小型交流断路器在直流电路中的应用

小型交流断路器在直流电路中的应用
小型交流断路器在直流电路中的应用

小型交流断路器在直流电路中的应用

摘要:讨论了小型交流断路器在直流电路中的灭弧原理。由于直流熄弧电流不存在自然的过零点,因此必须强制过零才能熄灭直流电弧。分析了直流电路中电感和时间常数对直流电弧熄灭的影响。在分析交、直流瞬时脱扣整定电流的差别的基础上,给出了选择断路器的要点。最后,先容了小型交流断路器在直流电路中的实际应用。

关键字:小型断路器直流电路熄弧瞬时脱扣值

1 概述

随着终端保护电器的小型交流断路器越来越广泛的应用,直流电路的保护对断路器的需求也日趋增加。除了小型直流断路器外,小型交流断路器也大量地使用在直流电路中,本文以施耐德电气公司生产的小型交流断路器为例说明如何在直流电路中使用交流断路器及应留意的题目。

2 直流电路熄弧原理

由于直流电路的电流不存在过零点,所以在熄弧时必须强制直流燃弧电流即是零,或使电流接近于零(< 10 A),才能使电弧熄灭。下面简述有关直流稳态电流分析短路熄弧原理,稳态电流可以理解为分断电路时的额定电流、过载电流或短路电流。其等效电路图如图1所示。

在电路稳态时,即触头未分断前,电流的初始状态为

ia = E/ R ,直流电路在分断燃弧时的等效方程式如下:

从以上的分析中看出,当电弧电压大于电源电压时,电弧电流的导数小于零,说明电弧电流ia呈下降趋势; 当电弧电流ia 趋近于零时,电弧趋于熄灭。

直流电弧的熄弧条件为:当电弧电压大于电源电压时,电弧趋近于熄灭。否则,电弧处于稳定燃烧阶段,ia = ( E - ua)/ R ,如图2 所示。

图2 中,P 点ua > E ,电弧电流开始减少,直到电弧熄灭。直流电弧熄弧的要点在于:①电源电压越小对熄弧越有利; ②断路器应使电弧电压快速上升,尽快达到和超过电源电压,上升和超过电源电压快慢决定电流熄弧的快慢。

3 直流电路中的电感和时间常数对直流电弧熄弧的影响

众所周知,直流电路中电感是个储能元件,在燃弧时,电感要向电路和电弧中开释其线圈储存的能量。电路的电感越大,开释的能量越大,电弧越难熄灭。

对式(1)等式两边同乘d ia/ d t ,然后积分,积分的区间边界为:当

t = t0 时,ia = ia0 ,当t = ta(燃弧时间)时,ia = 0 (电弧熄灭)。即

等式的左项表示电弧燃弧时的能量;右边第1 项表示电源能量;第2 项表示电阻消耗的能量;第3项表示电感储存能量。

上式表明电弧燃烧时,电感储存的能量(正号)的作用同电源相同,向电弧提供能量,增加电弧燃烧的能量。同时,电阻的作用在电弧燃烧时消耗电弧能量(负号)。

电路的时间常数τ= L / R 间接表示了电路的负载性质和电路电感的大小,电感越大分断时电弧的能量越大,熄弧越困难。相反电弧轻易熄灭。如τ= 0 为纯阻性负载,电弧最轻易熄灭。

有关交直流两用的小型断路器的国际标准IEC60898-2 :2000 中对直流电路规定了两种时间常数τ= 4 ms 或τ= 15 ms ,它表示短路时短路直流电流上升到

0. 63 倍最大峰值电流时所需的时间,τ= L / R (ms)(见图3)。

由于电感限制电流具有突变的特性,以及时间常数和电路电感的正比关系,时间常数的大小间接表示了电路电感的大小,时间常数越大电流的变化越慢,在实际应用中断路器分断短路电流越困难。所以,短路试验中IEC6089822 :2000 就规定了>1500A 的较大短路电流对应较小的时间常数τ= 4 ms 进行试验,≤1500A 可采用4ms 或15 ms 任何一种时间常数进行试验。从该标准可以看出,时间常数对于断路器分断短路电流的影响。

4 交流和直流瞬时脱扣值的区别

小型交流断路器瞬时脱扣特性中规定B、C、D 等不同种别。例如C 类的小型交流断路器瞬时脱扣值规定为额定电流5~10 倍,工厂瞬时脱扣值是按照有效值整定的,但实际上交流断路器瞬时脱扣器是螺管线圈的构造,它的脱扣电流是峰值电流,为有效值的1. 414 倍。考虑直流的特点,其电流值对应交流有效值。其短路电流不存在类似交流的

峰值题目,所以小型交流断路器在直流电路中应用时它的瞬时脱扣值应乘以一个系数(约1. 4)。例如,C 类的小型交流断路器在直流中应用时它的瞬时脱扣值范围应为

1. 4 ×5 In~1. 4 ×10 I n = 7 I n~14 I n 。由此可知,在直流电路中应用时,交流断路器瞬时脱扣器的实际电流脱扣值要高于在交流电路的瞬时脱扣值。这也是为什么在直流电路中直流短路电流较交流短路难以分断的另一个原因。表1 给出小型交流断路器在直流线路中瞬时脱扣值的变化。

5 选择断路器几个要点

5. 1 直流整流电途经流保护

直流整流电路的过流保护一般考虑采用在交流侧的熔断器或断路器的保护方案,可根据整流电路、负载和直流侧工作电流来选择交流断路器的额定电流、额定电压和分断能力。

5. 2 电池组直流电源的过流保护

举例说明:一电池组的容量为500 Ah 。最大放电电压240 V (110 块

2. 2 V 的电池串联)。每块电池内阻为0. 5 mΩ(电池组内阻Ri = 55 mΩ)。电源在选择断路器时应考虑以下3 点:

(1)选择断路器的工作电流。I = U/ Z ,Z为电路和设备阻抗,

Z = Ri + R = U/ I ,当R mRi ,Ri 可忽略不计。R = 20 Ω时,

I = 240 V/ 20Ω= 12 A。断路器额定工作电流可选择16 A。

(2)选择断路器的额定短路能力。Icu =U/ Ri = 240 V/ 0. 05 Ω

= 4 kA。可选择具有6 kA或10 kA 的直流短路保护能力的断路器。假如电池组的内阻未知,可近似计算所选用的断路器的短路保护能力,用公式Ics = KC ,C 为电池容量,单位为Ah ,K 为系数,10 ≤K < 20 ,一般选择10 ,但不超过20 (如,Ics = 5 kA)。交流断路器可采用多极串联的方式来进步其直流分断能力。

(3)选择断路器的工作电压。可根据电池的放电电压(也以为是直流电路的电源电压)决定所选择断路器的工作电压。断路器的额定工作电压要大于电池组的放电电压。

6 交流断路器在直流电路中的串联使用

电路中,单相交流电压为220 (230)V、440V ;而直流电路电压为24 、48 、60 、125 、220 (250)、440 V。交流断路器在直流电路中应用时重点要考虑直流电路的电压题目。直流电路的电压越高,电弧电压大于电源电压的熄弧条件越难满足,电弧越不轻易熄灭,故交流断路器分断直流短路电流越困难。

交流断路器在直流电路应用中要进步其直流分断能力题目,尤其对于电压较高的直

流电路电压,简单有效的办法是将多极断路器串联使用。

多极交流断路器串联有以下两个作用:

(1)在分断直流短路电流时,相当在电路中串联若干个电弧动态电阻,增加电弧电阻起到对短路电流的限流作用,同时也进步电弧的燃弧电压和减小电路的时间常数,从而可进步断路器的直流分断能力。

(2)降低每一弧隙电压。例如,两极断路器串联在250 V 的直流电源中,每弧隙电压为125V ,减少了1/ 2 电压,即燃弧时,弧隙电弧减少了1/ 2 的能量,这样有利与电弧的熄灭。

7 直流应用电路

在直流应用时是否将交流断路器串联使用取决于直流工作电压和直流供电系统。首先要考虑的是直流电路电源电压但同时也要考虑直流供电系统的形式。IEC60898 :222002 规定额定电压为230V 小型交流单极断路器在直流电路中使用时直流电源电压一般不能超过220 V ,> 220 V 直流电压应考虑断路器的二极串联使用。从更安全的角度上讲建议当直流电压为125 V 时使用二极串联使用,> 125 V 时,可考虑三极和四极断路器串联,以进步断路器的分断能力。表2 为交流断路器多极串联时的直流分断能力。

由表2 可见:①串联的极数和直流电源电压成正比,直流电压越高,需要交流断路器的串联极数越多; ②同一直流电源电压下,串联的极数越多,断路器的直流分断能力越高; ③一般直流电源电压在60 V 及以下时,选择单极断路器即可,在125 V 时可以选择使用2 极串联,在250 V 及以上时可以选择3 极或4 极串联使用; ④表2 给出的是在时间常数τ= 15 ms 条件下的试验参数,τ对断路器分断能力的影响见第3 节的叙述; ⑤从表2 的数据可见,串联后的直流短路分断能力要远高于交流断路器本身的分断能力。若无需过高分断能力可根据负载和电路电压的情况减少断路器的串联极数。参考IEC6089822∶2000 ,提出常用几种直流电路应用见表3 。

8 结语

(1)只要了解交流断流器在直流电路中应用的特点,分析不同的直流供电系统,负载阻抗和短路电流等情况,小型交流断路器完全可在直流电路中应用。

(2)随着我国等同采用IEC60898 :2000《家用和类似用途的过电流保护断路器第2 部分:用交流和直流的断路器》的新国家标准的编制和颁布,并对其应用起到指导和规范的作用。

电脑开关电源电路大全详解修订稿

电脑开关电源电路大全 详解 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电脑开关电源详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是和ATX12V这两个标准,其中ATX12V又可分为、、等多个版本。ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+的电压输出端,与主板的连接接口上也有了明显的改进。

ATX12V与标准比较: 1、是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V 加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: :2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; :2000年8月颁布, 在前一版本的基础上,加强了+电流输出能力,以适应AGP 显卡功率增长的需求 :2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定;

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、、。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

开关控制电路整理

1:蜂鸣器控制电路无源蜂鸣器。当BUZZ为高电平时,三极管T1(三极管N型)导通,蜂鸣器响,低电平蜂鸣器不响。R5作用是限流。 图: 1.1 下面电路增加了电容C18和反向二极管D2.作用是滤波和阻止反向。二极管的反向击穿电压很高。一般小功率三极管触发电压很低,0.7V,电流也很小,一般不到1UA. 图1.2: 2:IO 控制电源开关是否导通。利用三极管和MOS管。 MOS:MOSFET管式FET的一种,可以被制作成增强型或耗尽型,P沟道或N沟道共四种,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,NMOS,PMOS。 对于这两种增强型的MOS管,常用的是NMOS,特点是导通电阻小,开关电源和马达驱动的引用都是它。 导通条件: NMOS:当Vgs大于一定的数值时,就导通;PMOS:当Vgs小于一定的数值时,就导通。 开关损耗: 不管是NMOS还是PMOS,导通后都有导通电阻存在,产生损耗必然的,现在的MOS管导通电阻一般都是几十毫欧姆。

MOS管AO3401:P-channel Enhancement Mode Field Effect Transistor 导通条件:一般不要超过-12V即可对于AO3401来说。下面是对不同的压差对应的阻抗值: 下面是开关控制电路在工程中的应用: 1:通过一个IO管脚控制电源是否导通。

2:下面是两个MOS管3401,没有加入开关控制,只是上电后,VDD就等于输入电压。 此时可以两路供电,如果J5没有输入电压,由VBUS供电,经过F1输出5V电压。 下面电路可以把R10换成开关,Q201是始终导通状态,内部二极管压降是0.5V左右。 注意:两个三极管方向是不同的,Q200左边是S,右边是D;Q201左边是D,右边是s。 当J5有电压时,Q200导通,Q201也满足导通条件,压降由0.5V变为0.1V。具体详解在下一节。 注:VBUS右边断开。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路 1 引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。 2 开关电源的原理及特点 2.1工作原理 直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。它主要由开关三极管和高频变压器组成。图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。实际上,直流

开关电源的核心部分是一个直流变压器。 2.2特点 为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。 直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高, 3 直流开关电源的保护 基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多

10kV开关电气控制回路图

检修部员工培训模块 TDJXGYAQ 5.4.1.11 设备检修工艺、方法—电气 10kV开关电气控制回路图 2017-09-30发布 2017-12-01实施大唐国际托克托发电有限责任公司检修部

目录 1、符号及说明 (3) 2、断路器的控制回路的基本要求 (3) 3、断路器控制回路详解 (4)

编制人:张志峰主讲人:张志峰 10kV开关电气控制回路图 1、符号及说明 1.1 如图所示为托克托发电厂五期10kV开关VBG-12P的电气原理图。 1.2 图中操作电源选用AC/DC110V。 图1手车式电气原理图 1.3 图中:HQ:合闸线圈;TQ:分闸线圈;M:储能电机;R0:电阻;S8:辅助开关(当手车在试验位置切换); S9:辅助开关(当手车在工作位置切换);SP5:合闸闭锁用电磁铁辅助开关;S2:微动开关;DL:辅助 开关;U:桥式整流器(直流时取消2U~4U);K1:合闸闭锁线圈;K0:防跳继电器;Y7~Y9:过流脱扣 器;X:航空插头;L1~L10:连接线;PCB:线路板。 1.4 图中包括电机回路、合闸回路、闭锁回路、分闸回路、辅助回路。 2、断路器的控制回路的基本要求 2.1、应能监视控制电源及跳、合闸回路的完好性:断路器的控制电源最为重要,一旦失去电源断路器便无法操作。 因此,无论何种原因,当断路器控制电源消失时,应发出声、光信号,提示值班人员及时处理。 2.2、具有防止多次合、跳闸的“跳跃”闭锁装置。断路器的“跳跃”现象一般是在跳闸、合闸回路同时接通时才 发生。发生“跳跃”对断路器是非常危险的,容易引起机构损伤,甚至引起断路器的爆炸,故必须采取闭锁

开关电源基础学习知识原理及各功能电路详解

开关电源原理及各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。开关电源的电路组成方框图如下: 开关电源电路方框图 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理:

输入滤波、整流回路原理图 ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的

电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

多路控制开关电路设计

课程设计报告 题目:多路控制开关电路设计课程名称: 学生姓名: 学生学号: 年级: 专业: 班级: 指导教师: 电子工程学院制 2017年3月

目录 1多路控制开关电路设计的任务与要求 (1) 1.1 多路控制开关电路课程设计的任务 (1) 1.2 多路控制开关电路课程设计的要求 (1) 2 多路控制开关电路设计方案制定 (1) 2.1多路控制开关电路设计的原理 (1) 3 多路控制开关电路设计方案实施 (2) 3.1多路控制开关电路单元模块功能及电路设计 (2) 3.2多路控制开关电路电路参数计算及元器件选择 (4) 3.3 多路控制开关电路系统整体电路图 (8) 3.4 元器件清单 (8) 4 多路控制开关电路设计的仿真实现(或者硬件制作与调试) (9) 4.2 多路控制开关电路设计仿真实现 (10) 4.4 多路控制开关电路设计数据分析 (11) 5.多路控制开关电路实物设计 (11) 5.1设计过程 (11) 5.2硬件实现 (12) 6.总结及心得体会 (12) 7.参考文献 (12) 8. 附录 (13)

多路控制开关电路设计 电子工程学院电子信息工程专业 1多路控制开关电路设计的任务与要求 1.1 多路控制开关电路课程设计的任务 设计多路开关控制多路,用多个开关控制数码管 1.2 多路控制开关电路课程设计的要求 1 用多个开关控制,用不同的开关控制数码管显示不同的数字,实现不同的功能。八组参赛者在进行抢答时,抢发先者按下面前的按钮时,抢答器能准确地判断出抢先者,并以蜂鸣器声为标志。 抢答器应具有互锁功能,某组抢答后能自动封锁其他各组进行抢答。 3系统应具有一个总复位开关。 2 多路控制开关电路设计方案制定 2.1多路控制开关电路设计的原理 接通电源后,主持人将开关拨到"清除"状态,多路控制开关电路处于禁止状态主持人将开关置开始"状态,宣布"开始"工作。扬声器给出声响提示。选手在定时时间内按键时。多路控制开关电路完成优先判断、编号锁存、编号显示、扬声器提示。当一轮抢答之后,定时器停止、禁止二次抢答。如果再次抢答必须由主持人再次操作"清除"和"开始"状态开关。锁存器输入信号均为同一电平时,锁存器控制电路的输出信号使锁存器打开,这时锁存器输入端的信号送往相应的输出端。当有一输入端的电平发生条便是其对应输出端点评也随着发生变化,次变化的输出电平送入锁存器控制电路,控制电路立即产生控制信号封锁锁存器,让锁存器进入锁存工作状态。此时无论那个输入端电平发生变化,锁存器各个输出端电平保持不变。发生变化的输出端经过编码器编码之后,将相关信息由译码器送入数码显示器,显示相应的组别,并发出响声。 2.2 多路控制开关电路设计的技术方案

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

路灯自动控制开关电路的设计

路灯自动控制开关电路的 设计 The Standardization Office was revised on the afternoon of December 13, 2020

路灯自动控制开关电路的设计 一、实验要求 可以根据光照的强度自动控制路灯的通、断。当傍晚光照强度渐弱或者清晨光照强度渐强来控制路灯的通或者断以及其灯的强度。 二、实验目的 1.了解自动调光台灯电路的结构及工作原理 2.让我们学会更好的自主学习和团队合作 三、实验原理 ·············调光台灯电路及工作原理电路图············· 功能实现:当环境光照弱,它发光亮度就增大;环境光照强,发光亮度就减暗。 当开关S拨向位置2时,它是一个普通调光台灯。RP、C和氖泡 N组成张弛振荡器,用来产生脉冲触发可控硅VS。一般氖泡辉光导通电压为60-80V,

当C充电到辉光电压时,N辉光导通,VS被触发导通。调节RP能改变C充电速率,从而能改变VS导通角,达到调光的目的。R2、R3构成分压器通过VD5也向C充电,改变R2、R3分压也能改变VS导通角,使灯的亮度发生变化。 当S拨向位置1时,光敏电阻RG取代R3,当周围光线较弱时,RG呈现高电阻,VD5右端电位升高,电容C充电速率加快,振荡频率变高,VS导通角增大,电灯两端电压升高、亮度增大。当周围光线增强时,RG电阻变小,与上述相反,电灯两端电压变低,高度减小。四、实验步骤 调试时,将RP调到阻值为零位置,S置于位置2,用万用表测电灯两端交流电应在200V以上,如低于200V可略减小R1或增大R3阻值,使之达到要求。光敏电阻RG应安装在台灯底座侧面台灯光线不能直接照射的地方,用来感受周围环境照度。调光台灯的灯泡宜用40W的白炽灯。调整好的电路即可投入使用;S拨向2为普通调光台灯,调RP可选择适当的高密度;S拨向1为自动台灯,先调RP选择好适当亮度,如环境照度变暗时,台灯亮度会逐渐变亮,增大照度。 五、实验实物

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ① 防雷电路:当有雷击,产生高 压经电网导入电源时,由MOV1、 MOV2、MOV3:F1、F2、F3、FDG1 组 成的电路进行保护。当加在压敏电 阻两端的电压超过其工作电压时, 其阻值降低,使高压能量消耗在压 敏电阻上,若电流过大,F1、F2、

F3 会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC 输入滤波电路原理: ① 输入滤波电 路:C1、L1、C2 组成的双π型 滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

路灯自动控制开关电路的设计

路灯自动控制开关电路的设计 一、实验要求 可以根据光照的强度自动控制路灯的通、断。当傍晚光照强度渐弱或者清晨光照强度渐强来控制路灯的通或者断以及其灯的强度。 二、实验目的 1.了解自动调光台灯电路的结构及工作原理 2.让我们学会更好的自主学习和团队合作 三、实验原理 ·············调光台灯电路及工作原理电路图·············功能实现:当环境光照弱,它发光亮度就增大;环境光照强,发光亮度就减暗。 当开关S拨向位置2时,它是一个普通调光台灯。RP、C和氖泡 N组成张弛振荡器,用来产生脉冲触发可控硅VS。一般氖泡辉光导通电压为60-80V,当C充电到辉光电压时,N 辉光导通,VS被触发导通。调节RP能改变C充电速率,从而能改变VS导通角,达到调光的目的。R2、R3构成分压器通过VD5也向C充电,改变R2、R3分压也能改变VS导通角,使灯的亮度发生变化。 当S拨向位置1时,光敏电阻RG取代R3,当周围光线较弱时,RG呈现高电阻,VD5右端电位升高,电容C充电速率加快,振荡频率变高,VS导通角增大,电灯两端电压升高、

亮度增大。当周围光线增强时,RG电阻变小,与上述相反,电灯两端电压变低,高度减小。 四、实验步骤 调试时,将RP调到阻值为零位置,S置于位置2,用万用表测电灯两端交流电应在200V 以上,如低于200V可略减小R1或增大R3阻值,使之达到要求。光敏电阻RG应安装在台灯底座侧面台灯光线不能直接照射的地方,用来感受周围环境照度。调光台灯的灯泡宜用40W 的白炽灯。调整好的电路即可投入使用;S拨向2为普通调光台灯,调RP可选择适当的高密度;S拨向1为自动台灯,先调RP选择好适当亮度,如环境照度变暗时,台灯亮度会逐渐变亮,增大照度。 五、实验实物 ·················图一·······························图二··················六、实验总结 本次实验是《电力电子技术》最后一次实验,本次设计性实验,主要实现的功能是:根据光照的不同,实现灯的强度的变化,相当于路灯的简化。在拿到实验题目的时候,我们首先想到的是:光敏电阻。在实验之前,我们首先在网上查找资料,通过小组的讨论最终设计出实验电路。光敏电阻的工作原理是:当其处于黑暗环境时,光敏电阻处于高阻态,导致VD5右端电位升高,电容C充电速率加快,振荡频率变高,VS导通角增大,电灯两端电压升高、灯泡的亮度增大;当光敏电阻的环境亮度变大的时候,光敏电阻的阻值减小,实现亮度的减弱。 本次设计性实验比较简单,很快的就完成了。在实验中也没有出现意外,主要是我们没有200K的电位器,所以使用了两个104的电位器串联,最终结果一样。本次实验让我们加强的小组的协作能力,提高了我们沟通能力,让我们受益颇多。

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源电路组成及常见各模块电路分析

1.1 课题背景 1.1 开关电源的发展历史 开关稳压电源(以下简称开关电源)取代晶体管线性稳压电源(以下简称线性电源)已有30多年历史,最早出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管了作于开关状态后,脉宽调制(PWM)控制技术有了发展,用以控制开关变换器,得到PWM开关电源,它的特点是用20kHz脉冲频率或脉冲宽度调制—PWM开关电源效率可达 65~70%,而线性电源的效率只有30~40%。在发生世界性能源危机的年代,引起了人们的广泛关往。线性电源工作于工频,因此用工作频率为20kHZ的PWM开关电源替代,可大幅度节约能源,在电源技术发展史上誉为20kHZ革命。随着ULSI芯片尺寸不断减小,电源的尺寸与微处理器相比要大得多;航天,潜艇,军用开关电源以及用电池的便携式电子设备(如手提计算机,移动电话等)更需要小型化,轻量化的电源。因此对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量要小。此外要求开关电源效率要更高,性能更好,可靠性更高等。 2 开关电源的基本原理 2.1 PWM开关电源的基本原理 开关电源的工作过程相当容易理解。在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断状态。在这两种状态中,加在功率晶体管上的伏安乘积总是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)。功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。 与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比是开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来生高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。 控制器的主要目的式保持输出电压稳定,其工作过程与线性形式的控制器很

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

开关控制回路说明图

图中:+WC、-WC —控制母线;FU1、FU2—熔断器,R1-10/6型,250V;SA—控制开关,LW 2 -1a . 4.6a .40.20.20/F8型;HG —绿色信号灯具,XD2型,附2500Ω电阻;HR —红色信号灯具,XD2型,附2500Ω电阻; KL —中间继电器,DZB-115/220V型;KMC—接触器;KOM —保护出口继电器;QF—断路器辅助开关;WCL—合闸小母线;WSA—事故跳闸小母线;WS—信号小母线;YT—断路器跳闸线圈;YC—断路器合闸线圈,FU1、FU2—熔断器,RM10-60/25 250V;R1—附加电阻,ZG11-25型,1Ω;R2—附加电阻,ZG11-25型,1000Ω;(+)WTW—闪光小母线。(一)“跳闸后”位置 当SA的手柄在“跳闸后”位置,断路器在跳闸位置时,其常闭触点闭合,+WC经FU1 SA11-10 HG及附加电阻QF(常闭)KMC线圈FU2 -WC。此时,绿色信号灯回路接通,绿灯亮,它表示断路器正处于跳闸后位置,同时表示电源、熔断器、辅助触点及合闸回路完好,可以进行合闸操作。但KMC不会动作,因电压主要降在HG及附加电阻上。 (二)“预备合闸”位置 当SA的手柄顺时针方向旋转90o至“预备合闸”位置,SA9-10接通,绿灯HG回路由(+)WTW SA9-10 HG QF(常闭)KMC FU2 -WC导通,绿灯闪光,发出预备合闸信号,但KMC仍不会启动,因回路中串有HG和R。 (三)“合闸”位置 当SA的手柄再顺时针方向旋转45o至“合闸”位置时,SA5-8触点接通,接触器KMC回路由+WC SA5-8 KL2(常闭)QF(常闭) KMC线圈-WC导通而启动,闭合其在合闸线圈回路中的触点,使断路器合闸。断路器合闸后,QF常闭触点打开、常开触点闭合。 (四)“合闸后”位置 松手后,SA的手柄自动反时针方向转动45o,复归至垂直(即“合闸后”)位置,SA16-13触点接通。此时,红灯HR回路由FU1 SA16-13 HR KL线圈QF(常开)YT线圈FU2 -WC 导通,红灯亮,指示断路器处于合闸位置,同时表示跳闸回路完好,可以进行跳闸。(五)“预备跳闸”位置 SA手柄在“预备跳闸”位置时,SA13-14导通,经(+)WTW HR KL QF常开触点YT -WC回路,红灯闪光,发出预备合闸信号。 (六)“跳闸”位置 将SA手柄反时针方向转45o至“跳闸”位置,SA6-7导通,HR及R被短接,经+WC SA6-7 KL QF常开触点-WC,使YT励磁,断路器跳闸。断路器跳闸后,其常开触点断开,常闭触点闭合,绿灯亮,指示断路器已跳闸完毕,放开手柄后,SA复位至“跳闸后”位置。 当断路器手动或自动重合在故障线路上时,保护装置将动作跳闸,此时如果运行人员仍将控制开关放在“合闸”位置(SA5-8触点接通),或自动装置触点KM1未复归,断路器SA5-8将再合闸。因为线路有故障,保护又动作跳闸,从而出现多次“跳—合”现象。此种现象称为“跳跃”。断路器若发生跳跃不仅会引起断路器毁坏,而且还将扩大事故,所谓“防跳”措施,就是利用操作机构本身机械上具有的“防跳”闭锁装置或控制回路中所具有的电气“防跳”接线,来防止断路器发生“防跳”的措施。 图E-106中所示控制回路采取了电气“防跳”接线。其KL为跳跃闭锁继电器,它有两个线圈,一个电流启动线圈,串于跳闸回路中;另一个电压保护线圈,经过自身常开触点KL1与合闸接触器线圈并联。此外在合闸回路中还串有常闭触点KL2,其工作原理如下: 当利用控制开关(SA)或自动装置(KM1)进行合闸时,若合在故障线上,保护将动作,KOM触点闭合,使断路器跳闸。跳闸回路接通的同时,KL电流线圈带电,KL动作,其常

相关文档
最新文档