水泵叶轮切割分析

水泵叶轮切割分析
水泵叶轮切割分析

水泵叶轮切割分析

在一些工程中,卧式单级单吸泵被广泛使用,厂家样本也只给出某型号叶轮的几种典型曲线,而实际选型参数与样本曲线不一定完全重合,很多大型泵厂都会对叶轮进行二次切割,这样做有什么好处呢?答案是:1,切割叶轮使水泵能够在设计要求的工作点工作;因为一般情况下很少有正好满足参数的水泵,比如要求一台200m3/h,50m的水泵,往往初次选的时候实际水泵的工作参数要比这个要大,通过叶轮切割达到这个参数要求。2,叶轮切割可以更加节能,如果不进行叶轮切割,泵实际工作参数就要大,就要耗能更多。

水泵叶轮切削之后的理论计算性能特性参数是怎样的呢?根据《泵与风机》教材中相似理论在泵与风机中的应用论述:“水泵在运行中,当转速、叶轮尺寸及流体密度发生改变时,根据相似关系,进行性能参数及性能曲线的相似变换”。

泵与风机的相似定律反映了性能参数之间的关系。水泵设计制造是按“系列”进行的,同一系列中大小不等的泵都的相似的,也就是说它们之间的流体力学性质遵循力学相似原理,为了满足使用要求,对同一型号规格的水泵采用不同叶轮直径,其性能也就不同。因此,为了改善在用泵的性能,切削泵的叶轮,使叶轮直径减小,以达到扬程降低、接近管网阻力特性、降低功率和节能目的。

水泵叶轮直径改变后的性能参数符合相似律,即:

G1/G=(D1/D)3 H1/H=(D1/D)2 P1/P=(D1/D)5

式中:

D ————叶轮切削前的直径mm

D1 ————叶轮切削后的直径mm

G ————叶轮切削前的流量m3/h

G1 ————叶轮切削后的流量m3/h

H ————叶轮切削前的扬程m

H1 ————叶轮切削后的扬程m

P ————叶轮切削前的功率Kw

P1 ————叶轮切削后的功率Kw

从以上三式表明:水泵叶轮改变时,流量与外径比成三次方关系;扬程与外径比成平方关系;功率与外径比成五次方关系。

查阅循环水泵样本资料:流量200m3/h,扬程50m,电机轴功率45Kw的水泵叶轮直径为400mm;切削后的叶轮直径为380mm,按此参数计算如下:

G1=G(D1/D)3 =200m3/h(380mm/400mm)3 =171.5 m3/h

H1=H(D1/D)2 =50m (380mm/400mm)2 =45.13m

P1=P(D1/D)5 =45Kw (380mm/400mm)5 =33.1Kw

通过上述计算可得出以下结论:切割减小水泵叶轮外径将使水泵的流量减小、扬程降低及功率降低;更换加大水泵叶轮外径将使水泵的流量增大、扬程提高及功率增大。

水泵的相似理论决定的,生产厂家生产的产品不可能满足范围内任何工况点的要求,尽量做到覆盖,就必须在固定生产的系列泵中,切削叶轮,以此改变其流量和扬程的。一般做法是,你选的参数刚好在2个型号泵的中间,只需将大泵切削一次,如果切削二次就要尽量考虑其他型号的水泵了。

所以通过以上案例可以看出,叶轮尺寸的小小改变(5%),会带来水泵功率的巨大改变,一些大型泵厂有专门的选型软件,会根据客户实际参数进行叶轮的二次切割为客户节约了能源。而能源的节约效果根据单位用电量和相关计算即可得出水泵厂家是否真实进行了切割。

离心泵叶轮切割定律的分析

离心泵叶轮切割定律的分析 武汉三源泵业制造有限公司 杨爱荣,甘根喜 本文介绍了几种离心泵叶轮的切割定律及针对每种切割定律作出的具体分析,以寻找一个较为准确的计算叶轮切割的方法,从而达到一台泵的多性能要求,提高产品的通用性和系列化。 一、 叶轮切割定律存在的条件及原因分析 叶轮切割定律一 ()12 2 D D Q Q '=' ()22 22 ??? ? ??'='D D H H ()33 22 ??? ? ??'='D D N N 式中: Q 、H 、N 、D 2为叶轮切割前的流量、扬程、轴功率和叶轮外径。 Q '、H '、N '、D 2'为叶轮切割后的流量、扬程、轴功率和叶轮外径。 以上公式成立的条件是: 1、叶轮切割前后的容积效率不变。 2、叶轮吸入口前液流无预旋,即绝对速度的圆周分量V u1等于零。 3、切割前后流液相似,速度三角形对应成比例。 4、切割前后叶轮出口宽度相等,即b 2'=b 2;出口面积不变即F 2'=F 2。 5、切割前后叶片出口角度不变,即β2'=β2. 从大量的试验结果来看,4、5两个条件很难满足。事实上切割

前后的叶轮出口宽度、面积、叶片出口角有的变化较大,最大的变化约为10%。这样就降低了叶轮切割定律的计算精度。在实际应用中往往进行保守切割,增加切割次数来确认要求的性能参数。 另外瑞士的苏尔寿公司针对以上存在的问题提出了的修正系数,即D 2'=D 2'+(D 2-D 2'),该公司认为的修正系数安全可靠,在高效区运行时采用此法切割的叶轮特性曲线略高于要求的曲线。 以上方法在实际应用中较麻烦,而且要多次用试验验证计算结果。因此有关文献针对不同比转数的泵提出了不同的计算方法,陈述事如下: 对于n s <60的低比转速离心泵: (a )、叶轮切割后叶片的出口角β2可能因叶轮外径D 2的减小而发生一些变化,但可以用锉销叶片出口端面的方法加以修正,认为β2'=β2; (b)、锥形叶片出口端将会因切削而变厚,修锉叶片使它恢复到原形大小,可以认为切削叶前后叶片的排挤系数不变; (c )、对于n s <60的叶轮可以认为叶轮是前后盖板平行的经流叶轮,因此可近似地认为叶轮切割前后的出口宽度不变。 以上分析得出叶轮切割定律二: ()12 222222222222 ??? ? ??'=''=''='D D V D V D V b D V b D Q Q m m m m ππ ()22 22222222 ??? ? ??'=''='D D V u V u H H u u

利用CAXA实体设计快速绘制水泵叶轮

利用CAXA实体设计快速绘制水泵叶轮 作者:发布时间:2010-03-10 叶轮是泵类产品中比较核心的零件,其中叶片部分是一个比较复杂的曲面结构。如何快速、准确的利用三维设计软件绘制水泵叶轮模型是泵类产品工程师所面临的一个难题,利用CAXA实体设计及CAXA电子图板软件就可以轻松解决这个难题。 叶轮设计思路 水泵叶轮的设计计算一般都是通过一些辅助设计软件来进行,由软件输出一些叶片的相关参数,再由工程师来完成二维的工程图。在叶轮的工程图中,一般有叶轮的外壳尺寸及叶片的工作面、背面参数表。参数表中主要有角度及相应角度下叶轮中心轴到叶片工作面或背面的距离,其实也就是多个特征点的极坐标列表。 我们可以将极坐标通过三角函数转化为相应特征点的直角坐标,输入到实体设计中绘制三维曲线,再生成曲面;也可以直接利用极坐标来绘制三维曲线再生成曲面。下面主要介绍直接利用极坐标来绘制水泵叶轮。 设计叶轮步骤 1、在CAXA电子图板中利用叶轮工程图输出叶轮外壳草图,在CAXA实体设计中通过旋转特征读取外壳草图生成叶轮外壳模型。 注意:在电子图板中可通过“拾取过滤设置”来快速选取叶轮截面及中心线,然后进行调整以便输出草图,草图定位点为叶轮中心线的交点;在实体设计中“旋转特征”时草图平面要调整为X—Z平面,即旋转轴要与Z轴同向,然后通过“工具”下的“运行外部加载工具”来读入电子图板输出的叶轮外壳草图。(草图的输出也可以利用电子图板的“部分存储”功能,然后在“旋转特征”的草图界面中点右键直接输入。)

2、以叶轮外壳中间空白部分的边界为草图旋转95度做一个辅助实体。 注意:做辅助实体的过程与做叶轮外壳相似,“旋转特征”的草图平面仍为X—Z平面,并且草图中心点位置为(0,0,0)。

几种离心泵叶轮的切割和计算

第32卷第6期2004年12月 江苏冶金Jiangsu Metallurgy V ol.32 No.6Dec.2004 几种离心泵叶轮的切割和计算 尚建波 辛伟华 (包头钢铁设计研究总院 包头,014010) (柳州钢铁公司 柳州,545000) 收稿日期:2004-08-12 作者简介:尚建波 男,1959年生,工程师。电话:(0472)6966431 摘要:通过对泵叶轮切割后的性能运行情况的统计归纳,得出几种不按切割定律计算的经验公式及一些体会。关键词:离心泵;叶轮切割;切割方法中图分类号:T H311 1 切割定律 泵的叶轮切割在设计中用来扩大泵的使用范围,在实际使用中常为了满足外界实际性能需要,对泵进行的一次性调节,以满足实际使用要求。泵叶轮切割后的性能(或叶轮的切割量)的计算通常用大家所熟知的切割定律式来计算如下式 Q c Q =D 2c D 2 或D 2c =Q c Q D 2 H c H =(D 2c D 2)2或D 2c =D 2H c H (1) P c P =(D 1c D 2 )3或D 2c =D 2 P c P 式中 Q ,H ,P ,D 2分别为叶轮切割前泵的流量、扬程、轴功率及叶轮外径;Q c ,H c ,P c ,D 2c 分别为叶轮切割后泵的流量、扬程、轴功率及叶轮外径。 但是在实际工作中,常遇到不按式(1)变化来切割叶轮,现就常遇到的几种情况谈谈笔者的一些体会和经验。 2 流量不变的叶轮切割 当叶轮切割后,要求流量不变,即Q c =Q ,而只改变泵的扬程时,可按下式进行计算 Q c =Q H c H =(D 2c D 2 )2.5 (2) 按式(2)计算时,泵的运行点会偏大流量工况运转。 3 径向导叶式泵叶轮切割 径向导叶式泵叶轮外径和导叶基圆之间的间隙要求较小,约1~3mm,并且径向导叶一般用于节段式多级泵中,泵的扬程可用增减叶轮数目来调节,所以在径向导叶式泵中一般不采用切割叶轮外径来改变泵的性能。但在单级径向导叶式泵中或多级泵中用改变叶轮数调节扬程,不能满足要求时,也常用叶轮切割的办法来调节。径向导叶式泵叶轮割后性能变化不符合式(1)的计算条件时,建议用下式计算 Q c Q =D 2 c D 2 H c H =(D 2c D 2 ) 2.5~ 5 (3) 式中 2.5~5是根据(D 2-D 2c )/D 2的比值来选取,即(D 2-D 2c )/D 2比值小时取小值,(D 2-D 2c )/D 2比值大时取大值。 径向导叶式泵叶轮切割时,还应注意如下问题:(1)切割量不要太大,否则会使效率下降太多,一般(D 2-D 2c )/D 2比值不超过8%。 (2)叶轮切割时,只车削叶片,而不要车削前后盖板,以保持叶轮外径与导叶之间的间隙对水流的引导作用。 4 中、高比转速泵叶轮切割 对中、高比转速泵,由于叶轮切割后,前后盖板

离心泵叶轮切割定律的分析

离心泵叶轮切割定律的 分析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

离心泵叶轮切割定律的分析 武汉三源泵业制造有限公司 杨爱荣,甘根喜 本文介绍了几种离心泵叶轮的切割定律及针对每种切割定律作出的具体分析,以寻找一个较为准确的计算叶轮切割的方法,从而达到一台泵的多性能要求,提高产品的通用性和系列化。 一、叶轮切割定律存在的条件及原因分析 叶轮切割定律一 式中: 为叶轮切割前的流量、扬程、轴功率和叶轮外径。 Q、H、N、D 2 '为叶轮切割后的流量、扬程、轴功率和叶轮外径。 Q'、H'、N'、D 2 以上公式成立的条件是: 1、叶轮切割前后的容积效率不变。 2、叶轮吸入口前液流无预旋,即绝对速度的圆周分量V u1等于零。 3、切割前后流液相似,速度三角形对应成比例。 4、切割前后叶轮出口宽度相等,即b2'=b2;出口面积不变即F2'=F2。 5、切割前后叶片出口角度不变,即β2'=β2. 从大量的试验结果来看,4、5两个条件很难满足。事实上切割 前后的叶轮出口宽度、面积、叶片出口角有的变化较大,最大的变化约为10%。这样就降低了叶轮切割定律的计算精度。在实际应用中往往进行保守切割,增加切割次数来确认要求的性能参数。 另外瑞士的苏尔寿公司针对以上存在的问题提出了的修正系数,即D2'=D2'+(D2-D2'),该公司认为的修正系数安全可靠,在高效区运行时采用此法切割的叶轮特性曲线略高于要求的曲线。 以上方法在实际应用中较麻烦,而且要多次用试验验证计算结果。因此有关文献针对不同比转数的泵提出了不同的计算方法,陈述事如下: 对于n s<60的低比转速离心泵: (a)、叶轮切割后叶片的出口角β2可能因叶轮外径D2的减小而发生一些变化,但可以用锉销叶片出口端面的方法加以修正,认为β2'=β2; (b)、锥形叶片出口端将会因切削而变厚,修锉叶片使它恢复到原形大小,可以认为切削叶前后叶片的排挤系数不变; (c)、对于n s<60的叶轮可以认为叶轮是前后盖板平行的经流叶轮,因此可近似地认为叶轮切割前后的出口宽度不变。 以上分析得出叶轮切割定律二: 对中、高比转数的离心泵n s=80—300,叶轮切割后出口宽度b2变大,可以近似地认为叶轮出口面积基本不变即D2'b2'=D2b2由此推出叶轮切割定律三:另外国内泵行业泵厂有实验的基础上又提出了用比转速计算叶轮切割的切割定律四:

水泵叶轮切割分析

水泵叶轮切割分析 在一些工程中,卧式单级单吸泵被广泛使用,厂家样本也只给出某型号叶轮的几种典型曲线,而实际选型参数与样本曲线不一定完全重合,很多大型泵厂都会对叶轮进行二次切割,这样做有什么好处呢?答案是:1,切割叶轮使水泵能够在设计要求的工作点工作;因为一般情况下很少有正好满足参数的水泵,比如要求一台200m3/h,50m的水泵,往往初次选的时候实际水泵的工作参数要比这个要大,通过叶轮切割达到这个参数要求。2,叶轮切割可以更加节能,如果不进行叶轮切割,泵实际工作参数就要大,就要耗能更多。 水泵叶轮切削之后的理论计算性能特性参数是怎样的呢?根据《泵与风机》教材中相似理论在泵与风机中的应用论述:“水泵在运行中,当转速、叶轮尺寸及流体密度发生改变时,根据相似关系,进行性能参数及性能曲线的相似变换”。 泵与风机的相似定律反映了性能参数之间的关系。水泵设计制造是按“系列”进行的,同一系列中大小不等的泵都的相似的,也就是说它们之间的流体力学性质遵循力学相似原理,为了满足使用要求,对同一型号规格的水泵采用不同叶轮直径,其性能也就不同。因此,为了改善在用泵的性能,切削泵的叶轮,使叶轮直径减小,以达到扬程降低、接近管网阻力特性、降低功率和节能目的。 水泵叶轮直径改变后的性能参数符合相似律,即: G1/G=(D1/D)3 H1/H=(D1/D)2 P1/P=(D1/D)5 式中: D ————叶轮切削前的直径mm D1 ————叶轮切削后的直径mm G ————叶轮切削前的流量m3/h G1 ————叶轮切削后的流量m3/h H ————叶轮切削前的扬程m H1 ————叶轮切削后的扬程m P ————叶轮切削前的功率Kw P1 ————叶轮切削后的功率Kw 从以上三式表明:水泵叶轮改变时,流量与外径比成三次方关系;扬程与外径比成平方关系;功率与外径比成五次方关系。 查阅循环水泵样本资料:流量200m3/h,扬程50m,电机轴功率45Kw的水泵叶轮直径为400mm;切削后的叶轮直径为380mm,按此参数计算如下: G1=G(D1/D)3 =200m3/h(380mm/400mm)3 =171.5 m3/h H1=H(D1/D)2 =50m (380mm/400mm)2 =45.13m P1=P(D1/D)5 =45Kw (380mm/400mm)5 =33.1Kw 通过上述计算可得出以下结论:切割减小水泵叶轮外径将使水泵的流量减小、扬程降低及功率降低;更换加大水泵叶轮外径将使水泵的流量增大、扬程提高及功率增大。 水泵的相似理论决定的,生产厂家生产的产品不可能满足范围内任何工况点的要求,尽量做到覆盖,就必须在固定生产的系列泵中,切削叶轮,以此改变其流量和扬程的。一般做法是,你选的参数刚好在2个型号泵的中间,只需将大泵切削一次,如果切削二次就要尽量考虑其他型号的水泵了。

离心泵叶轮切割定律的分析

离心泵叶轮切割定律的分析 武汉三源泵业制造有限公司 杨爱荣,甘根喜 本文介绍了几种离心泵叶轮的切割定律及针对每种切割定律作出的具体分析,以寻找一个较为准确的计算叶轮切割的方法,从而达到一台泵的多性能要求,提高产品的通用性和系列化。 一、 叶轮切割定律存在的条件及原因分析 叶轮切割定律一 ()12 2 D D Q Q '=' ()22 22 ???? ??'='D D H H ()3322 ??? ? ??'='D D N N 式中: Q 、H 、N 、D 2为叶轮切割前的流量、扬程、轴功率和叶轮外径。 Q '、H '、N '、D 2'为叶轮切割后的流量、扬程、轴功率和叶轮外径。 以上公式成立的条件是: 1、叶轮切割前后的容积效率不变。 2、叶轮吸入口前液流无预旋,即绝对速度的圆周分量V u1等于零。 3、切割前后流液相似,速度三角形对应成比例。 4、切割前后叶轮出口宽度相等,即b 2'=b 2;出口面积不变即F 2'=F 2。 5、切割前后叶片出口角度不变,即β 2' =β2. 从大量的试验结果来看,4、5两个条件很难满足。事实上切割

前后的叶轮出口宽度、面积、叶片出口角有的变化较大,最大的变化约为10%。这样就降低了叶轮切割定律的计算精度。在实际应用中往往进行保守切割,增加切割次数来确认要求的性能参数。 另外瑞士的苏尔寿公司针对以上存在的问题提出了0.75的修正系数,即D 2'=D 2'+0.75(D 2-D 2'),该公司认为0.75的修正系数安全可靠,在高效区运行时采用此法切割的叶轮特性曲线略高于要求的曲线。 以上方法在实际应用中较麻烦,而且要多次用试验验证计算结果。因此有关文献针对不同比转数的泵提出了不同的计算方法,陈述事如下: 对于n s <60的低比转速离心泵: (a )、叶轮切割后叶片的出口角β2可能因叶轮外径D 2的减小而发生一些变化,但可以用锉销叶片出口端面的方法加以修正,认为β 2 ' =β2; (b)、锥形叶片出口端将会因切削而变厚,修锉叶片使它恢复到 原形大小,可以认为切削叶前后叶片的排挤系数不变; (c )、对于n s <60的叶轮可以认为叶轮是前后盖板平行的经流叶轮,因此可近似地认为叶轮切割前后的出口宽度不变。 以上分析得出叶轮切割定律二: ()12 222222222222 ??? ? ??'=''=''='D D V D V D V b D V b D Q Q m m m m ππ

水泵叶轮切削

水泵节能技术在水厂中的应用 郑少燕 汕头市自来水总公司 摘要:在实际生产中,水泵长时间偏离高效区间运行,造成电能极大浪费的现象在很多水厂的生产中普遍存在,它是传统水泵选型方法带来的弊端。通过水泵叶轮切削改造等方法可改变水泵的运行工况点,使水泵运行于高效区间内,达到节能的目的。 关键词:节能 水泵选型 高效区间 叶轮切削 1.水泵节能改造技术应用的必要性 在传统的净水厂设计中,进行送水泵选型时,首先考虑水泵应满足最不利工况点的要求,即以供水管网的最高日最高时用水量和压力来计算水泵的设计流量和设计扬程。根据此法选型的水泵满足了最不利工况点的要求,却忽略了对能耗的考虑。因为在净水厂的实际运行中,水泵在最不利工况点运行的时间相对较少,绝大部分时间是在平均流量和平均扬程工况附近运行,甚至长期在低扬程大流量工况运行,这样水泵有可能长时间偏离高效区间运行,此时水泵的泵轴功率已接近甚至超出配用的电机功率,而且水泵效率低,还容易发生汽蚀。在实际生产中,为了确保水泵的安全运行,也为了使水泵运行于高效区间内,只能通过关小出水阀门来改变管道特性曲线,从而改变水泵的运行工况点。此举使水泵安全运行于高效区间内,却致使大量的能量消耗在阀门上,造成电能很大的浪费。为了节约能耗,有必要对送水泵实施节能改造。水泵的节能改造,主要是通过改变水泵的运行工况点,使水泵始终运行于高效区间内,且运行工况与管网实际所需一致。 改变水泵的工况点,通常可通过两条途径来实现:一是调速运行,即通过改变水泵的转速,来改变水泵的运行曲线,使水泵的出水压力与管网实际所需一致,从而达到节能的目的。变频调速是调速技术中最好的一种,它是解决能耗问题的最好方法之一,并已在国内一些水厂得以应用,且取得了很好的经济效益。但因变频调速设备造价较高,改造投入大,且调速

离心泵叶轮切割方法的应用

离心泵叶轮切割方法的应用 摘要:离心泵使用过程中,由于泵选型不当或工艺发生改变,导致泵的扬程偏大,扬程富 余太多,泵出口阀门开度非常小,节流损失大,排量受到限制,造成工况不稳,调节困难, 轴承振动大,机械密封泄漏次数增多。为使泵满足现场工艺要求,可采用切割叶轮的方法 进行调整,离心泵采用切割叶轮的方法,可以改变泵的性能参数,解决泵的匹配性。适当 减小叶轮外径,在转速不变的条件下降低泵的流量、扬程和功率,改变泵的性能参数,从 而使泵在适当流量下使用,有利于降低检修率及起到节能效果。 关键词:离心泵;叶轮切割;机械性能曲线 0 引言 某炼厂硫磺收回装置半贫液泵为单级离心泵,泵的设计出口压力为0.7MPa,但运行压力为1.0MPa,实际泵出口压力5kg/cm2即可满足要求,设计流量Q=222m3/h,实际200 m3/h 即可满足要求。但该泵平时运行流量为80 m3/h,由于达不到泵的最小稳定连续流量要求,造成泵运行状态恶化,主要表现为:泵出口阀卡量过小,泵振动过大,密封泄漏频繁,造成能耗浪费等。为了优化操作,消除设备隐患,节能降耗,需针对该情况增变频电机或者进行叶轮切割。 1、叶轮切割计算 1.1、设计条件工作与实际条件工况的对比 泵的设计条件和性能参数 设计运行参数设计性能参数 流量Q=222 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm 出口压力P =0.7MPa 效率η=72% 出 =0.3MPa 功率N=50.38KW 入口压力P 入 介质密度ρ=961kg/m3泵转速n=2950r/min 泵实际的运行的条件和性能参数 实际运行参数实际性能参数 流量Q=80 m3/h 扬程H=60m 温度T=119℃叶轮直径D=460mm =1.0MPa 效率η=72% 出口压力P 出 入口压力P =0.3MPa 功率N=50.38KW 入 介质密度ρ=961kg/m3泵转速n=2950r/min 由此参数可以看出,变化最大的为流量和入口压力,流量的偏低导致泵实际运行工况的改

Wqas切割泵

Wqas切割泵 景气指数为.2,也较上期提高.9点,三角债预期有望松动。 国有重点企业和上市发展强劲。三季度,“国有重点企业”景气指数为9.2,高于综合景气指数4.5,企业对该行业的发展预期高度自信。“上市”景气指数为82.5,高于综合景气指数33.8点,且比上季度提高2.6点,上市作为企业制度的高级形态,其生产经营的优势明显,企业家对该行业也是信心百倍。 上半年泛珠三角进口香港CEPA项下货物.2亿美元 深圳海关日前公布的统计数字显示,上半年泛珠三角地区共进口香港CEPA项下货物.2亿美元,税款优惠6924.5万元,同比分别增长38.3%和48.6%,泛珠地区香港CEPA进入平稳实施阶段。 广东口岸仍为泛珠三角地区CEPA货物主要进口地。上半年,广东口岸共进口香港CEPA项下货物.亿美元,占泛珠地区总受惠的98.2%;其中深圳口岸受惠货值最大 ,达444.2万美元,占泛珠地区总受惠的39.3%。 根据CEPA补充协议的规定,今年下半年香港CEPA将继续扩大开放,7月日开始再有37个税号的港产货物享受零关税待遇,主要涉及机电、调味料等产品。由于该部分产品并非香港优势出口产品,产 【WQK/QG系列切割式潜水排污泵】产品: 【WQK/QG系列切割式潜水排污泵】产品简介: WQK/QG带切割装置潜水排污泵具有排污通过能力特别强,带切割性能好,能将污水中的长纤维、塑料、纸、带、布条、稻草、绳子等杂质切碎后排出,采用最先进的方法,设计成最合理的水力特性,使电泵可以全扬程运行,优良的干式电机和水泵的最佳组合,使电泵的总效率达到西德abs 公司的ass带切割装置系列产品相同,电泵采用高质量的硬质合金,双端面机械密封和骨架油封组面部位,不得超过电动机高度的1/2,抽送污物温度不超过40℃。 WQK/QG系列污水污物潜水排污泵主要用于排送生活废水、污水、人粪尿及含有短纤维纸屑、木屑、淀粉、泥沙、矿石粒等固体悬浮物和非腐蚀性介质,被抽送液体温度不超过40℃,密度不大于1200kg/m3,ph值~9。该潜水排污泵采用双端面机械密封和旋转叶轮,叶轮采用不锈钢、耐磨损、不堵塞、不缠绕、具有体积小、结构紧凑、携方便等优点。

叶轮切割与节能

叶轮切割与节能 【摘要】离心泵广泛应用于炼化企业。在泵生产及应用过程中,我们经常遇到的问题是,泵的性能参数、设计要求及使用要求或多或少地存在偏差,这就要求通过最少的工作量或改变最少的零件,使泵的性能参数得到校正,以期满足我们对其性能的各种要求。因此对离心泵叶轮切割公式及方法,并按照各种方法对现场离心泵叶轮进行切割后,使电机得电流发生变化,以此得出节能的效果。 【关键词】离心泵;叶轮切割;切割量;直径修正公式;应用及节能 1 离心泵应用中存在的问题 应用离心泵相似定律。计算叶轮外径切割量。通过改变叶轮外径尺寸,达到扩展离心泵使用范围的目的。加以推广应用.用来按要求校正离心泵性能参数,以满足设备运行工况的需要.可以收到良好的安全和经济效益。通常的做法有以下三种:①利用管线配置的阀门进行调节。②改变转速。③切割叶轮,使泵性能满足要求。从这三种情况可以看出:第一种方法,在生产装置正常运行的情况下,无法实现。第二种情况,需加变频器,对于电机加变频器来改变,机泵的运转速度来满足生产需求,对于生产工艺需要经常改变的机泵,是合适的,但对于不需要经常改变的机泵的电机加变频器,就不是很合适,因为大家都知道,变频器的价格昂贵,因此我们把解决问题的方法确定在:切割叶轮,已达到节能降耗的目的。我厂由于各装置最初不配套,在机泵电机选型时,考虑到以后的升级再配套,留有一定的余量,使部分设备存在着大马拉小车的现象,这就使大量的能量白白的损失掉,不能真正的用到生产当中,因此,把这部分设备挑选出来,进行叶轮切割,既要满足生产需求,又能达到节能降耗的目的。经过挑选我们选定以下12台机泵进行试验:为了慎重起见,我们又从12台设备中选出3台进行试验。 2 确定叶轮切割量的方法 经过对国内外各泵厂家对于机泵叶轮切割修正系数来比较,对某确定的一台泵来讲,有以下不同的切割尺寸:(重催P-215,叶轮直径390MM) 为保证泵叶轮车削不致过量.实际中是分几个尺寸从大到小分次进行的,每次切割后都要进行的试装,一看节能效果情况。最终确定:博山水泵方法。 3 切割后电流变化统计 在满足生产装置平稳运行的情况下,电机运行电流有了明显的变化. 4 切割后经济效益 (1)该方案降低了耗电量,经济效益显著。

相关文档
最新文档