量子力学第七章习题

量子力学第七章习题
量子力学第七章习题

第七章 中心力场

7-1 对于库仑场证明E T E U ==,2,其中E 是总能量。

7-2 中心力场)(r U 中的经典粒子的哈密顿量为)(222

22r U r L p H r ++=μμ,其中P r r

P r ?=1,当过渡到量子力学时,r P 要换为)()11(21r r i r r P P r r P r +??-=?+?= ,试问P r r

r i ?=??-1是否厄米算符?r P 是否厄米算符?

7-3 设氢原子处于状态),()(2

3),()(21

),,(11211021?θ?θ?θψ--=Y r R Y r R r ,试求氢原子的能量,2?L 及z

L 的可能值及其几率,并由此求出它们的平均值。

7-4 某类氢原子的波函数表示如下(r 以a 0为单位):θπψcos )6(812

3/2/3Zr Zre Zr Z --=

(1)通过对ψ的考察,求量子数l n ,和m 的数值。(2)从ψ产生具有相同l n ,值,但磁量子数等于1+m 的另一个本征函数。(3)当1=Z 时,求为ψ所规定的状态中某电子的最可几r 值。

7-5 氢原子处于基态0301),,(a r e a r -=

π?θψ,试求(1)r 的平均值;(2)

最可几半径。

7-6 试证明:处于1S ,2P 和3d 态的氢原子的电子在离原子核距离分别为a 0 ,4a 0 和9a 0 的球壳内被发现的几率最大(a 0 为第一玻尔轨道半径)

7-7 氢原子处于基态,(1)求距核二倍玻尔轨道半径以外发现电子的几率。(2)如果我们画一个球面,使得在此球面内发现电子的几率为90% ,那么这个球面的半径是多少?

7-8 如坐标轴绕z 轴旋转一个α角,试问氢原子波函数的角度部分),(?θlm Y 将如何变化?此种变化是否观察到?

7-9 试求出在10Y 及21Y 态下,电子按角度的分布几率取极大值和极小值

的θ角。

7-10 试证明: ±==z L L ,6的氢原子中的电子在045=θ和1350方向上被发现的几率最大。

7-11 原子中的电子束缚态,作为z

L L H ?,?,?2的共同本征态,),()(?θψlm Y r R =,求相应的电流密度和磁矩。

7-12 求出氢原子基态波函数在动量表象中的表示。

7-13 由于发生原子核的β衰变,原子核的电荷突然由e Z Ze )1(+→ 。对于衰变前处于原子Z 的K 层(1S 层)的电子,在原子核衰变后仍旧处于原子(Z+1)的K 层的几率等于多少?

7-14 粒子在半径为a ,高度为h 的圆筒中运动,在筒中粒子是自由的,在筒壁及筒外势能为无限大,求粒子的能量本征值及本征函数。 7-15 单价原子中的价电子(最外层电子)所受原子实(原子核及内层电子)的作用可近似表示为)10(,)(2022<<<--=λλr

a e r e r U s s ,式中04πεe

e s =,0a 为玻尔半径,求价电子的能级,并与氢原子能级相比

较。

7-16 对于类氢原子(核电荷Ze ))0(1=-=r n n l 的状态,计算:(1)最可几半径r n (2)平均半径r (3)涨落r ?,并将它和r 相比较。 7-17 讨论二维氢原子,其中的电子为库仑力束缚于原子核,并限制在一个平面中运动。(1)试求此体系的本征函数和能量本征值。(2)试解释玻尔虽然假设一个平面轨道求解氢原子问题,为什么还能够得与实验一致的能量。

7-18 三维各向同性谐振子势U (r )如下:2221)(r m r U ω= ,式中m 为粒子质量,ω是常数。试求该体系的能级和波函数,并讨论能级的简并情况。

7-19 一个电子被限制在一块电介质(无限大)平面的上方(x>0)运动。介质的介电常数为ε ,不可穿透。按电像法可求出静电势为

0)11(4,)(2>+-=-=εεαα

e x x U ,试求电子的能级(E<0)。

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

喀兴林高等量子力学习题6、7、8

练习 6.1 在ψ按A 的本征矢量{}i a 展开的(6.1)式中,证明若ψ 是归一化的,则 1=∑*i i i c c ,即A 取各值的概率也是归一化的。(杜花伟) 证明:若ψ是归一化的,则1=ψψ。根据(6.1)式 ∑=i i i c a ψ, ψi i a c = 可得 1===∑∑* ψψψψ i i i i i i a a c c 即A 取各值的概率是归一化的。 # 练习6.2 (1) 证明在定态中,所有物理量取各可能值的概率都不随时间变化,因而,所有物理量的平均值也不随时间改变. (2) 两个定态的叠加是不是定态? (杜花伟 核对:王俊美) (1)证明:在定态中i E i H i = , Λ3,2,1=i 则 ()t E i i i i t η -=ψ 所以 i A i e i A e A t E i t E i i i ==-η η ψψ. 即所有物理量的平均值不随时间变化. (2)两个定态的叠加不一定是定态.例如 ()()()t E i t E i e x v e x u t x 21,η η --+=ψ 当21E E =时,叠加后()t x ,ψ是定态;当21E E ≠时, 叠加后()t x ,ψ不是定态. # 6.3证明:当函数)(x f 可以写成x 的多项式时,下列形式上含有对算符求导的公式成立: ) (]),([)()](,[X f X i P X f P f P i P f X ?? =?? =ηη (解答:玉辉 核对:项朋) 证明:(1)

) ()()()()()()()()](,[P f P i P i P f P i P f P f P i P i P f P f P i X P f P Xf P f X ??=??-??+??=??-??=-=ηηηηηηψψ ψψψ ψψ ψψ 所以 )()](,[P f P i P f X ?? =η (2) ) () ()())(())(()()())(()()(]),([X f X i X f X i X i X f X i X f X f X i X i X f X Pf P X f P X f ??=?? --??--??-=?? --??-=-=ηηηηηηψψψψψ ψψ ψψ 所以 )(]),([X f X i P X f ?? =η # 练习6.4 下面公式是否正确?(解答:玉辉 核对:项朋) ),()],(,[P X f P i P X f X ?? =η 解:不正确。 因为),(P X f 是X 的函数,所以)],(,[P X f X =0 # 练习6.5 试利用Civita Levi -符号,证明:(孟祥海) (1)00=?=?L X ,L P (2)[]0=?P X L, (3)()()P X X P P X P X L ?-??-=ηi 22 2 2 证明: (1)∑∑∑∑=== ?ijk k j i ijk k j jk ijk i i i i i P X P P X P L P εε L P

周世勋量子力学习题解答第三章

第三章习题解答 3.1 一维谐振子处在基态t i x e x ωαπ αψ2 2 22)(-- =,求: (1)势能的平均值222 1 x U μω= ; (2)动能的平均值μ 22 p T =; (3)动量的几率分布函数。 解:(1) ? ∞ ∞ --==dx e x x U x 2 2 22 222121α πα μωμω μωμωαμωα παπαμω ?==?= 2 2 222241212121221 ω 41= ?∞+--????=0122)12(5312a a n dx e x n n ax n π (2) ?∞∞-==dx x p x p T )(?)(2122*2ψψμμ ?∞∞ ----=dx e dx d e x x 2 22 221 22 221)(21ααμπα ?∞ ∞ ---=dx e x x 2 2)1(22222αααμ πα ][22 22 222 22??∞∞ --∞∞---=dx e x dx e x x ααααμ πα ]2[23222απ ααπαμ πα?-= μω μαμαπαμ πα? ===442222222 ω 4 1 = 或 ωωω 4 14121=-= -=U E T (3) ?=dx x x p c p )() ()(*ψψ 21 2 2 21 ?∞ ∞ ---=dx e e Px i x απ απ ? ∞ ∞ ---= dx e e Px i x 222 1 21απ απ

? ∞ ∞--+-=dx e p ip x 2222222)(21 21 αααπ απ ? ∞ ∞ -+-- =dx e e ip x p 2222 22)(212 21 αααπ απ πα π α πα2 212 222 p e - = 2 2221 απ αp e - = 动量几率分布函数为 2 22 1 )()(2 απ αωp e p c p - == # 3.2.氢原子处在基态0/30 1 ),,(a r e a r -=π?θψ,求: (1)r 的平均值; (2)势能r e 2 -的平均值; (3)最可几半径; (4)动能的平均值; (5)动量的几率分布函数。 解:(1)?θθπτ?θψππd rd d r re a d r r r a r sin 1),,(0 220 /230 2 0??? ?∞ -= = ?∞-=0/233004dr a r a a r ?∞+-=01! n ax n a n dx e x 04 03 023 2!34a a a =??? ? ??= 22 03020 /23 20 20 /23 2 20 2/23 2 2214 4 sin sin 1)()2(0 00a e a a e dr r e a e d drd r e a e d drd r e r a e r e U a r a r a r -=??? ? ??-=-=-=-=-=? ??? ??? ∞ -∞ -∞ -ππππ?θθπ?θθπ

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ?) ,故: 2e E P /(2)=μ 69h /p h /hc /1.2410/0.7110m 0.71nm --λ====?=?= 1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.12 3 2323123---?=????== kT E 于是有 一维谐振子处于22 /2 ()x x Ae αψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知:

22 *2x (x)(x)dx A e dx1 A/1 ∞∞ -α -∞-∞ ψψ== =α= ?? 取相因子为零,则归一化系数1/21/4 A/ =απ 2. 2222 2222 2222 2222 22 2 *2x/2x/2 22 2x/2x/2 2 2x/22x/2 22 22x2x/2 22 242x2 T(x)T(x)dx A e(P/2)e dx d A e()e dx 2dx d A e(xe)dx 2dx A{xe(xe)dx} 2 A x e dx A 22 ∞∞ -α-α -∞-∞ ∞ -α-α -∞ ∞ -α-α -∞ ∞∞ -α-α -∞ -∞ ∞ -α -∞ =ψψ=μ =- μ =--α μ =--α--α μ =α= μμ ?? ? ? ? ? =()== 22 2222 4x 2 2 24x x 2 22 222 24 2 1 ()xd(e) 2 1 A(){xe e dx} 22 1A A() 24 2 ∞ -α -∞ ∞∞ -α-α -∞ -∞ α- α =α--- μα ππαα α-- μμ α ? ? 若α,则该态为谐振子的基态,T 4 ω = 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。 一维谐振子的哈密顿量为: 22 22 d 1 H x 2dx2 =-+μω μ 它的基态能量 1 E 2 =ω选择为参量,则:

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

量子力学课后答案第一二章

量子力学课后习题详解 第一章 量子理论基础 1、1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b(常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 λνc =, (2) ||λνρρλd d v =, (3) 有 (),1 18)(| )(|| 5 2-?=?===kT hc v v e hc c d c d d dv λνλλ πλλρλ λλρλ ρρ 这里的λρ的物理意义就是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的就是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的就是,还需要验证λρ对λ的二阶导数在m λ处的取值就是否小于零,如果小于零,那么前面求得的m λ就就是要求的,具体如下: 01151186=??? ? ? ?? -?+--?=-kT hc kT hc e kT hc e hc d d λλλλλ πλρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这就是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解就是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4、97,经过验证,此解正就是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??≈-3109.2λ 这便就是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

高等量子力学习题.

高等量子力学习题 1、 对于一维问题,定义平移算符()a D x ,它对波函数的作用是() ()()a x x a D x -=ψψ,其中a 为实数。设()x ψ的各阶导数存在,试证明()dx d a x e i p a a D -=?? ? ??= ?exp 。 2、 当体系具有空间平移不变性时,证明动量为守恒量。 3、 若算符()x f 与平移算符()a D x 对易,试讨论()x f 的性质。 4、 给定算符B A ,,证明[][][]....,,! 21 ,++ +=-B A A B A B Be e A A ξξ。 5、 给定算符C B A 和、,存在对易关系[]C B A =,,同时[][]0,,0,==C B C A 。证明Glauber 公式C A B C B A B A e e e e e e e 2 12 1 ==-+。 6、 设U 为幺正算符,证明U 必可分解成iB A U +=,其中A 和B 为厄密算符,并满足 122=+B A 和[]0,=B A 。试找出A 和B ,并证明U 可以表示为iH e U =,H 为厄密 算符。 7、 已知二阶矩阵A 和B 满足下列关系:02 =A ,1=+++AA A A ,A A B + =。试证明 B B =2,并在B 表象中求出矩阵A 、B 。 8、 对于一维谐振子,求湮灭算符a ?的本征态,将其表示为谐振子各能量本征态n 的线性叠加。已知1?-=n n n a 。 9、 从谐振子对易关系[ ]1,=+ a a 出发,证明a e ae e a a a a λλλ--=+ +。 10、 证明谐振子相干态可以表示为 0*a a e ααα-+=。 11、 谐振子的产生和湮灭算符用a 和+ a 表示,经线性变换得+ +=va ua b 和 ++=ua va b ,其中u 和v 为实数,并满足关系122=-v u 。试证明:对于算符b 的任 何一个本征态,2 =???p x 。 12、 某量子体系的哈密顿量为,() 223 2 35++++= a a a a H ,其中对易关系[]1,=-≡++ + a a aa a a 。试求该体系的能量本征值。 13、 用+ a ?和a ?表示费米子体系的某个单粒子态的产生和湮灭算符,满足基本对易式

量子力学习题答案

量子力学习题答案

2.1 如图所示 左右 0 x 设粒子的能量为,下面就和两种情况来讨论 (一)的情形 此时,粒子的波函数所满足的定态薛定谔方程为 其中 其解分别为 (1)粒子从左向右运动 右边只有透射波无反射波,所以为零 由波函数的连续性 得 得 解得 由概率流密度公式 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得两个方程 解 反射系数 透射系数 (二)的情形 令,不变 此时,粒子的波函数所满足的定态薛定谔方程为 其解分别为

由在右边波函数的有界性得为零 (1)粒子从左向右运动 得 得 解得 入射 反射系数 透射系数 (2)粒子从右向左运动 左边只有透射波无反射波,所以为零 同理可得方程 由于全部透射过去,所以 反射系数 透射系数 2.2 如图所示 E 0 x 在有隧穿效应,粒子穿过垒厚为的方势垒的透射系数为 总透射系数 2.3 以势阱底为零势能参考点,如图所示 (1) ∞∞ 左中右 0 a x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得

∴ ∴ 相应的 因为正负号不影响其幅度特性可直接写成由波函数归一化条件得 所以波函数 (2) ∞∞ 左 中右 0 x 显然 时只有中间有值 在中间区域所满足的定态薛定谔方程为 其解是 由波函数连续性条件得 当,为任意整数, 则 当,为任意整数, 则 综合得 ∴ 当时,, 波函数 归一化后 当时,, 波函数 归一化后 2.4 如图所示∞ 左右 0 a 显然 在中间和右边粒子的波函数所满足的定态薛定谔方程为 其中

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

第11章量子跃迁 11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求: (a)跃迁选择定则; (b)设离子原来处于基态,求每秒跃迁到第一激发态的概率. 解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为 而根据谐振子波函数的递推关系(见习题2.7) 可知跃迁选择定则为 (b)设初态为谐振子基态(n=0),利用 可求出 而每秒钟跃迁到第一激发态的概率为 11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).

【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】 10.2 氢原子处于基态,受到脉冲电场 作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程 如以电场方向作为Z轴,微扰作用势可以表示成 在电场作用过程中,波函数满足Schr6dinger方程 初始条件为 令 初始条件(5)亦即 以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得 以左乘上式两端,并对全空间积分,即得 再对t积分,由即得

因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为 根据选择定则终态量子数必须是 即电子只跃迁到各np态(z=1),而且磁量子数m=0. 跃迁到各激发态的概率总和为 其中 a o为Bohr半径.代入式(9)即得 电场作用后电子仍留在基态的概率为 10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解). 解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成

吉林大学高等量子力学习题答案共11页word资料

高等量子力学习题和解答 ? 量子力学中的对称性 1、 试证明:若体系在线性变换Q ?下保持不变,则必有0]?,?[=Q H 。这里H ?为 体系的哈密顿算符,变换Q ?不显含时间,且存在逆变换1?-Q 。进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。 解:设有线性变换Q ?,与时间无关;存在逆变换1?-Q 。在变换 若体系在此变换下不变,即变换前后波函数满足同一运动方程 ?''?t t i H i H ?ψ=ψ?ψ=ψ h h 进而有 2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R z e ρ的矩阵表示。 解: 'cos sin 'sin cos 'O xyz z d x x d y d y x d y d z z θθθθθ -=+=-+=考虑坐标系绕轴转角 用矩阵表示 '10'10'00 1x d x y d y z z θθ?????? ? ???=- ? ??? ? ?????? ??? 还可表示为 '()z e r R d r θ=r 3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n ρ 转θ d 角, 在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψρ =。试导出转动算符),(θd n U ρ 的表达式,并由此说明,若体系在转动),(θd n U ρ 下保持不变,则体系的轨道角动量为守恒量。 解:从波函数在坐标系旋转变换下的变化规律,可导出旋转变换算符

()z e U d θr 利用 (')()()z e r U d r θψ=ψ 及 (')()r Rr ψ=ψr r 可得 ()1z e z i U d d L θθ=-r h 通过连续作无穷多次无穷小转动可得到有限大小的转动算符 绕任意轴n 转θ角的转动算符为 1U U U -+=? 为幺正算符 若 (')()()z e r U d r θψ=ψr r r 则必有 1 (')()()()()[,] z z e e z H r U d H r U d i H r d H L θθθ-==+r r r r r h 若哈密顿量具有旋转对称性,就有[,]0z H L =→角动量守恒 4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋 1=S 。 解:矢量函数在旋转变换下 后式代入前式 '(')(')[](')[](')x x y y x y z z r r e d e r d e e r e θθψ=ψ++ψ-++ψr r r r r r r r r r 又 '(')'(')'(')'(')x x y y z z r r e r e r e ψ=ψ+ψ+ψr r r r r r r r 比较得 '(')(')(') ?[1]()[1]()[1]()() x x y z x z y z x y r r d r i i d L r d d L r i d L r d r θθ θθθθψ=ψ-ψ=-ψ--ψ=-ψ-ψr r r r r h h r r h 类似可得 ?'(')()[1]()?'(')[1]()y x z y z z z i r d r d L r i r d L r θθθψ=ψ+-ψψ=-ψr r r h r r h

量子力学教程课后习题答案高等教育

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量) ; 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ --kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λh P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程第二版答案及补充练习

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

高等量子力学第一章习题

?k ijk j i S i S S ε=],[2322212S S S S ++=> >=+0|)(!1 |n b n n ∫=++?x x x x e e d ****2φφφφπ φ高等量子力学第一章习题: 1、两个态矢量|+>和|->形成完全集。在它们所构成的Hilbert 空间中定义如下三个算符: 试证明它们满足如下对易和反对易关系: 并求出两个态矢量|+>和|->之间的翻转变换算符及算符的表 达式 2、二能级系统的哈密顿算符一般可表达为: H =a|1><1|+b|2><2|+c|1><2|+d|2><1| 其中|1>和|2>分别表示二能级的状态,形成正交归一集。 问:H 的厄密性对系数a,b,c,d 有何限制?求该系统的能量本征值及相应的本征态矢量(表示为|1>和|2>的线性叠加)。 3、已知一线性谐振子在其哈密顿表象中的本征态矢量为 其中,基态|0>满足b|0>=0,并且b 和b +与其坐标和动量算符的关系为 试求态矢量|n>转换到坐标表象表达式。 4、设某系统的哈密顿算符为:H(t)=a 1(t)J ++a 2(t)J 0+a 3(t)J - 其中a i (t),i=1,2,3为任意时间t 的函数,J +,J 0,J -为SU(1,1)群的生成元,其满足下述对易 关系:[J +,J -]=-2J 0,[J 0,J ±]=±J ± 试证明该系统的时间演化算符可表示为: U(t,0)=exp[C 1(t)J +]exp[C 2(t)J 0]exp[C 3(t)J -],并导出确定C i (t)的方程.。 5、已知算符b 和b +的对易关系为[b ,b +]=1,在b +b 对角表象的本征态矢量为 且基态满足b|0>=0,引入算符b 的本征态b|z>=z|z> 试求归一化态矢量|z>在b +b 对角表象的表示式,由基矢量组|z>构成的表象称作为相干态表象,试求态矢量|n>在相干态表象的波函数 6、题的已知条件与题5相同,并可利用题5的结果,试证明: (i )相干态表象的基矢量不具有正交性,并说明其原因。(ii)相干态表象的基矢组是完备的,完备性条件由下式给出式中,积分元由z=x+iy d 2z=dxdy 给出,证明过程中可以利用的公式有: (iii)不存在算符b +的本征右矢量。)(||||2 1+><+=?S )(||||2 3?><+=?S )(||||22?><+?+> >=+0|)(!1 |n b n n )(2b b x +=+μω?)(2 b b i p ?=+?μω∫=><1 ||2z z z d π

相关文档
最新文档