高等桥梁设计理论——钢桥疲劳设计理论

钢结构设计原理课后习题答案(张耀春版)

页脚内容1 《钢结构设计原理》 三. 连接 3.8 试设计如图所示的对接连接(直缝或斜缝)。轴力拉力设计值N=1500kN ,钢材Q345-A ,焊条E50型,手工焊,焊缝质量三级。 解: 三级焊缝 查附表1.3:2w t N/mm 265=f ,2w v N/mm 180=f 不采用引弧板:m m 4801025002w =?-=-=t b l 3 2w 2t w 150010312.5N/mm 265N/mm 48010 N f l t σ?===>=?,不可。 改用斜对接焊缝: 方法一:按规范取θ=56°,斜缝长度: m m 58320)829.0/500(20)56sin /500(2)sin /(w =-=-?=-='t b l θ 32w 2t w sin 1500100.829213N/mm 265N/mm 58310 N f l t θσ??===<='? 32w 2w cos 1500100.559144N/mm 180N/mm 58310 v N f l t θτ??==≈<='? 设计满足要求。 方法二:以θ作为未知数求解所需的最小斜缝长度。此时设置引弧板求解方便些。 3.9 条件同习题3.8,受静力荷载,试设计加盖板的对接连接。

页脚内容 2 解:依题意设计加盖板的对接连接,采用角焊缝连接。 查附表1.3:2w f N/m m 200=f 试选盖板钢材Q345-A ,E50型焊条,手工焊。设盖板宽b =460mm ,为保证盖板与连接件等强,两块盖板截面面积之和应不小于构件截面面积。所需盖板厚度: 1250010 5.4mm 22460 A t b ?≥==?,取t 2=6mm 由于被连接板件较薄t =10mm ,仅用两侧缝连接,盖板宽b 不宜大于190,要保证与母材等强,则盖板厚则不小于14mm 。所以此盖板连接不宜仅用两侧缝连接,先采用三面围焊。 1) 确定焊脚尺寸 最大焊脚尺寸:t h t ==m ax m m 6f ,mm 最小焊脚尺寸:7.4105.15.1min f =?==t h mm 取焊脚尺寸h f =6mm 2)焊接设计: 正面角焊缝承担的轴心拉力设计值: N 94281620022.146067.027.02w f f f 3=?????=?=f b h N β 侧面角焊缝承担的轴心拉力设计值: N 557184942816101500331=-?=-=N N N 所需每条侧面角焊缝的实际长度(受力的一侧有4条侧缝): mm 172620067.045571847.04f w f f 1f w =+???=+?=+=h f h N h l l 取侧面焊缝实际长度175mm L=175×2+10(盖板距离)=360mm 。

桥梁概念设计与分析理论

桥梁概念设计与分析理论 一:桥梁属性与结构形式 1.1桥梁的属性 科学:分析实验 桥梁工程{ 技术:研发应用 艺术:创造美学 1.2 桥梁结构的分类 用途:人行桥,公路桥,铁路桥,公铁两用桥,城市桥,管道桥,明渠桥 材料:石桥,木桥,钢桥,混凝土桥,预应力混凝土桥(主跨90米,在中小跨度范围内已占绝对有优势,在大跨度范围内它正在同钢桥展开激烈竞争。它主要承重结构用预应力钢筋混凝土结构的桥梁。附加预应力混凝土:预应力混凝土,为了弥补混凝土过早出现裂缝的现象,在构件使用(加载)以前,预先给混凝土一个预压力,即在混凝土的受拉区内,用人工加力的方法,将钢筋进行张拉,利用钢筋的回缩力,使混凝土受拉区预先受压力。这种储存下来的预加压力,当构件承受由外荷载产生拉力时,首先抵消受拉区混凝土中的预压力,然后随荷载增加,才使混凝土受拉,这就限制了混凝土的伸长,延缓或不使裂缝出现,这就叫做预应力混凝土。)钢——混凝土组合结构桥 结构形式:梁桥拱桥斜拉桥悬索桥组合桥斜拉—悬

索协作体系 规模跨径:小桥(8~30米) 中桥(30~100) 大桥(100~1000) 特大桥(大于1000) 1.3桥梁结构形式与合理跨度范围 (1)梁桥 简支梁桥的跨度一般不超过70M,最有竞争力的跨度范围50M以下 等截面连续桥梁的合理跨度范围在30~110M,优势跨度范围50~80 变截面连续桥梁或连续钢结构桥的合理跨度50~350M,最有竞争力的跨度范围100~300M (2)~ (3)拱桥合理跨度范围600M以下,最有竞争力40~450M (4)系杆拱桥合理40~800M 最有竞争力150~1200M (5)斜拉桥合理80~1500M 最有竞争力150~1200M (6)悬索桥合理200以上,500以上最有竞争力 二:桥梁设计准则 2.1 桥梁设计的基本目标 安全实用经济美观 2.2安全性和试用性 (1)承载能力极限状态 1 结构或构件达到材料极限强度

桥梁结构设计理论方案

桥梁结构设计理论方案 桥梁结构设计理论方案作品名称方舟桥参赛学校黑龙江八一农垦大学参赛队员专业名称土木工程、土木工程、土木工程土木工程、指导教师黑龙江省大学生结构设计竞赛组委会二○一一年目录模型方案说明11、材料12、设计思路13、外形选择24、比赛设计要求2结构设计说明21、参考资料22、材料力学性能估计33、结构选型34、截面选用45、荷载分析56、内力分析及计算简图67、试验研究98、承载能力估算99、破坏分析10模型方案说明1、材料桐木、502胶水,实际制作过程中常需在木材上涂胶,所用材料实际是木胶复合材料,其受拉时呈现线弹性和脆性,木材顺纹受拉弹性模量为,木材顺纹抗拉强度设计值为; 2、设计思路众所周知,材料在受拉力的情况下能够最充分的发挥强度,因此在结构的设计中尽可能多的利用木材的抗拉性能,充分发挥502胶水较强的抗剪能力,以及截面较为开展的木材较好的抗压能力,应用桁架结构设计一座质量尽可能小但承载能力尽可能大的木桥。因此,采用由规则矩形拼成的工字型木杆作为支撑桥面板的主梁,利用4*6的矩形木杆作为腹杆,其中竖杆主要受压; 应用粘合后的薄木片作为鱼腹式下弦的受拉构件。上下桥面采用梯形连接,减少材料用量。 3、外形选择模型跨度:1200mm模型长度:1300mm模型宽度:180mm模型高度:180mm结构形式:梁—桁架组合结构模型重量:130.77g 4、比赛设计要求几何尺寸要求(1)模型长度:模型有效长度(即悬空部分,也就是两侧可升降平台端部距离)为1200mm,两端提供竖向和侧向支撑。对于竖向支撑,每边支撑长度为0-70mm(起侧向支撑作用的侧向支撑挡板可左右活动,距离升降平台边缘距离范围为50-70mm,即距离升降平台边缘最远为70mm,最近为50mm,当模型端部支撑长度不足50mm时,则不能提供侧向支撑,仅能提供竖向支撑),如下图2所示。 (2)模型宽度:在模型有效长度范围内(中央悬空部分),模型宽度应不小于180mm,最宽不应超过300mm; 在支座范围内,宽度不限,但不应超过320mm。 (3)模型高度:模型上下表面距离最大位置的高度不应超过400mm; 为方便小车行驶,中央起拱高度不应超过40mm(中央起拱高度指未加载时,对于放置好的模型,端部构件上表面与模型中央起拱最高处构件上表面的距离); 端部支座位置处的高度不应超过150mm。 2.2结构形式要求对于结构形式没有特定要求,桥面设置两个车道,每个车道宽不得小于90mm,因两车道之间设有行车导索,所以车道之间不能有立柱、拉索一类的构件。 结构可以仅采用竖向支撑的方式,也可以采用竖向和侧向同时支撑的方式来实现约束,如果模型制作失误,不能够完成约束和加载,后果由参赛队伍自行承担。 结构设计说明1、参考资料《结构设计大赛细则》《木结构设计规范》《桥梁工程》2、材料力学性能估计桐木作为模型材料,其力学性能特点是受拉性能良好,抗撕裂能力差,抗弯压能力较弱,将木材粘合成横截面较大的材料后,可承受一定的弯矩,但受长细比的限制,多为压杆失稳状态的受力破坏。 502胶的粘接性能:木材粘接时原来的性质会发生改变,木材变得脆而且易

桥梁结构设计理论方案

第五届大学生结构设计竞赛 桥梁结构设计理论方案\ 作品名称___________________ 平波桥 _______________________ 参赛队员邵明帅、温雯、文月桂、胡红亮 专业名称土木茅以升、车辆詹天佑、土木 茅以升____ 、土木茅以升________ 、土木茅以升______ 指导教师____________________ 张雪珊______________________

大连交通大学结构设计竞赛组委会

二?一三年 总言:桥梁是我们生活中很常见的一种交通方式,许多有河流的地方就有桥梁的身影,从很简陋的独木桥,到如今气势恢宏的跨海大桥,桥梁的建造技术在飞速的发展着,随着材料科学的发展,各种新型的材料也在不断运用到桥梁建造中来,但总体有一个原则“稳定性好,材料 省”。一般现在的桥梁形 式可分为“拱,吊,桁架”三种。 我们的理念:考虑到拱桥较难制作,且较易出现应力集中现象,所以我们选择了桁架和吊桥的结合形式来制作我们的作品,桁架结构具有制作简便,刚 度大,几何特性好,扩大了粱式结构的适用跨度等优点,本次制作的桥梁长度为2010mm,是一种大跨的结构,而吊桥的优点就是受拉好,自重轻,跨径大,在支座承压方面,我们采用了增加横杆的方式,一方面增大了它的承压面积,另一方面使支座受力均匀,在主梁上,我们采用工字梁的方式来增加梁的抗弯能力,在整个梁的受力方面,我们尽量都是让力均匀分布的方式进行。这样可以减少挠度。 我们的特色: 1.梁的横截面: 目的:增大梁的抗弯能力。 效果图| 2.腹梁的承压结构目 的:降低挠度 3?吊桥的受拉结构 目的:适合大跨径受拉结构 作 品 简 介

钢结构设计原理 基本概念复习题及参考答案

2011年课程考试复习题及参考答案 钢结构设计原理 一、填空题: 1.钢结构计算的两种极限状态是和。 2.提高钢梁整体稳定性的有效途径是和。 3.高强度螺栓预拉力设计值与和有关。 4.钢材的破坏形式有和。 5.焊接组合工字梁,翼缘的局部稳定常采用的方法来保证,而腹板的局部稳定则 常采用的方法来解决。 6.高强度螺栓预拉力设计值与和有关。 7.角焊缝的计算长度不得小于 40 ,也不得小于 8hf ;侧面角焊缝承受静载时,其 计算长度不宜大于 60hf 。 8.轴心受压构件的稳定系数φ与、和有关。 9.钢结构的连接方法有、和。 10.影响钢材疲劳的主要因素有、和。 11.从形状看,纯弯曲的弯矩图为,均布荷载的弯矩图为,跨中 央一个集中荷载的弯矩图为。 12.轴心压杆可能的屈曲形式有、和。 13.钢结构设计的基本原则是、、 和。 14.按焊缝和截面形式不同,直角焊缝可分为、、 和等。 15.对于轴心受力构件,型钢截面可分为和;组合截面可分为 和。 16.影响钢梁整体稳定的主要因素有、、、 和。 1.承载能力极限状态,正常使用极限状态 2.加强受压翼缘,减少侧向支承点间的距离(或增加侧向支承点) 3.螺栓材质,螺栓有效面积 4.塑性破坏,脆性破坏 5.限制宽厚比,设置加劲肋 6.性能等级,螺栓直径

7.8h f,40mm,60 h f 8.钢号,截面类型,长细比 9.焊接连接,铆钉连接,螺栓连接 10.应力集中,应力幅(对焊接结构)或应力比(对非焊接结构),应力循环次数 11.矩形,抛物线,三角形 12.弯曲屈曲,扭转屈曲,弯扭屈曲 13.技术先进,经济合理,安全适用,确保质量 14.普通缝,平坡缝,深熔缝,凹面缝 15.热轧型钢,冷弯薄壁型钢,实腹式组合截面,格构式组合截面 16.荷载类型,荷载作用点位置,梁的截面形式,侧向支承点的位置和距离,梁端支承条件 二、问答题: 1.高强度螺栓的8.8级和10.9级代表什么含义? 2.焊缝可能存在哪些缺陷? 3.简述钢梁在最大刚度平面内受荷载作用而丧失整体稳定的现象及影响钢梁整体稳定的主要因素。 4.建筑钢材有哪些主要机械性能指标?分别由什么试验确定? 5.什么是钢材的疲劳? 6.选用钢材通常应考虑哪些因素? 7.在考虑实际轴心压杆的临界力时应考虑哪些初始缺陷的影响? 8.焊缝的质量级别有几级?各有哪些具体检验要求? 9.普通螺栓连接和摩擦型高强度螺栓连接,在抗剪连接中,它们的传力方式和破坏形式有何不同? 10.在计算格构式轴心受压构件的整体稳定时,对虚轴为什么要采用换算长细比? 11.轴心压杆有哪些屈曲形式? 12.压弯构件的局部稳定计算与轴心受压构件有何不同? 13.在抗剪连接中,普通螺栓连接和摩擦型高强度螺栓连接的传力方式和破坏形式有何不同? 14.钢结构有哪些连接方法?各有什么优缺点? 15.对接焊缝的构造有哪些要求? 16.焊接残余应力和焊接残余变形是如何产生的?焊接残余应力和焊接残余变形对结构性能有何影 响?减少焊接残余应力和焊接残余变形的方法有哪些? 17.什么叫钢梁丧失整体稳定?影响钢梁整体稳定的主要因素是什么?提高钢梁整体稳定的有效措施 是什么? 18.角焊缝的计算假定是什么?角焊缝有哪些主要构造要求? 19.螺栓的排列有哪些构造要求? 20.什么叫钢梁丧失局部稳定?怎样验算组合钢梁翼缘和腹板的局部稳定?

高等桥梁结构理论作业汇总

高等桥梁结构理论课程作业参考答案(2014版) 【作业1】 如图1所示薄壁单箱断面,试分别计算:(1)该截面在竖向弯矩m kN M x ?=100作用下的正应力(注:平截面假定成立。);(2)该截面在竖向剪力kN Q y 100=通过截面中心作用下的剪应力分布。 图1 薄壁单箱断面几何尺寸(单位:cm ) 【参考答案】 由于该截面关于y 轴对称,故需要确定主轴ox 轴的位置,假定ox 轴距离上翼缘中心线为a ,由0=x S ,得 0)2(2 1 2)2(0.3212)5.20.35.2(22=-?--?-?+?++δδδδa a a a 即 04.01.04.03.06.01.08.022=+--+-+a a a a a 0.15.1=a ,即m a 667.0= 由ANSYS 计算截面几何特性参数,计算结果如图2所示。具体几何特性计算结果为: 竖向抗弯惯性矩为)(064.1)(10064.1448m cm I x =?=, 横向抗弯惯性矩为)(370.5)(10370.5448m cm I y =?=, 扭转常数为:)(470.1)(1047.1448m cm I y =?=, 截面几何中心至顶板中心线距离为)(667.0m a =。 (1)截面在竖向弯矩m kN M x ?=100作用下,由初等梁理论可知,截面正应力分布由下式 计算,即

y y y I M x x z 96.93984064 .1000 ,100=== σ(Pa ) (m y m 667.0333.1≤≤-),具体截面正应力分布如图3所示。 X Y O Sig1=62688Pa Sig2=125282Pa 图2截面在竖向弯矩m kN M x ?=100作用下正应力分布图 (2)截面在竖向剪力kN Q y 100=作用下,闭口截面弯曲剪应力计算公式可知,截面剪应力为 ????? ? ?? +-= ??δδds ds S S I Q q x x x y 划分薄壁断面各关键节点如图3(a )所示。将截面在1点处切口,变为开口截面,求x S 、 ?δ ds 和 ?ds S x δ 。作y 图如图3(b )所示。 (a )薄壁断面节点划分图(单位:cm )

桥梁设计理论第十讲

第十讲 斜桥计算理论 第一节 概述 一、斜梁结构的型式 支承线与梁轴线(行车方向)不成直角的梁式结构通常称为斜梁结构。斜梁结构包括斜肋板式结构、斜格子梁和斜箱梁结构等型式。 斜梁结构的平面形状,由于环境条件的限制会有各种各样的形式,图10-1表示了几种最主要的形式。其中图10-1a 、b 所示的平行四边形斜梁结构在工程上用得最多,但图10-1c 、d 所示的等腰梯形和直角梯形斜梁结构也常会遇到。显然,各支承线的方向可以是任意的,这样便形成了各种平面形状的斜梁结构。当所有支承线与梁轴线都成直角时即为一般的正梁结构,可见正梁结构是斜梁结构的特例。 按静力特性,斜梁可分为简支梁、悬臂梁、连续梁和竖腿刚架等型式,每种斜梁的结构和受力特性均不尽相同。 二、斜角与斜度的定义 目前国内外关于斜角的定义有两种方法。如图10-l 中的α和?所示。为清楚起见,将梁轴中心线与支承线构成的不大于90 的角?称为斜(交)角,而将梁轴中心线的垂线与支承线构成的角α称为斜度。显然,斜度α和斜角?互为余角。 应该注意,图l0-la 、b 表示的平行四边形斜梁结构在许多方面是不同的。为区分起见,相对梁轴线而言,当?在右边时称为右斜(图10-1b ),当?在左边时称为左斜(图10-la )。如左、右斜的方向搞错,则成为方向相反的平行四边形斜梁结构。斜度α的正方向为从支承线向梁轴中心线垂线方向的旋转为逆时针方向(图10-la );反之,向顺时针方向旋转时, α为负(图10-lb ) 。α的变化范围为9090α-<< 。显然,当所有α均为零时即为相应图10-1 斜梁结构的平面形状

的正梁结构。 三、基本假定及分析途径 进行斜梁结构的分析,首先要选择合适的计算图式。例如,对于图10-2a 所示的较窄的箱形截面简支斜梁桥,可以采用单根斜梁的计算图式,如图l0-2b 所示,其中主梁既有抗弯刚度也有抗扭刚度。一般情况下,箱梁的端部在支承方向均设有刚劲的端横隔板(或端横梁),因此支承线上横梁AB 和CD 的抗弯刚度可假定为无限大,而抗扭刚度可假定为零,主梁刚结在横梁AB 和CD 之间。这样,受载时主梁沿横梁方向的扭转为零,而在垂直横梁方向可以自由转动。 工程实践中常遇到的斜梁结构,在很多情况下都可以简化为主梁和十分刚劲的斜横梁构成的单主梁式斜梁结构进行分析,这在国内外的很多文献中均有论述。但是,要进行多梁式斜梁系结构的实用分析计算,也需要单根主梁斜梁结构的分析作为基础。因此,必须首先对各种类型的单根主梁斜梁结构(简称斜梁)进行深入的分析和讨论。 本讲首先以单根斜梁为对象研究其计算方法,讨论其受力特性并给出若干便于应用的计算图表,然后进一步研究斜梁系结构的实用计算方法。 斜梁和正梁的基本微分方程是相同的,但由于斜支承的存在使支承处的边界条件不易精确满足,故一般不采用基本微分方程进行求解。有限单元法、有限条法等数值方法是分析斜梁结构的有效方法,然而设计计算这类结构时,上机条件、所费机时是一个不可忽视的因素。 分析斜梁的另一有效途径是采用杆件系统的结构力学方法。对于图10-2所示的斜梁,主要承重构件——“主梁”,虽为一直线形杆件,但由于斜支承的存在,使主梁中的弯曲和扭转相互耦合,因此从本质上说,斜梁的分析属空间分析的范畴。因而,可采用研究空间杆系的结构力学方法来分析斜梁结构。此法不但简单明了,便于分析斜梁结构的受力特性,而且能得到计算图式的精确解。 一般说来,对于钢筋混凝土或预应力混混凝土结构,薄壁结构效应较小,故分析对可忽略横截面翘曲所引起的内力影响。另外,对于箱梁中设有一定数量横隔板的斜梁,其截面畸变也可忽略。因此,单根斜梁可以采用单纯扭转理论进行分析,其基本假定概括为如下两点: (1)斜梁的横截面在变形后仍保持为平面,即不产生翘曲扭矩和翘曲双力矩; (2)变形后斜梁的横截面周边形状保持不变,即无畸变内力。 如有必要,斜梁的翘曲内力和畸变内力,也可像正梁结构的实用分析计算时一样另行计 T EI GI =∞ = T 图10-2 简支斜交箱梁桥的计算图式 a) b)

桥梁设计创新

桥梁设计创新 一、创新的思路 创新就是桥梁发展的动力,就是桥梁建筑艺术的灵魂,没有创新的艺术犹如一潭死水,没有一点活力,日复一日,终究会越来越腐朽。同时,创新也必须以实践为基础,也需要用理论来指导。作为设计人员,如何在设计中寻求创新,同时在创新的同时也能实现结构的合理呢? 1、设计人员应具有创新的意识,必须意识到创新的重要性与必要性。同时应具有创新的能力,掌握一定的创新技巧,要勇于突破定势思维,打破传统观念与经验的束缚,充分发挥主观能动性与想象力,不迷 信权威,发展广泛的兴趣。创造力并不就是在任何情况下都能自发地表现出来的,必须通过创新的素质教育与训练才能获得开发与提高。 2、设计人员应以本专业的基础知识为核心,建立起创造发明的“游击区”。使专业基础知识与其她知识相互渗透,共同结合成一个网络式整体结构。还应开发智能因素,包括培养精确的观察力,提高记忆力,培养注意力、想象力与操作能力。除了创造力之外,创造性人才还应具备创造精神与创造人格。创造精神主要包括有好奇心、探究兴趣、求知欲、对新事物的敏感、对真知的执着追求,勇于发现、发明、革新,有开拓进取、百折不挠的精神,这就是一个人创造的灵魂与动力;创造人格主要包括创造责任感、使命感、事业心、执着的爱、顽强的意志与毅力,能经受挫折、失败的良好心态,以及坚韧顽强的性格,这就是创造出成果的根本保证。 3、桥梁设计中的创新必须以结构受力合理为基础,以满足功能要

求为前提。力就是创新应考虑的主导因素。因此,设计人员应掌握好力学知识,桥梁结构必须能明确反应力流,使力的传递途径一目了然。 4、由于美学具有相对性,人类审美观念就是会发生变化的,桥梁美学设计实践应与人们不断变化的美学观念同步,创新不能脱离人类审美观念。桥梁设计人员应该对人们美学观念的变化具有敏锐的洞察力,美学观念的变化就是微妙的,因此应不断以新的眼光观察这些微妙的变化,不能墨守成规,从这些微妙的变化中预测出美学观念的发展趋势,作为未来设计创新的依据。 5、要努力推进新材料与新工艺的发展,不断改进力学分析方法,提高分析技能、分析速度与准确度,在掌握好力学知识与分析手段的前提下,运用各种创新手段,充分发挥人的想象力与创造力,争取不断 创造出结构更合理、更先进、更美观的桥梁形式以适应不断变化的美学观念。最后,还要注意总结前人的设计经验与教训,“前事不忘,后事之师”,学习前人并不就是照抄照搬别人的劳动成果,也不就是纯粹学习已经过时的结构形式,而就是学习前辈在当时历史条件下的创新精神与创新方法。 二、创新的基本技法 1、组合法 组合法,就是一种以综合分析为基础,并按照一定的原理或规则对现有事物或系统进行有效的综合,从而获得新事物、新系统的创造方法。 组合法的内在原理很复杂,形式也多种多样。组合法在具体应用

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥与桁架桥的设计方案。斜拉桥可以瞧作就是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其她样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不就是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性就是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆就是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工就是连接的就是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接就是本模型制作的最大难点。由于就是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接就是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

钢桥腹板间隙面外变形疲劳应力分析

第27卷 第1期2010年3月 建筑科学与工程学报 Journal of Architecture and Civil Engineering Vol.27 No.1Mar.2010 文章编号:167322049(2010)0120065208 收稿日期:2010201210 基金项目:高等学校全国优秀博士学位论文作者专项资金项目(2007B49) 作者简介:王春生(19722),男,黑龙江绥化人,教授,工学博士,E 2mail :wcs2000wcs @https://www.360docs.net/doc/a910279001.html, 。 钢桥腹板间隙面外变形疲劳应力分析 王春生,成 锋 (长安大学桥梁与隧道陕西省重点实验室,陕西西安 710064) 摘要:采用ANS YS 大型通用有限元软件对3跨连续钢板梁桥进行了三维数值模拟,研究了腹板间 隙面外变形所产生的应力状态,并对腹板间隙大小、腹板厚度、横撑类型、横撑刚度等关键结构参数进行了分析;根据某高速实际车辆动态称重实测结果,分析了超载车辆作用下腹板间隙处的面外变形应力。结果表明:腹板间隙大小和腹板厚度均对面外变形应力影响较大;车辆超载时,腹板间隙处极易萌生疲劳裂纹。 关键词:钢桥;腹板间隙;面外变形;疲劳应力;超载中图分类号:U441.4 文献标志码:A Out 2of 2plane Distortional F atigue Stress Analysis at Web G aps of Steel Bridges WAN G Chun 2sheng ,CH EN G Feng (Key Laboratory for Bridge and Tunnel of Shaanxi Province ,Chang πan University ,Xi πan 710064,Shaanxi ,China ) Abstract :Three 2dimensional numerical simulation of a t hree 2span continuous steel plate girder bridge was established to st udy t he complex st ress state caused by t he out 2of 2distortion in web 2gap using finite element software ANS YS.Meanwhile ,some key st ruct ural parameters ,such as web gap size ,web t hickness ,cross 2bracing type and cross f rame stiff ness were analyzed in t he numerical models.The measured web gap sizes and web t hickness types gave t he great affection on t he out 2of 2plane distortion fatigue st resses at web gap s.The result s show t hat t he influences of web gap s and cross frame on out 2of 2plane distortion are great.Fatigue cracking occurs easily at web gap s under overload. K ey w ords :steel bridge ;web gap ;out 2of 2plane distortion ;fatigue st ress ;overload 0引 言 如何确保钢桥的疲劳使用安全一直是桥梁工程 界关注的重要研究课题。国外早期建造的钢桥,由于当时焊接施工水平不高,设计者对疲劳的认识和考虑亦不充分,导致钢桥疲劳开裂问题十分严重[1]。1982年美国ASCE 发表的研究报告中指出80%~90%的钢结构破坏与疲劳断裂有关[2]。钢桥的疲劳 可分为荷载疲劳和面外变形疲劳,荷载疲劳只需计 算荷载作用下钢梁的面内应力即可进行疲劳设计与 分析,这已被工程师所熟知;面外变形疲劳并不与荷载直接相关,而是取决于钢梁细节处的局部面外变形。已有研究表明,钢板梁桥、钢箱梁桥、钢框架桥墩等都存在大量面外变形引起的疲劳裂纹。Con 2nor 等[3]的最新研究结果表明钢桥中的疲劳裂纹90%为面外变形疲劳裂纹。钢桥中出现如此大量的 面外变形疲劳裂纹,主要原因是钢桥设计时一般只考虑面内变形与应力,并未考虑腹板间隙处面外变

正交异性钢桥面板疲劳细节优化论文

正交异性钢桥面板疲劳细节优化 摘要:作为早期公路钢桁梁桥破损桥面板更新的主要选择,正交异性钢桥面板已得到应用。为了适应近年来日益增长和加重的车辆轮载,需要对钢桥面板进行疲劳细节的优化。本文采用montecarlo方法模拟50年的疲劳荷载作用,借助三维有限元模型获得两种闭口肋的疲劳细节影响面,运用经典的雨流计数法研究其疲劳损伤度。结果表明相同尺寸下,u形截面常见疲劳细节的受力优于v形截面,疲劳寿命大于v形截面。 关键词:栓焊桁梁桥;钢桥面板;疲劳细节优化;闭口肋 abstract: as the early highway steel truss bridge damage the main selection panel update, orthotropic steel bridge panel has been applied. in order to meet the increasing in recent years and aggravation of the vehicle wheel load, need to steel bridge panel fatigue of the detail of the optimization. in this article, the method of 50 years of simulation montecarlo fatigue load, with the aid of the three dimensional finite element model for two silent ribs fatigue details the extent, using the classical rain flow count method to study the fatigue degree. the results show that under the same size, u shape section of the detail of the stress fatigue common better than v section, fatigue life than v section. keywords: bolt welding truss; bridge steel plate; fatigue

8国外桥梁设计理念和典型示例介绍(陈艾荣)

国外桥梁设计理念和典型示例介绍 ---全寿命经济分析、造型设计和组合结构桥梁 陈艾荣 同济大学桥梁工程系 摘要:通过对日本多多罗斜拉桥和丹麦的大海带悬索桥等几座桥梁的造型特点的研究,介绍了使用造型单元设计法、整体造型设计法、拓扑分析等方法如何进行桥梁美的创造;通过对国外几座桥梁所进行的全寿命经济分析,阐述了在桥梁设计和规划阶段进行全寿命经济分析的必要性;通过对一座典型组合结构桥梁的介绍,说明组合结构桥梁的发展和应用。 一、概述 桥梁作为公共建筑物,是人类根据生活和生产发展的需要,利用所掌握的物质技术手段,在科学规律和美学法则支配下,通过精心设计而创造出的人工构造物,是人文科学与工程技术相结合的产物。桥梁以其实用性、巨大性、固定性、永久性和艺术性极大的影响并改变了人类的生活环境。桥梁的美如何进行创造也是人们关心的问题。和其他构造物有所不同,作为一种结构艺术,实际上桥梁的美是可以通过技术的方式来达到的。 目前我国在桥梁建设管理的一些惯例和办法在一定程度上加剧了桥梁工程的病害问题。其中只注重建设初期的成本,而忽视桥梁从规划、建设到运营、破坏整个寿命周期的总体成本。各国桥梁使用实践证明,如果片面追求较低的建造费用而忽视了对结构耐久性的改善,不仅影响运输交通的安全、减少结构使用寿命,同时投入的养护维修费用十分可观,甚至远远超过建造中节省的费用。 全寿命经济分析法的基本思想是,在设计施工阶段,不论是事先采取防护措施还是以后“坏了再修”,都要做出经济预算和比较,设计者和承建者要对工程的“全寿命”负责到底,目前,美国已强制实施基建工程管理中的“全寿命经济分析法”(简称LCCA,即Life Cycle Cost Analyze)。 组合结构桥梁今年来得到了飞速的发展。法国工程界提出的波折腹板组合箱梁桥,是利用波折钢板抗剪强度大、纵向刚度小的特点,将其设置在腹板,达到减轻结构自重、减少腹板承担预应力的目的。同时从抗弯、抗压的角度来看,使用波折腹板后,顶底板单独受力,减少了干燥收束、徐变、温差的影响,实现了主动控制设计。 本文将通过对日本多多罗斜拉桥和丹麦的大海带悬索桥等几座桥梁的造型特点的研究,介绍了使用造型单元设计法、整体造型设计法、拓扑分析等方法如何进行桥梁美的创造;然后通过对国外几座桥梁所进行的全寿命经济分析,阐述在桥梁设计和规划阶段进行全寿命经济分析的必要性和基本原理;最后通过对一座典型组合结构桥梁的介绍,来说明组合结构桥梁的发展和应用。这几个方面的国外经验,无疑是值得我们参考借鉴的。

钢结构设计原理的课程设计报告

XX 工学院 课程实训 课程名称:钢结构设计原理专业层次:土木工程(卓越)

1、设计资料 1)某厂房跨度为24m,总长90m,柱距6m,屋架下弦标高为18m。 2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。 3)屋面采用1.5×6m的预应力钢筋混凝土大型屋面板(屋面板不考虑作为支撑用)。 4)该车间所属地区西安。 5)采用梯形钢屋架。 考虑静载:①预应力钢筋混凝土屋面板(包括嵌缝)1400N/m2 ②二毡三油防水层400N/m2 ③20mm厚水泥砂浆找平400N/m2 ④支撑重量70N/m2 考虑活载:活载700N/m2

6)钢材选用Q345钢,焊条为E50型。 2、屋架形式和几何尺寸 屋面材料为大型屋面板,故采用无檩体系平破梯形屋架。 屋面坡度 i=1/10; 屋架计算跨度L 0=24000-300=23700mm ; 端部高度取H=1990mm ,中部高度取H=3190mm (为L 0/7.4)。 屋架几何尺寸如图1所示: 1拱50 图1:24米跨屋架几何尺寸

三、支撑布置 由于房屋长度有6米,故在房屋两端及中间设置上、下横向水平支撑和屋架两端及跨中三处设置垂直支撑。其他屋架则在垂直支撑处分别于上、下弦设置三道系杆,其中屋脊和两支座处为刚性系杆,其余三道为柔性系杆。 上弦平面支撑布置

屋架和下弦平面支撑布置

垂直支撑布置 4、设计屋架荷载 屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。由于风荷载为0.35kN/m2 小于0.49kN/m2,故不考虑风荷载的影响。沿屋面分布的永久荷载乘以1/cosα=√1+102/10=1.005换算为沿水平投影面分布的荷载。桁架沿水平投影面积分布的自重(包括支撑)按经验公式( P=0.12+0.011 跨度)计 w 算,跨度单位为m。 标准永久荷载: 二毡三油防水层

正交异性钢桥面板疲劳性能的影响分析

广东建材2018年第11期正交异性钢桥面板疲劳性能的影响分析 刘森 (厦门市路桥管理有限公司) 【摘要】正交异性钢桥面板由于重量轻,极限承载力大,适用范围广,已广泛应用于大跨度公路桥 梁钢箱梁。作为全焊接结构,由于其复杂的几何结构,在车轮载荷下的独特力性能,焊接操作引入的残 余应力和焊接缺陷等导致正交异性钢桥面板疲劳开裂现象突出。在本文的研究中,首先分析了正交异 性钢桥面板的力学特性和疲劳影响因素,然后提出了疲劳修复方法。 【关键词】正交异性钢桥面板;疲劳性能;成因;修复 1引言 正交异性钢桥面板因其在机械性能和经济性方面的突出优势而被广泛应用于现代桥梁工程中。然而,虽然具有突出的优点,但这种结构的疲劳问题更加突出。国内外正交异性桥梁钢桥面典型疲劳案例表明:一旦正交异性钢桥面发生疲劳,就会直接影响结构的运行质量,甚至会大大降低其承载能力;疾病修复不仅昂贵且难以实现期望的修复效果。因此,研究正交异性钢桥面板的疲劳特性具有重要的理论和实际意义。 2正交异性钢桥面板的受力特点 作为主梁的组成部分,正交异性钢桥面板是纵梁的上法兰和主梁的上法兰。根据传统的三结构系统分析方法,可以概括为主梁系统、桥面系统和覆盖系统。主梁系统是指由盖板和纵向肋构成的主梁的上凸缘,纵梁是主梁的组成部分。甲板系统是指盖板作为纵肋和横肋的公共上法兰,桥面系统的三个部件支撑在主梁上以承受桥面上的载荷。盖系统仅将盖子视为支撑在纵向肋和横向肋上的各向同性连续板,直接承受车轮的局部载荷并将载荷传递给纵向肋和横向肋。 钢桥面板的应力分布具有以下特点。 ⑴在车辆活载荷的作用下,主梁系统的应力相对较小,主要反映在桥面系统和盖板系统的局部应力中。 ⑵车轮载荷的大小决定了钢桥面板的应力大小,但其车轮载荷影响线较短,冲击范围相对有限。 ⑶对于钢桥面板的某些结构细节,车辆产生的应力循环次数与应力的纵向影响线的长度和车辆的轴距有关。 ⑷盖板中的第三系统平膜具有较小的应力,主要由平面外弯曲应力反映。 ⑸在纵向肋的下边缘的平面中仅存在纵向膜应力,并且存在纵向肋腹板的平面外的弯曲应力和面内膜应力。 ⑹梁的腹板上的应力主要由平面中的薄膜应力反映,但在与纵向肋的腹板连接处的腹板处存在一定的平面外弯曲应力。且应力集中现象明显。 ⑺纵向肋穿过梁腹板的弯曲开口处的应力集中也是非常明显的。 总之,正交异性钢桥面板由于应力线短、接头细节的应力集中以及面外变形下的二次应力而易于疲劳开裂。 3正交异性钢桥面板疲劳问题的影响因素 正交异性钢桥面板具有力性能和经济性的双重优势。横向肋(隔板)板连接以形成板结构,该板结构满足纵向和横向上的不同力要求。结构体系和成形方法使正交异性钢桥面板具有突出的优点,结构复杂,焊缝多,局部轮载直接作用。桥面板以鼓形变形,并且应力集中发生在几何构造的不连续部分中,例如主构件的互连和相互约束。焊接工作中的瑕疵问题以及制造时出现的偏差问题,都会产生应力集中现象,这又会加重导致疲劳和板面的脆性。随着现代交通工具的发达,桥面和路面往往要承受非常大的压力,这种情况下,疲劳易损部位就很容易出现裂缝,进而不断扩大范围,最后导致钢桥表面部位的疲劳问题,一些常见的疲劳部位以及脆弱部位如图1所示。 日本东京两条具有代表性的高速公路约7,000个封闭纵肋正交异性钢桥面板疲劳缺陷的统计分析得到的主要疲劳裂纹类型及其组成如表1所示。 在我国,到现在为止,桥面一共出现了大约十七种疲劳裂痕,这其中比较常见的一种裂痕以及它所占的百 质量控制与检测44 --

桥梁结构设计问题

桥梁结构设计问题探讨 摘要:近年来,随着科学技术的发展,桥梁结构设计也得到了相应的发展,但是我国的桥梁设计理论和结构构造体系仍不够完善。本文通过桥梁结构设计中应注意事项,对桥梁结构设计的理论及设计问题进行探讨。 关键词:桥梁结构;设计问题;分析 abstract: in recent years, with the development of science and technology, the bridge structure design also got the corresponding development, but china’’s bridge design theory and structure system is still not perfect. this article through the bridge structure design should note, bridge structure design theory and design issues were discussed. keywords: bridge structure; design problems; analysis 中图分类号:u443文献标识码:a 文章编号: 一、桥梁结构设计现状 目前的桥梁设计中,对于耐久性更多的只是作为一种概念受到关注,既没有明确提出使用年限的要求,也没有进行专门的耐久性设计。这些倾向在一定程度上导致了当前工程事故频发、结构使用性能差、使用寿命短的不良后果,也与国际结构工程界日益重视耐久性、安全性、适用性的趋势相违背,也不符合结构动态和综合经济性的要求。

浅谈钢结构桥梁的疲劳问题

浅谈钢结构桥梁的疲劳问题 摘要:随着钢结构桥梁的疲劳问题的日趋突出,其疲劳设计问题也越来越得到重视。在桥梁设计中,保证桥梁的安全性和耐久性是最根本的要求。文中对目前应用广泛的钢结构桥梁的疲劳问题进行了探讨。 关键词:桥梁疲劳设计问题对策 前言 近年来,钢结构桥梁在我国公路桥梁中得到了越来越多的应用。一方面,钢结构桥梁的疲劳问题日趋突出;另一方面,我国公路钢桥规范与英、美等国钢桥规范相比,在疲劳设计方面规定比较简单。因此,在以我国桥梁疲劳设计经验为基础的同时,应参考一些国外规范,总结出适合我国交通行业的疲劳设计的有效方法。 一、钢结构桥梁的疲劳 30年来,我国的公路桥梁及铁路桥梁建设得到了迅猛发展。桥梁的结构体系多种多样,目前正在由传统的石拱桥、钢筋混凝土梁板式桥梁向现代的钢结构拱桥、斜拉桥以及悬索桥的趋势发展。由于车辆载荷的随机性、超载以及运行的频繁性,钢结构桥梁的疲劳问题历年来备受关注。和承载力和稳定性一样,疲劳是影响钢结构耐久性的主要因素之一。由于构造细节不合理,在重复重载交通、风或是地震等交变荷载的作用下,钢结构由此产生疲劳裂纹,疲劳裂纹不断开裂,直至影响钢桥的使用,甚至断裂破坏。为了避免钢结构桥梁发生疲劳破坏,必须在设计阶段就对疲劳问题进行细致的考虑。 二、钢结构桥梁疲劳特征的影响因素 影响钢结构桥梁疲劳的因素有很多,归纳起来主要有以下3 种: 1、结构的材料特性 与疲劳有关的结构的材料特性主要有:钢材的性能、构件尺寸、结构的表面状况。需要注意的是结构的疲劳性能随钢材强度的提高仅有微弱增加的趋势,所以由疲劳强度所控制的构件,采用强度较高的钢材是不经济的。一般说来,构件的尺寸增加时疲劳强度降低。疲劳裂缝源通常萌生于结构的表面,这主要是因为结构外表面的应力水平往往也最高,外表面的缺陷往往也最多和表面层材料的约束小,使得滑移带最易开动。 2、结构构造 结构构造主要包括桥梁的结构形式、构件的连接形式和构造细节。结构的制造和焊接工艺以及焊后处理工艺都对结构的初始应力分布和固有缺陷有较大的

相关文档
最新文档