a b a ? ∈R ,称为向量b 在a 方向上的投影。投影的绝对值称为射影;

(3)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积。

(4)向量数量积的性质

①向量的模与平方的关系:22||a a a a ?==

②乘法公式成立 ()()

2222a b a b a b a b +?-=-=- ; ()2222a b a a b b ±=±?+ 222a a b b =±?+ ;

③平面向量数量积的运算律

交换律成立:a b b a ?=? ;

对实数的结合律成立:()()

()

()a b a b a b R λλλλ?=?=?∈ ; 分配律成立:()a b c a c b c ±?=?±? ()c a b =?± 。 ④向量的夹角:cos θ=cos ,a b a b a b ?<>=? =22

2221212121y x y x y y x x +?++。 当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,

同时0 与其它任何非零向量之间不谈夹角这一问题。

C

(5)两个向量的数量积的坐标运算

已知两个向量1122(,),(,)a x y b x y == ,则a ·b =1212x x y y +。

(6)垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 。

两个非零向量垂直的充要条件:a ⊥b ?a 2b =O ?02121=+y y x x ,平面向

量数量积的性质。

(7)平面内两点间的距离公式 设),(y x a =,则222||y x a +=或22||y x +=。 如果表示向量的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x -+-=(平面内两点间的距离公式)。

2.向量的应用

(1)向量在几何中的应用;

(2)向量在物理中的应用。

四.典例解析

题型1:数量积的概念

例1.判断下列各命题正确与否: (1)00a ?= ;

(2)00a ?= ;

(3)若0,a a b a c ≠?=? ,则b c = ;

(4)若a b a c ?=? ,则b c ≠ 当且仅当0a = 时成立;

(5)()()a b c a b c ??=?? 对任意,,a b c 向量都成立;

(6)对任意向量a ,有2

2a a = 。 解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。

点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚a ?0为零向量,而a ?0为零。

例2.(1)(2002上海春,13)若a 、b 、c 为任意向量,m ∈R ,则下列等式不一定...成立的是( )

A .)()(++=++

B .?+?=?+)(

C .m (+)=m +m

D .)()(??=??

(2)(2000江西、山西、天津理,4)设、、是任意的非零平面向量,且相互不共线,则

①(a 2b )c -(c 2a )b =0 ②|a |-|b |<|a -b | ③(b 2c )a -(c 2a )不与垂直

④(3+2)(3-2)=9||2-4||2中,是真命题的有( )

A.①②

B.②③

C.③④

D.②④

解析:(1)答案:D ;因为c b a c b a ??=??θcos ||||)(,而a c b c b a ??=??θcos ||||)(;而方向与方向不一定同向。

(2)答案:D ①平面向量的数量积不满足结合律。故①假;②由向量的减法运算可知||、|b |、|a -b |恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(b 2c )a -(c 2a )b ]2c =(b 2c )a 2c -(c 2a )b 2c =0,所以垂直.故③假;④(3+2)(3-2)=922-42=9||2-4||2成立。故④真。

点评:本题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。 题型2:向量的夹角

例3.(1)(06全国1文,1)已知向量、满足1||=、4||=,且2=?,则与b 的夹角为( )

A .6π

B .4π

C .3π

D .2

π (2)(06北京文,12)已知向量a =(cos α,sin α),b =(cos β,sin β),且a ±≠b ,那

么b a +与b a -的夹角的大小是 。

(3)已知两单位向量a 与b 的夹角为0120,若2,3c a b d b a =-=- ,试求c 与d 的

夹角。

(4)(2005北京3)| a |=1,| b |=2,c = a + b ,且c ⊥a ,则向量a 与b 的夹角为

( ) A .30° B .60° C .120° D .150°

解析:(1)C ;(2)

2π; (3)由题意,1a b == ,且a 与b 的夹角为0120, 所以,01cos1202

a b a b ?==- , 2c c c =?= (2)(2)a b a b -?- 22447a a b b =-?+= ,

c ∴=

同理可得d ∴=

而c d ?= 2217(2)(3)7322

a b b a a b b a -?-=?--=- , 设θ为c 与d 的夹角, 则182911713

7217

cos -==θ。 (4)C ;设所求两向量的夹角为θ

c a b c a →→→→→=+⊥ 2.()..0c a a b a a a b →→→→→→→→∴=+=+= 2||||||cos a a b θ→→→∴=- 即:2||||1cos 2||||||a a a b b θ→→

→→→-=

=-=- 所以120.o θ= 点评:解决向量的夹角问题时要借助于公式cos =θ要掌握向量坐标形式的运

算。向量的模的求法和向量间的乘法计算可见一斑。对于.||||cos a b a b θ→→→→=这个公式的变形应用应该做到熟练,另外向量垂直(平行)的充要条件必需掌握。

例4.(1)(06全国1理,9)设平面向量1a 、2a 、3a 的和0321=++a a a 。如果向量1b 、2b 、3b ,满足||2||i i b =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )

A .-1b +2b +3b =

B .1b -2b +3b =

C .1b +2b -3b =

D .1b +2b +3b =

(2)(06湖南理,5)已知,0||2||≠=b a 且关于x 的方程0||2=?++b a x a x 有实根, 则与的夹角的取值范围是( )

A .]6,0[π

B .],3[ππ

C .]32,3[ππ

D .],6

[ππ 解析:(1)D ;(2)B ;

点评:对于平面向量的数量积要学会技巧性应用,解决好实际问题。

题型3:向量的模

例5.(1)(06福建文,9)已知向量a 与b 的夹角为120o ,3,a a b =+= 则b 等

于( )

A .5

B .4

C .3

D .1

(2)(06浙江文,5)设向量,,a b c 满足0a b c ++= ,,||1,||2a b a b ⊥== ,则2||c = ( )

A .1

B .2

C .4

D .5

解析:(1)B ;(2)D ; 点评:掌握向量数量积的逆运算Q b cos ||||=,以及22

||=。 例6.已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1。

解析:由a =(3,4),b =(4,3),有x a +y b =(3x +4y ,4x +3y );

又(x a +y b )⊥a ?(x a +y b )2a =0?3(3x +4y )+4(4x +3y )=0;

即25x +24y =0 ①;

又|x a +y b |=1?|x a +y b |2=1;

?(3x +4y )2+(4x +3y )2=1;

整理得25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ②;

由①②有24xy +25y 2=1 ③;

将①变形代入③可得:y =±7

5; 再代回①得:???

????=-=???????-==75

3524753524y x y x 和。

点评:这里两个条件互相制约,注意体现方程组思想。

题型4:向量垂直、平行的判定

例7.(2005广东12)已知向量)3,2(=,)6,(x =,且//,则=x 。 解析:∵b a //,∴1221y x y x =,∴x 362=?,∴4=x 。

例8.已知()4,3a = ,()1,2b =- ,,m a b λ=- 2n a b =+ ,按下列条件求实数λ的

值。(1)m n ⊥ ;(2)//m n ;(3)m n =

。 解析:()4,32,m a b λλλ=-=+- ()27,8n a b =+=

(1)m n ⊥

()()082374=?-+?+?λλ9

52-=?λ; (2)//m n ()()072384=?--?+?λλ2

1-=?λ; (3)m n = ()()088458723422222=--?+=-++?λλλλ 5

1122±=?λ。 点评:此例展示了向量在坐标形式下的平行、垂直、模的基本运算。

题型5:平面向量在代数中的应用

例9.已知a b c d ac bd 2222

111+=+=+≤,,求证:||。

分析:a b c d 222211+=+=,,可以看作向量)()(d c b a ,,==的模的平方,

而ac bd +则是、的数量积,从而运用数量积的性质证出该不等式。

证明:设)()(d c y b a x ,,,==

则2222||||d c y b a x bd ac y x +=+=+=?,,。

1||||||||2

222=+?+≤+∴?≤?d c b a bd ac y x y x ,

点评:在向量这部分内容的学习过程中,我们接触了不少含不等式结构的式子,如||||||||||||||||||a b a b a b a b a b a b a b +≥-+≤+?≤?≤?,;等。

例10.已知()()a b →→==cos sin cos sin ααββ,,,,其中0<<<αβπ。

(1)求证:a b →→+与a b →→-互相垂直;

(2)若k a b →→+与k a b →→-(k ≠0)的长度相等,求βα-。

解析:(1)因为()()a b a b a a b b a b →→→→→→→→→→=-+2-2+2-22

=-=-=+-+=-=→→→→a b a b 22222222110||||cos sin cos sin ααββ 所以a b →→+与a b →→-互相垂直。

(2)()k a b k k →→=+++,cos cos sin sin αβαβ,

()k a b k k →→-=--cos cos sin sin αβαβ,,

所以()||cos k a b k k →→+=

+-+221βα, ()||cos k a b k k →→-=

--+221βα, 因为||||k a b k a b →→→→

+=-,

所以()()k k k k 22

2121+-+=--+cos cos βαβα, 有()()22k k cos cos βαβα-=--,

因为k ≠0,故()cos βα-=0,

又因为00<<<<-<αβπβαπ,, 所以βαπ

-=2。

点评:平面向量与三角函数在“角”之间存在着密切的联系。如果在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性。若根据所给的三角式的结构及向量间的相互关系进行处理。可使解题过程得到简化,从而提高解题的速度。

题型6:平面向量在几何图形中的应用

例11.(2002年高考题)已知两点)01()01(,,,N M -,且点P (x ,y )使得→

→?MN MP ,→→→→??NP NM PN PM ,成公差小于零的等差数列。

(1)求证)0(322>=+x y x ;

(2)若点P 的坐标为)(00y x ,,记→PM 与→

PN 的夹角为θ,求θtan 。

解析:(1)略解:122-+=?→→y x PN PM ,由直接法得)0(322>=+x y x

(2)当P 不在x 轴上时, |||||2

1tan 2

1sin ||||2

10y MN PN PM PN PM S PMN →→→→→?=?==θθ 而2||21)1()1(20200000==-+=-?---=?→

→→MN y x y x y x PM PN ,,,

所以||tan 0y =θ,当P 在x 轴上时,0tan 00==θ,y ,上式仍成立。

y

P

M O N x

θ

图1

点评:由正弦面积公式θθθθtan 2

1tan cos ||||21sin ||||21→

→→→→→?===b a b a b a S 得到了三角形面积与数量积之间的关系,由面积相等法建立等量关系。

例12.用向量法证明:直径所对的圆周角是直角。

已知:如图,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°。

证明:联结OP ,设向量b OP a OA =→=→,,则a OB -=→且b a OP OA PA -=→-→=→,

b a OP OB PB -=→-→=→

0|a ||b |a b PB PA 2222=-=-=→?→∴

→⊥→∴PB PA ,即∠APB =90°。

点评:平面向量是一个解决数学问题的很好工具,它具有良好的运算和清晰的几何意义。在数学的各个分支和相关学科中有着广泛的应用。

题型7:平面向量在物理中的应用

例13.如图所示,正六边形PABCDE 的边长为b ,有五个力→→→→PD PC PB PA 、、、、→PE

作用于同一点P ,求五个力的合力。

解析:所求五个力的合力为→+→+→+→+→PE PD PC PB PA ,如图3所示,以PA 、PE 为边作

平行四边形PAOE ,则→+→=→PE PA PO ,由正六边形的性质可知b |PA ||PO |=→=→,且O

点在PC 上,以PB 、PD 为边作平行四边形PBFD ,则→+→=→PD PB PF ,由正六边形的性

质可知b 3|PF |=→,且F 点在PC 的延长线上。

由正六边形的性质还可求得b 2|PC |=→

故由向量的加法可知所求五个力的合力的大小为b 6b 3b 2b =++,方向与→PC 的方

向相同。

五.思维总结

1.两个向量的数量积与向量同实数积有很大区别

(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定;

(2)两个向量的数量积称为内积,写成·;今后要学到两个向量的外积3,而?是两个向量的数量的积,书写时要严格区分.符号“2 ”在向量运算中不是乘号,既不能省略,也不能用“3”代替;

(3)在实数中,若a ≠0,且a ?b =0,则b =0;但是在数量积中,若≠0,且?=0,不

能推出b =0。因为其中cos θ有可能为0;

(4)已知实数a 、b 、c (b ≠0),则ab=bc ? a=c 。但是?= ?=;

如右图:?= |||cos β = |||O A |,?c = ||c |cos α = |||O A |?? =?,但 ≠;

(5)在实数中,有(a ?b )c = a (b ?c ),但是(a ?b )c ≠ a (b ?c ),显然,这是因为左端是与c 共线的向量,而右端是与共线的向量,而一般与c 不共线。

2.平面向量数量积的运算律

特别注意:

(1)结合律不成立:()()

a b c a b c ??≠?? ; (2)消去律不成立a b a c ?=? 不能得到b c =? ;

(3)a b ? =0不能得到a =0 或b =0 。

3.向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直;

4.注重数学思想方法的教学

①.数形结合的思想方法。

由于向量本身具有代数形式和几何形式双重身份,所以在向量知识的整个学习过程中,都体现了数形结合的思想方法,在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识。

②.化归转化的思想方法。

向量的夹角、平行、垂直等关系的研究均可化归为对应向量或向量坐标的运算问题;三角形形状的判定可化归为相应向量的数量积问题;向量的数量积公式2

2a a =,沟通了向量与实数间的转化关系;一些实际问题也可以运用向量知识去解决。

③.分类讨论的思想方法。

如向量可分为共线向量与不共线向量;平行向量(共线向量)可分为同向向量和反

向向量;向量a 在b 方向上的投影随着它们之间的夹角的不同,有正数、负数和零三种

情形;定比分点公式中的λ随分点P 的位置不同,可以大于零,也可以小于零。

5.突出向量与其它数学知识的交汇

“新课程增加了新的现代数学内容,其意义不仅在于数学内容的更新,更重要的是引入新的思维方法,可以更有效地处理和解决数学问题和实际应用问题”。因此,新课程卷中有些问题属于新教材与旧教材的结合部,凡涉及此类问题,高考命题都采用了新旧结合,以新带旧或以新方法解决的方法进行处理,从中启示我们在高考学习中,应突出向量的工具性,注重向量与其它知识的交汇与融合,但不宜“深挖洞”。我们可以预测近两年向量高考题的难度不会也不应该上升到压轴题的水平。

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

第26讲平面向量的数量积及应用

第26讲平面向量的数量积及应用 高三新数学第一轮复习教案〔讲座26〕一平面向量的数量积及应 用 一?课标要求: 1?平面向量的数量积 ①通过物理中"功"等实例,明白得平面向量数量积的含义及其物理意义; ②体会平面向量的数量积与向量投影的关系; ③把握数量积的坐标表达式,会进行平面向量数量积的运算; ④能运用数量积表示两个向量的夹角,会用数量积判定两个平面向量的垂直关系。 2.向量的应用 经历用向量方法解决某些简单的平面几何咨询题、力学咨询题与其他一些实际咨询题的过程,体会向量是一种处理几何咨询题、物理咨询题等的工具,进展运算能力和解决实际咨询题的能力。 二.命题走向 本讲以选择题、填空题考察本章的差不多概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。 平面向量的综合咨询题是”新热点〃题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等咨询题,以解答题为主。 推测07年高考: 〔1〕一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度咨询题;属于中档题目。 〔2〕一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三?要点精讲 1 .向量的数量积 〔1〕两个非零向量的夹角 非零向量a与a,作OA = a , OB = b,那么/ A O A= B〔0 we

2 〔4〕注意在两向量的夹角定义,两向量必须是同起点的,范畴

平面向量的数量积及运算律测试题

平面向量的数量积及运算律同步练习 一、选择题: 1. 若|a |=|b |=1,a ⊥b ,且2a +3b 与k a -4b 也互相垂直,则k 的值为( ) A.-6 B.6 C.3 D.-3 2.若AP 31 = PB ,AB λ=BP ,则λ的值为 ( ) A .41 B .43 C .34 D .3 4- 3.设a 和b 的长度均为6,夹角为 120?,则-|a b|等于 ( ) A .36 B .12 C .6 D .36 4.若| |=2sin15°,| |=4cos375°、 , 夹角为30°,则 · 为( ) A . 2 3 B .3 C .32 D .21 5.若|a |=|b |=|a -b |,则b 与a +b 的夹角为 ( ) A .30° B .60° C .150° D .120° 6.已知向量)sin ,(cos θθ=,向量)1,3(-=则|2|-的最大值,最小值分别( ) A .0,24 B .24,4 C .16,0 D .4,0 7.已知、均为单位向量,它们的夹角为60°,那么|+ 3| = ( ) A .7 B .10 C .13 D .4 8.已知,,为非零的平面向量. 甲:则乙,:,=?=? ( ) A .甲是乙的充分条件但不是必要条件 B .甲是乙的必要条件但不是充分条件 C .甲是乙的充要条件 D .甲既非乙的充分条件也非乙的必要条件 9.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( ) A .6π B .3π C .32π D .6 5π 10.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .12 11.设)4 1,cos 1(),cos 1,2(-+=--=θθb a ,且,2 0,||π θ<

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2.平面向量的数量积;3.平面向量数量积的运算律 平面向量数量积的运算 1.利用坐标计算数量积的步骤 第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且 BE =23 BC , DF =16 DC ,则 AE · AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得 3(-1+2m )-4(-2-m )=0,则m =-12,所以b =????-12,1,所以a ·b =-1×????-12+2×1=52. (2)取 BA , BC 为一组基底,则 AE = BE - BA =23 BC - BA , AF = AB + BC + CF =- BA + BC +512 BA =-712 BA + BC ,∴ AE · AF =????23 BC - BA ·????-712 BA + BC =712| BA |2-2518 BA · BC +23| BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足 AB =2a , AC =2a +b ,则下列结 论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥ BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 [解析] (1)在△ABC 中,由 BC = AC - AB =2a +b -2a =b ,得|b |=2,A 错误.又 AB =2a 且| AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )· BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥ BC , D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6). ∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C [易错提醒] x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是

(完整版)平面向量的数量积练习题.doc

平面向量的数量积 一.选择题 1. 已知 a ( 2,3), b ( 1, 1),则 a ?b 等于 ( ) A.1 B.-1 C.5 D.-5 r r r r r r r r 2.向量 a , b 满足 a 1, b 4, 且 a b 2 ,则 a 与 b 的夹角为( ) A . B . 4 C . D . 2 6 3 r r 60 0 r r ) 3.已知 a, b 均为单位向量,它们的夹角为 ,那么 a 3b ( A . 7 B . 10 C . 13 D . 4 4 .若平面向量 与向量 的夹角是 ,且 ,则 ( ) A . B . C . D . 5. 下面 4 个有关向量的数量积的关系式① 0 ?0 =0 ②( a ?b ) ?c = a ?( b ? c ) ③ a ?b = b ?a ④ | a ?b | ≦ a ?b ⑤ | a ?b | | a | ?| b | 其中正确的是( ) A . ① ② B 。 ① ③ C 。③ ④ D 。③ ⑤ 6. 已知 | a |=8 , e 为单位向量,当它们的夹角为 时, a 在 e 方向上的投影为( ) 3 A . 4 3B.4 C.4 2 3 D.8+ 2 7. 设 a 、 b 是夹角为 的单位向量,则 2a b 和 3a 2b 的夹角为( ) A . B . C . D . 8. 已知 a =(2,3) , b =( 4 ,7) , 则 a 在 b 上的投影值为( ) A 、 13 B 、 13 C 、 65 D 、 65 5 5 9. 已知 a (1,2), b ( 3,2), ka b 与 a 3b 垂直时 k 值为 ( ) A 、 17 B 、 18 C 、 19 D 、 20

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰山西平定二中(045200 ) 平面向量中的最值问题多以考查向量的基本概念、 基本运算和性质为主, 解决此类问题 要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 uuu uuu 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O uuv uur uuu uuu 为圆心的圆弧 AB 上变动.若OC xOA yOB,其中 y 的最大值是 C 点变化的变量,建立目标 x y 与此变量的函数关系是解决最值问题的 常用途径。 ,以点O 为原点,OA 为x 轴建立直角坐标系,则A(1,0),B(丄,一3), 2 2 C(cos ,sin ) uuur 取最小值时,求 OQ. uuu uuiu uuu 分析:因为点 Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于 OQ 坐标的一个 uju uuu uur 关系式,再根据QAgQB 取最小值求OQ. 分析:寻求刻画 解:设 AOC umr Q OC uuu xOA uuu yOB, (cos ,sin x 上 2 、3y 2 cos sin 因此,当 cos .3sin 2sin( 評 3) 。 3时,x y 取最大值 uuu UJU 例 2、已知 OA (1,7), OB 2。 uur (5,1),OP (2,1),点Q 为射线OP 上的一个动点,当QAgQB uuu uuu 即 1 心)y( ^,

uur 解:设OQ uuu xOP uuu (2x,x),(x 0),则 QA uuu (1 2x,7 x),QB (5 2x,1 x)

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

平面向量的数量积运算

考点71 平面向量的数量积运算 1.(13天津T12)在平行四边形ABCD 中, AD = 1, 60BAD ?∠=, E 为CD 的中点. 若1AC BE = , 则AB 的长为 . 【测量目标】向量的线性运算,平面向量的数量积运算. 【难易程度】简单 【参考答案】 12 【试题解析】用,AB AD 表示AC 与BE ,然后进行向量的数量积运算. 由已知得AC =AD AB + ,12 BE BC CE AD AB =+=- , ∴AC BE =221122 AD AB AD AB AD AB -+- 211122AB AD AB =+- 2111cos 60122AB AD AB ? =+-= ,(步骤1) ∴1 2 AB = .(步骤2) jxq59 2.(13新课标Ⅰ T13)已知两个单位向量,a b 的夹角为60 ,c =t a +(1-t )b 若b c =0,则t =__________. 【测量目标】平面向量的数量积. 【难易程度】容易 【参考答案】2t = 【试题解析】∵c =t a +(1-t )b ,∴b c =t a b +(1-t )|b |2.(步骤1) 又∵|a |=|b |=1,且a 与b 夹角为60 ,b ⊥c ,∴0=t |a | |b |cos 60 +(1-t ), 0= 1 2 t +1-t .∴t =2.(步骤2) 3.(13江西T12)设1e ,2e 为单位向量.且1e ,2e 的夹角为π 3 ,若123=+a e e ,12=b e ,则向量a 在b 方向上的射影为 ___________. 【测量目标】平面向量的数量积运算. 【难易程度】容易 【参考答案】 52

平面向量中的最值问题浅析

平面向量中的最值问题浅析 耿素兰 山西平定二中(045200) 平面向量中的最值问题多以考查向量的基本概念、基本运算和性质为主,解决此类问题要注意正确运用相关知识,合理转化。 一、利用函数思想方法求解 例1、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o .如图所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+ 其中 ,x y R ∈,则x y +的最大值是________. 分析:寻求刻画C 点变化的变量,建立目标x y + 与此变量的函数关系是解决最值问题的常用途径。 解:设AOC θ∠=,以点O 为原点,OA 为x 轴建立直角坐标系,则(1,0)A ,1(, )22 B -,(cos ,sin ) C θθ。 ,OC xOA yOB =+ 1(cos ,sin )(1,0)(2x y θθ∴=+-即 cos 2sin y x θθ?-=?? = cos 2sin()6x y πθθθ∴+=+=+2(0)3 π θ≤≤。 因此,当3 π θ= 时,x y +取最大值2。 例2、已知(1,7),(5,1),(2,1),OA OB OP === 点Q 为射线OP 上的一个动点,当 QA QB 取最小值时,求.OQ 分析:因为点Q 在射线OP 上,向量OQ 与OP 同向,故可以得到关于OQ 坐标的一个 关系式,再根据QA QB 取最小值求.OQ 解:设(2,),(0)OQ xOP x x x ==≥ ,则(12,7),(52,1)QA x x QB x x =--=-- 图 1

2 2 (12)(52)(7)(1) 520125(2)8 QA QB x x x x x x x ∴=--+--=-+=-- ∴当2x =时,QA QB 取最小值-8,此时(4,2).OQ = 二、利用向量的数量积n m n m ?≤?求最值 例3、ABC ?三边长为a 、b 、c ,以A 为圆心,r 为半径作圆,PQ 为直径,试判断P 、Q 在什么位置时,BP CQ 有最大值。 分析:用已知向量表示未知向量,然后用数量积的性质求解。 解:,AB BP AP AC CQ AQ AP +=+==- 2 2 2 ()() () BP CQ AP AB AP AC r AB AC AP AB AC r AB AC AP CB AB AC AP CB r ∴=---=-++-=-++≤+- 当且仅当AP 与CB 同向时,BP CQ 有最大值。 三、利用向量模的性质a b a b a b -≤+≤+ 求解 例4:已知2,(cos ,sin ),a b b θθ-== 求a 的最大值与最小值。 分析:注意到()a a b b =-+ ,考虑用向量模的性质求解。 解:由条件知1b = 。 设a b c -= ,则a =b c + , c b c b c b -≤+≤+ , ∴13a ≤≤ 。 所以当b 与c 同向时,a 取最大值3;当b 与c 反向时,a 取最小值1。 四、利用几何意义,数形结合求解 例5、如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是 (A )1213PP PP ? (B )1214PP PP ? (C )1215PP PP ? (D )1216PP PP ? 分析:平面向量数量积121(1,2,3,4,5,6)i PP PP i = 的几何意义为121i PP PP 等于12PP 的长度与 图 2 图3

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

平面向量数量积及运算基础练习题

精品 平面向量的数量积及运算练习题 一、选择题: 1、下列各式中正确的是 ( ) (1)(λ·a) ·b=λ·(a b)=a · (λb), (2)|a ·b|= | a |·| b |, (3)(a ·b)· c= a · (b ·c), (4)(a+b) · c = a ·c+b ·c A .(1)(3) B .(2)(4) C .(1)(4) D .以上都不对. 2、在ΔABC 中,若(CA CB)(CA CB)0+?-=,则ΔABC 为 ( ) A .正三角形 B .直角三角形 C .等腰三角形 D .无法确定 3、若| a |=| b |=| a -b |, 则b 与a+b 的夹角为 ( ) A .30° B .60° C .150° D .120° 4、已知| a |=1,| b |=2 ,且(a -b)和a 垂直,则a 与b 的夹角为 ( ) A .60° B .30° C .135° D .45° 5、若2AB BC AB 0?+=,则ΔABC 为 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .等腰直角三角形 6、设| a |= 4, | b |= 3, 夹角为60°, 则| a+b |等于 ( ) A .37 B .13 C .37 D .13 7、己知 | a |= 1,| b |= 2, a 与的夹角为60, c =3a+b, d =λa -b ,若c ⊥d,则实数λ的值为( ) A . 74 B .75 C .47 D .5 7 8、设 a,b,c 是平面内任意的非零向量且相互不共线,则其中真命题是 ( ) ① (a ·b)·c -(c ·a)·b=0 ② | a | -| b |< | a -b | ③ (b ·c)·a -(c ·a)·b 不与c 垂直 ④ (3a+2b) ·(3a -2b)= 9| a | 2-4| b | 2 A .①② B .②③ C .③④ D .②④ 9.(陕西)已知非零向量AB 与AC 满足0AB AC BC AB AC ?? ?+?= ???且12AB AC AB AC ?=, 则ABC △为 .A 等边三角形 .B 直角三角形 .C 等腰非等边三角形 .D 三边均不相等的三角形 10(全国Ⅰ文)点O 是ABC △所在平面内的一点,满足OA OB OB OC OC OA ?=?=?,则点O 是ABC △的 .A 三个内角的角平分线的交点 .B 三条边的垂直平分线的交点 .C 三条中线的交点 .D 三条高的交点 11.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b ,若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( ). A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3]

知识梳理_平面向量的数量积及应用_提高

平面向量的数量积及应用 编稿:李霞 审稿:孙永钊 【考纲要求】 1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际问题. 【知识网络】 【考点梳理】 考点一、向量的数量积 1. 定义: 已知两个非零向量a 和b ,它们的夹角为θ,我们把数量||||cos θa b 叫做a 和b 的数量积(或内积),记作?a b ,即||||cos ?=θa b a b . 规定:零向量与任一向量的数量积为0. 要点诠释: (1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与余弦值决定 . (2)在运用数量积公式解题时,一定注意两向量夹角范围0?≤θ≤180?.此外,由于向量具有方向性,一定要找准 θ是哪个角. 2. 平面向量的数量积的几何意义 我们规定||cos θb 叫做向量b 在a 方向上的投影,当θ为锐角时,||cos θb 为正值;当θ为钝角时, 平面向量数量积及应用 平面向量的数量积 平面向量的应用 平面向量的坐标运算

||cos θb 为负值;当θ=0?时,||cos ||θ=b b ;当θ=90?时,||cos 0θ=b ;当θ=180?时,||cos ||θ=-b b . ?a b 的几何意义:数量积?a b 等于a 的长度||a 与 b 在a 方向上的投影||cos θb 的乘积. 要点诠释: b 在a 方向上的投影是一个数量,它可正、可负,也可以等于0. 3. 性质: (1) 0⊥??=a b a b (2) 当a 与b 同向时,||||?=a b a b ;当a 与b 反向时,||||?=-a b a b . 特别地2 2 ||||?==,即a a a a a (3) cos |||| ?θ= a b a b (4) ||||?≤a b a b 4. 运算律 设已知向量a 、b 、c 和实数λ,则向量的数量积满足下列运算律: (1) ?=?a b b a (交换律) (2) ()()()λ?=λ?=?λa b a b a b (3) ()+?=?+?a b c a c b c 要点诠释: ①当0≠a 时,由0?=a b 不一定能推出0=b ,这是因为对任何一个与a 垂直的向量b ,都有 0?=a b ;当0≠a 时,?=?a b a c 也不一定能推出=b c ,因为由?=?a b a c ,得()0?-=a b c ,即a 与()-b c 垂直.也就是向量的数量积运算不满足消去律. ②对于实数,,a b c ,有()()a b c a b c ?=?,但对于向量来说,()()??=??a b c a b c 不一定相等,这是因为()??a b c 表示一个与c 共线的向量,而()??a b c 表示一个与a 共线的向量,而a 与c 不一定共线,所以 ()??a b c 与()??a b c 不一定相等. 5. 向量的数量积的坐标运算 ①已知两个非零向量11(x ,y )=a ,22(x ,y )=b ,那么1212x x y y ?=+a b ;

相关文档
最新文档