发展中的塑性加工理论和模拟技术

发展中的塑性加工理论和模拟技术
发展中的塑性加工理论和模拟技术

发展中的塑性加工理论和模拟技术

随着以信息技术为代表的高新技术的迅猛发展、知识经济和全球化制造的兴起,塑性加工理论和模拟技术的发展呈现出交叉性、前沿性和实用性的特点。对塑性成形规律的研究从材料的变形及应力应变分布发展到组织性能的变化,从宏观现象到细观和微观机理,从单纯的塑性加工延拓到相关的热处理和使用性能,借助于数值模拟技术,塑性加工理论成果能很快地实际应用,塑性成形过程的数值模拟在工业发达国家已进入应用普及阶段,我国一些企业也开始尝试应用,模拟技术的应用由检验设计方案向工艺优化的方向发展。本文简要地介绍了近年来塑性加工理论、模拟技术及其应用的一些重要进展,并分析了其发展趋

势。

基础理论方面

塑性加工理论是与材料科学和力学有关的跨学科研究领域,关于材料本构关系的研究一直是该领域最活跃的研究方向。一方面,这是由于理论和实验技术的发展,使得人们能更深入地探讨塑性变形机理;另一方面,也是由于新材料和新的应用需求不断地提出新的课题。

晶体塑性理论根据晶体材料塑性变形的机理(即位错滑移和孪晶)建立单晶体和多晶体材料的本构模型,对于研究材料的各向异性和织构有着独特的优越性,是塑性力学界长期关注的理论课题。晶体塑性理论在预测面心立方(FCC)纯金属的织构演化方面取得了很大的成功,但长期无法预测FCC合金在轧制过程中形成的黄铜型织构。近年来,Staroselsky 等人针对FCC 合金材料提出了同时考虑滑移和孪晶的晶体塑性模型,他们的模拟结果表明,FCC 合金中孪晶的开动是造成黄铜型织构的原因。Liao 等人]针对体心立方BCC 金属建立了<111> “铅笔滑移”(pencil glide即滑移系是由包含<111>晶向的平面以及该面内的最大剪应力方向所组成)和{110}<111>以及{112}<111>为滑移系的晶体塑性模型,他们将模拟结果与织构分析实验结果进行了对比。结果表明,这几种模型都能给出与实验结果相吻合的变形诱导织构演化,滑移系的选择对屈服轨迹的形状有很大影响。晶体塑性理论能够预测越来越多的塑性变形机理,尽管其结果目前还主要是定性的。Xie 等人利用晶体塑性理论考察了织构对板材成形性能的影响,模拟结果表明,织构中的g纤维对提高BCC金属板材的成形性能起着重要的作用。

由于晶体塑性本构模型所需计算量十分巨大,因此它主要用于塑性变形机理的研究。为了在明显地增加计算代价的前提下,在本构关系中考虑多晶体材料的织构,比现有的宏观塑性力学本构模型更精确地描述塑性各向异性,塑性对偶势理论受到一些研究者的重视。在这种本构模型中,塑性势函数中的系数是通过拟合用晶体学方法根据织构分析结果计算出的多晶体屈服面来确定的。Zhou 等人采用四阶塑性对偶势分

析了板材成形中的制耳。

在锻造等热加工过程中,除工件的形状变化外,人们还关心其内部组织性能的变化,以满足零件的使用要求。同时,为了利用锻件余热进行热处理,以提高生产率和减少能量消耗,要求研究塑性加工以及相关的热处理过程中,工件组织性能的变化规律。关于热处理过程中的相变、渗碳量等的预测已初步得到应

用。

冲压后工件的回弹是一个长期困扰塑性加工界的世界性难题。尽管塑性成形模拟方法已能较准确地预测冲压中的起皱、破裂等缺陷,但对于回弹的预测还很不准确。由于汽车等工业部门日益广泛地采用高强度钢板、轻金属等材料,回弹问题更显严重。它引起国际上汽车工业界和塑性加工学术界的极大重视。由于它涉及到复杂的物理机理、板材的变形条件和变形历史,必须从理论上开展深入的研究。在回弹问题研究中,近年来,取得了一些进展。Nader Asnafi对双曲率工件冲压成形后的回弹进行了试验,研究了影响

回弹的主要材料性能和工艺参数。其研究表明,增大进料阻力能增加工件所受拉伸应力、减小弯矩,对于减小回弹起重要作用。Gau 等人对钢板和铝板进行了反复弯曲实验,发现铝板的回弹量随弯曲/反弯曲次数的增加而逐渐增大,而钢板的回弹量随弯曲/反弯曲次数的变化不明显。他们认为对于铝板的回弹预测,必须在考虑变形历史的同时,考虑包兴格效应。他们提出了一种能考虑包兴格效应的厚向异性材料本构模型。其中采用新的多屈服面模型考虑同时包含等向强化和运动强化的材料实际强化规律,与单纯考虑等向强化或运动强化或Mroz 多屈服面模型相比,他们的模型与前述反复弯曲实验结果吻合得更好。冲压成形和回弹过程模拟可分别采用显式隐式或显式和隐式耦合的有限元计算法进行预测,Rohleder 等人分别用基于这几种算法开发的几种不同的商业软件对圆筒形工件拉深后筒壁不同高度截下的圆环剖开后的回弹进行了模拟计算,并与实验结果进行了比较,其中显隐耦合算法的结果与实验结果吻合得最好。这与人们通常所持的隐式算法能更准确地预测回弹的看法不一致,这说明如果采用合适的单元模型和本构关系模型,各种有限元算法都能有效地用于回弹预测。El-Abbasi[等考虑到冲压成形模拟等工程问题的需要,提出了一种考虑厚向变形的新的厚壳单元。他们引入了两个新的节点自由度分别描述厚度变化和沿厚向应变的线性变化。这种单元能用于分析成形过程中工件两面同时受到模具作用的场合。利用这种单元模拟校正弯曲造成的工件中的三向应力状态,将会有利于提高校正弯曲后回弹预测的精度。

动力显式算法不需迭代,避免了静力隐式算法中常常遇到的收敛性问题。在采用集中质量矩阵和集中阻尼矩阵后,形成的整体求解方程是彼此独立的,不需联立求解,减少了所需存储量和计算量,因此,近年来成为冲压成形中模具加载过程模拟计算的最流行的方法。为了解决由于时间步长限制造成的计算步数多的问题,在冲压成形模拟中常常人为地提高模具的运动速度,使得每一步模具的位移增量增大,这样就不可避免地增大了惯性效应。作者采用能量法对曲面压边圈夹紧和圆筒件拉深过程分别进行了惯性效应分析,确定了影响惯性效应的主要因素和模具的极限运动速度,为采用动力显式方法模拟冲压成形过程时正

确选取模具运动速度提供了参考。

在产品小型化微型化需求的推动下,微细成形技术引起了越来越广泛的关注尺度。在500 纳米至500 微米之间的金属成形研究正受到工业需求的强力驱动。韩国政府资助开展了毫米结构milli-structure 研究计划。微细成形中会出现尺度效应、材料的流动应力、各向异性和延展性等会随着工件特征尺寸以及特征尺寸与晶粒尺寸比值的变化而发生变化。挤压中摩擦系数随冲头直径的减小而增大,当工件特征尺寸达到数微米时,会出现应变梯度尺度效应,使扭转、弯曲、压入等具有应变梯度的变形条件下的屈服应力显著增加。目前,已提出一些解释和计算尺度效应的理论,如表面晶粒计算方法应变梯度塑性理论等,这些理论的发展和完善将推动微细成形技术的开发和应用。由于存在尺度效应,不能简单地利用相似理论进行实验研究,而要开发适合于微细成形研究的精密实验方法和检测技术,如微视塑性法等。

数值模拟技术方面

在应用需求的驱动下,塑性成形数值模拟技术的发展呈现出如下特点:一方面不断改进计算模型和计算方法,以提高求解精度和速度扩展数值模拟技术的应用范围;另一方面,将数值模拟与成形工艺优化相结合,与CAD/CAM 集成,形成智能化的成形工艺和模具设计方法。

为了提高冲压成形过程模拟的效率,Pourboghrat 等人提出了一种混合采用膜单元和壳单元的计算方法。他们采用膜单元模拟冲压过程,其中弯曲/反弯曲应变采用解析方法根据膜的形状求解,其后将求得的膜的形状以及弯曲应变和应力带入壳单元中计算回弹,这样可以节省50%的计算时间。有的研究者提出,粗化模具网格以减少成形模拟计算量的方法。采用隐式算法模拟塑性成形过程时,绝大部分CPU 时间消耗于方程组求解,因此采用高效率的方程组求解算法是提高模拟计算效率的关键。近年来,稀疏阵求解算法Sparse solver 已得到应用。与传统的等带宽算法、变带宽算法和波前法相比,稀疏阵解法不仅能大大提

高计算速度,而且能节省存储量。另外,采用预处理的迭代解法计算速度快,所需存储量小,对于某些成

形模拟问题也是有效的方法。

接触问题是塑性成形模拟中的一个难点。采用拉格朗日乘子法会引入新的变量,采用罚函数法则几何约束条件不易精确地得到满足,而且罚因子要凭经验选取。Farahani 等人提出了一种新的接触处理方法。他们将相互接触的两个物体中的一个定义为接触物体,另一个为目标物体。假设接触力分别作用于接触物体的节点和目标物体的表面,通过刚度矩阵的变换消去接触物体的法向自由度。这种方法以刚度矩阵的变换和修改为代价,避免了拉格朗日乘子法和罚函数法的缺点,可以应用于一般接触问题的处理。Shim 等人]研究了直接采用剪裁的NURBS 曲面描述冲模型面并进行接触处理的方法。对于复杂程度不太大的冲压件,这种方法将有助于减少数据量和提高模拟精度,Gearing 等人将Anand 提出的率无关各向同性等温界面摩擦模型推广为率相关模型,该模型引入了界面滑动抗力作为反映复杂的接触微观力学现象的宏观内变量,可以描述摩擦系数随正压力滑动速度和滑动位移量而变化的实验现象,用于冲压成形模拟比库仑摩擦定律

更精确。

利用塑性成形模拟进行成形工艺和模具设计的优化是近年来的一个研究热点,预成形设计是体积成形工艺优化的具体应用,在优化计算中可以利用反向模拟也可以利用正向模拟。如果优化的目标仅仅是终锻件的几何形状满足设计要求,用反向模拟能更直接地找到最优解,但反向模拟中边界条件的处理较困难,而正向模拟通常要与最优化计算方法结合应用。采用的最优化计算方法有灵敏度分析方法、直接微分法、拟合优化法、微观遗传算法、一致变换方法、神经网络形状内插值法和改进的约束梯度法。但目前最优化的目标主要是针对工件的形状尺寸,对工件内部组织性能的考虑不多,主要限于二维问题,工序数较少,冲压工艺优化与体积成形优化的基本方法是类似的。冲压成形中工件的形状为空间曲面,坯料的初始构形为平面,因此用逆算法(即反向模拟)较体积成形方便得多,板料成形模拟的逆算法计算速度很快,通常只需一个计算步,因此已成为目前用于冲压工艺优化的主要方法。如Naceur 等用逆算法优化拉延筋阻力使冲压件中厚度分布最均匀,Shim等人则采用正向模拟和灵敏度分析进行冲压工艺优化,使设计的毛坯冲

压出的工件可很好地满足产品形状要求。

塑性成形模拟软件及其应用

塑性成形模拟技术经历了几十年的发展,国际上已出现了一批塑性成形模拟软件。这些软件都是采用有限元法进行数值计算的,大致可以分为两类:一类是将通用有限元软件的功能扩充后用于塑性成形过程模拟,如集成了LS-DYNA3D 和LS-NIKE3D 后的ANSYS, ABAQUS 等;另一类是专门为塑性成形模拟开发的软件,如主要用于体积成形和热处理分析的DEFORM,用于冲压成形(包括液压胀形)模拟的DYNAFORM、AutoForm、 PAM-STAMP 、OPTRIS 等。塑性成形模拟技术在工业发达国家已经进入应用普及阶段,一些大企业将成形模拟作为成形工艺设计和模具设计的必经环节和模具验收的依据之一。

目前国际上较流行并已进入中国市场的专业化的冲压成形模拟软件主要有DYNAFORM、AutoForm、PAM-STAMP、 OPTRIS 等。这些软件的开发商与大型的汽车和金属板材制造商有着密切的联系,后者一方面是这些模拟软件的主要用户,另一方面也为软件的开发提供了必不可少的技术资料和检测手段。这些软件采用的有限元求解算法各有特点,如DYNAFORM 是采用显隐耦合算法,AutoForm 采用全拉格朗日列式的静力隐式算法。由于激烈的市场竞争和用户的挑剔,当某个软件开发商推出一种新功能后,其他开发商就会很快仿效,因此这几种软件的功能比较接近,这几种软件都具有与CAD 软件的接口,以便与冲压工艺和冲模设计相衔接。接口文件格式有IGES 、VDAFS、NASTRAN 等。为了全面支持冲压工艺和模具设计,它们都不同程度地提供了自动生成和交互修改压料面、工艺补充部分和拉延筋的手段,使用户输入零件几何模型后就能利用软件进行成形分析。除了通常的用于进行详细分析的有限元增量算法以外,这些软件大都还提

供了可快速进行成形分析并预测毛坯形状的逆算法。为了适应用户分析冲压新工艺的需要,它们也不同程度地支持对液压胀形、吹塑成形、超塑性成形、爆炸成形、橡皮成形等成形工艺的模拟以及对拼焊板的成形模拟。它们都支持包括压边圈夹紧、拉延、修边、翻边在内的多工序成形过程以及回弹过程的模拟,大都提供了对工艺参数和几何参数进行优化计算的模块。它们的后处理除了提供通常的位移、应变和应力分布以外,还能根据模拟计算结果给出成形极限分析、冲压工艺性分析、模具受力相对滑动等许多专业性的分析结果,极大地方便了人们对冲压成形过程规律性的理解。另外,冲压成形分析结果可以NASTRAN 等格

式输出,用于强度和碰撞等分析。

据报道,美国通用汽车公司每年要对6000 个冲压件进行成形过程模拟,为此还专门设立了一个新的工作岗位,称为分析师,采用冲压成形模拟技术可以使冲模设计制造周期缩短至原来的50%,其经济效益

十分明显。

在体积成形方面,目前国际上较有影响并已进入中国市场的专业化的模拟软件主要是DEFORM, DEFORM 分为2 维和3 维两个相对独立的模块。2 维模块具有XYR 和直线圆弧两种数据输入模式,也有IGES、DXF 等标准图形输入接口,3 维模块则有STL、PATRAN 、IDEAS 等图形输入接口。DEFORM 除了模拟锻造过程以外,还可以模拟轧制挤压粉末成型等多种体积成形工艺和切削加工工艺。DEFORM 还有2 维和3 维热处理模块,可以模拟正火、退火、淬火、回火、时效和渗碳等热处理过程,可以预测工件的硬度、残余应力、淬火变形以及其它有关的机械和材料特性。作为一个专业化的热加工过程模拟软件,DEFORM 在考虑包括塑性变形功和摩擦功的热效应在内的热力耦合分析方面,在变形和包括相变在内的材料组织性能演化的耦合

分析方面,在自适应网格重分方面,都有其独到之处。

我国在塑性成形模拟方面起步较早,许多大学和研究所都开展了长期的系统的理论研究和软件开发,形成了一批具有实用性的软件。其中有的软件达到了一定的商品化水平,例如吉林大学开发的KMAS 软件系统成功地应用于小红旗轿车488 发动机油底壳的冲压成形工艺优化和发天线反射镜面的回弹补偿等工程问题。华中科技大学开发的VFORM 软件系统包含了增量法和逆算法有限元分析模块,但是由于没有形成良好的市场机制,国内模拟软件的商品化与国外差距还很大。近年来,我国在塑性成形模拟方面有明显的进步,一方面,国家资助的科技项目越来越重视开发具有自主版权的商品化软件,引导模拟软件的研究开发走向自我发展的良性循环;另一方面,我国企业已经逐步认识到塑性成形模拟技术的重要性,包括上海大众、东风、宝钢等在内的一些大型企业和一些民营企业已经在产品和模具设计中开始采用模拟技术,并取得了很好的效果。在武汉召开的第七届全国塑性加工理论学术会议和第十七届车身技术研讨会上,塑性成形模拟都是会议的重要主题,充分显示了近年来我国成形模拟技术的迅速发展。随着我国加入WTO ,成为全球制造业最具发展潜力的基地,我国制造业将逐步地摆脱以仿制为主、依靠廉价产品进入国际市场的发展模式,过渡到重视产品的创新设计,依靠产品质量和快速响应市场的能力参与国际竞争,塑性成形模拟

技术将在这个转型过程中发挥越来越重要的作用。

塑性加工模拟技术的发展趋势及应用展望

塑性加工模拟技术的发展离不开力学材料科学等相关学科的发展。这些学科领域基础研究的深化及学科间的协同交叉,将为塑性加工模拟中尚未圆满解决的问题提供新的思路。在冲压成形模拟中,回弹预测的精度还远远不能满足工程应用的需要,这是因为对回弹过程的机理、影响回弹的各种因素的研究还不够深入和全面。为了解决回弹预测的精度问题,需要更精确地了解冲压成形过程中应变和应力的分布、材料组织性能的变化,建立能准确地反映材料组织性能演化(如包兴格效应)的本构模型,能准确地反映冲压过程中工件中应变和应力分布(尤其是沿厚度方向的变化)的单元模型,能准确地反映回弹过程物理规律的力学模型。国际上塑性加工过程模拟技术的一个重要发展方向,是由变形、应力、温度等连续介质力学

变量的预测向塑性加工过程中材料组织性能演化规律以及与此相联系的零件使用性能的预测推进。例如,塑性加工中,损伤和织构的演化及其对零件使用寿命的影响,热加工中晶粒度的变化、相变、流线的形成等及其对零件使用性能的影响等,都是值得进一步研究的问题。

新的塑性加工工艺的出现以及塑性加工与其他加工工艺的结合,也向塑性加工模拟技术提出了新的研究课题。例如,仅采用了凸模或凹模的充液拉深工艺的模拟要求能在模腔中给定液压力,采用一个工具头的逐步成形工艺的模拟要求采用新的计算策略,以便在准确地描述工具头作用下的局部成形的同时减少总的计算时间,半固态成形工艺的模拟要求同时处理固相、液相和相变,为此在数值模拟方法、本构模型和

相变规律等方面都要开展研究。

塑性加工模拟技术的发展趋势,是与材料设计和结构分析结合起来,实现材料制备、塑性加工、热处理和表面处理、机加工直到装配使用全过程的模拟,实现数字化制造。未来的设计模式将是:首先根据产品的使用要求确定零件的尺寸及精度、力学和其他性能指标、使用寿命等,然后通过数值模拟选取材料、设计其细观和微观组织,最后确定能满足零件尺寸和组织性能要求的加工工艺、优化工艺参数,这将带来

设计和制造技术的一次革命。

在我国,发展塑性成形模拟技术应该坚持两条腿走路的方针,一方面要在引进国际知名的模拟软件的基础上推广应用。目前在应用中的一个突出问题是要尽快建立完备的国产材料的有关数据库。其中包括材料的基本性能参数、应力应变关系曲线、成形极限曲线等以便于应用。同时要求发展实验测量技术,以便检验模拟计算的精度和调整计算参数。另一方面,我国还要采取产学研结合的方式,促进我国塑性加工理论和模拟技术的发展,扶植若干具有自主版权的模拟软件的研究开发、促使其实现商业化。由于国外软件售价昂贵,且与我国的技术标准不尽一致,发展我国自己的模拟软件是在我国大量中小企业推广成形模拟

技术的必要条件。

《金属塑性加工技术》思考题解答版

宽展由滑动宽展、翻平宽展、鼓形宽展组成. 轧制时主电机轴上输出的传动力矩,主要克服的阻力矩有:轧制力矩M、空转力矩M0、附加摩擦力矩M f、动力矩M d. 自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割等 冲孔的方法通常包括实心冲子冲孔、空心冲子冲孔和在垫环上冲孔. 锻造过程中常出现的缺陷有表面裂纹、非金属夹杂、过热等. 孔型轧制时宽展类型分为自由宽展、限制宽展、强迫宽展3种. 实现带滑动拉拔的基本条件为绞盘的圆周速度大于绕在绞盘上线的运动速度. 带滑动多模连续拉拔配模的必要条件第n道次以后的总延伸系数必须大于收线盘与第n个绞盘圆周线速度之比. 带滑动多模连续拉拔配模的充分条件任一道次的延伸系数应大于相邻两个绞盘的速比. 金属挤压时,按金属流动特征分类有正挤和反挤. 正向或反向挤压时,其变形能计算式中的系数Ce分别为0.7和0.9. 正向挤压时,锭坯的尺寸为φ60mm,挤压杆的移动速度为100mm/s,φ20mm的圆棒单根流出模孔的速度则为900mm/s. “Y”孔型的特征参数:形状参数K=b/R、面积参数M=f/d2、内接圆参数G=d/b. 孔型轧制的品种包括:线杆、棒材、管材、型材 热轧:金属在再结晶温度以上的轧制过程,金属在该过程中无加工硬化,热轧时金属具有较高的塑性和较低的变形抗力,可用较少能量获得较大变形. 冷轧:金属在再结晶温度以下的轧制过程,不发生再结晶过程,只发生加工硬化,金属的强度和变形抗力提高,同时塑性降低. 轧制过程中性角:后滑区与前滑区的分界面为中性面,与中性面对应,前滑区接触弧所对应的圆心角为中性角. 轧制压力:轧件给轧辊的合力的垂直分量,亦即指是用测压仪在压下螺丝下面测得的总压力. 最小可轧厚度:在一定轧制条件下(轧辊直径、轧制张力、轧制速度、摩擦条件等不变的情况下),无论如何调整辊缝或反复轧制多次,轧件都不能再轧薄了的极限厚度. 轧制变形区:轧制时金属在轧辊间产生塑性变形的区域称为轧制变形区,包括几何变形区和非接触变形区. 轧制接触角:轧件与轧辊的接触弧所对应的圆心角称为轧制接触角. 前滑:轧件的出口速度大于该处轧辊圆周速度的现象称为前滑. 后滑:轧件的入口速度小于入口断面上轧辊水平速度的现象称为后滑. 轧制负荷图:轧制负荷图是指一个轧制周期内,主电机轴上的力矩随时变化的负荷图,分为静负荷图与静负荷和动负荷的合成负荷图两种情况. 轧制工作图表:时间与各轧机工作状态图. 集束拉拔:将两根以上断面为圆形或异型的坯料同时通过圆的或异型孔的模子进行拉拔,以获得特殊形状的异型材的一种加工方法. 闭式模锻:闭式模锻亦称无飞边模锻,即在成形过程中模膛是封闭的,分模面间隙是常数. 液态模锻:将一定量的液态金属直接注入金属模腔,然后在压力作用下,使处于熔融/半熔融状态的金属液发生流动,并凝固成形,同时伴有少量的塑性变形,从而获得毛坯或零件的加工方法. 精密模锻:它是一种效率高而又精密的压力加工方法,模锻件尺寸与成品零件的尺寸很接近,因而可以实现少切削或无切削加工. 拉深系数:拉深系数m=d/D0,d-拉深制件直径,D0-坯料直径,m越小,变形程度越大,变形区金属硬化越厉害,抗失稳能力变小,板坯越易起皱. 冲压:通过模具对板料施加外力,使之塑性变形或分离,从而获得一定形状、尺寸和性能的零件或毛坯的加工方法. 挤压比:挤压前的制品的总横断面积/挤压后的制品的总横断面积. 填充系数:挤压筒内孔横断面积与锭坯横断面积之比. 连续挤压:连续挤压是通过有效利用坯料与旋转挤压轮之间的强摩擦所产生足够的挤压力和温度,将杆料、颗粒料或熔融金属以真正连续大剪切变形方式直接一次挤压成制品的塑性加工方法. 脱皮挤压:在挤压过程中锭坯表层金属被挤压垫切离而滞留在挤压筒内的挤压方法称为脱皮挤压 挤压效应:挤压效应是指某些铝合金挤压制品与其他加工制品(如轧制、拉拔和锻造等)经相同的热处理后,前者的强度比后者高,而塑性比后者低.这一效应是挤压制品所独有的特征. 挤压缩尾:出现在制品尾部的一种特有缺陷,制品后端金属内部夹杂了外来杂质或较冷的金属空洞、疏松等,主要产生在终了挤压阶段. 孔型系:轧件由粗变细必须在截面的各个方向上进行压缩(至少两个方向),因而要经过一系列不同形状和尺寸的孔型进行轧制,这一系列孔型称之为孔型系. 综述金属塑性加工技术的发展趋势. 金属塑性成形技术正向高科技、自动化和精密成形的方向发展.

材料技术前沿

1.人类历史的5次材料技术革命是什么?简述材料设计时代的特点。 答:1)石器时代---青铜器时代---铁器时代---合金化时代---合成材料时代---新材料设计与制备加工工艺时代。 2)材料设计时代的特点:资源-材料-制品界限的弱化与消失-按照使用要求来设计材料的性能;性能设计与工艺设计一体化要求-同时设计出可以获得其性能的可行的制备加工工艺。 2.简述材料加工技术的总体发展趋势以及主要发展方向。 答:发展趋势:概括为过程综合、技术综合、学科综合三个综合。过程综合包括两个方面:一是材料设计、制备、成形与加工的一体化;二是多个过程(如凝固与成形)的综合化。技术综合是指材料加工技术与计算机技术、信息技术、各种先进控制技术的综合。学科综合体现为三级学科(铸造、塑性加工、热处理)之间的综合、与材料物化、材料学等二级学科的综合,与计算机、信息环境过程工程等一级学科的综合。主要发展方向:常规材料加工工艺的短流程化和高效化;发展先进的成形加工技术,实现组织与性能的精确控制;材料设计、制备与成形加工一体化;开发新型设备与成形加工技术,发展新材料和新制品;发展计算机数值模拟与过程仿真技术,构筑完善的材料数据库;材料的智能制备和成形加工。 3.简述快速凝固的概念及用途。实现快速凝固的两种方法以及金属快速凝固的组织特征。答:快速凝固是指由液相到固相的相变过程进行得非常快,从而获得普通铸件和铸锭无法获得的成分、相结构和显微结构的过程。用途:获得新的凝固组织,开发新材料;制备难加工材料薄带、细小线材和块体材料;简化制备工序,实现近终形成形;提高产品质量,降低生产成本。实现方法:快速冷却和深过冷。组织特征:偏析形成倾向减小;形成非平衡相;细化凝固组织;析出相的结构发生变化;形成非晶态。 4.简述定向凝固的概念和现有工艺。简述连续定向凝固的基本原理。 答:定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终的到具有特定取向柱状晶的技术。现有工艺:发热剂法、功率降低法、高速凝固法、液态金属冷却法和连续定向凝固。连续定向凝固的基本原理:在连续定向凝固过程中对铸型进行加热,使它的温度高于被铸金属的凝固温度,并通过在铸型出口附近的强制冷却,或同时进行分区加热与控制,在凝固金属和未凝固熔体中建立起沿拉环方向的温度梯度,从而使熔体形核后沿着与热流(拉坯方向)相反的方向,按单一的结晶取向进行凝固,获得连续定向结晶组织(连续柱状晶),甚至单晶组织。 5.简述半固态加工的概念和特点;何谓触变成形?何谓流变成形? 答:半固态加工就是在金属凝固的过程中对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固液混合浆料,即流变浆料,利用流变浆料直接进行成形加工的方法称为半固态金属的流变成形。如果将流变凝固成锭,按需要将此金属锭切成一定大小,然后重新加热至金属的半固态温度区,利用金属的半固态坯料进行成形加工的方法称为触变成形。上述两种方法合称为半固态加工。特点:黏度比液态金属高,容易控制;流动应力比固态金属低;应用范围广,具有固液两相区的合金均可实现半固态加工。 6.连续驻扎的概念和工艺特点,列出3种目前咋生产的金属材料。影响铸轧过程稳定性的主要因素有哪些?保证铸轧正常进行的两个条件是什么?答:连续铸轧是直接将金属熔体“轧制”成半成品带坯或成品带材的工艺。显著的特点是:其结晶器为两个带水冷系统的旋转铸轧辊;熔体在辊缝间完成凝固和热轧两个过程;而且在很短的时间内(2~3s)完成。例子为铝带铸轧、硅钢、普碳钢、不锈钢。影响稳定性的因素:钢水的流动性;凝固行为;铸轧速度;侧封;铸轧力和辊缝;二次冷却和拉坯系统的影响。两个条件:1.基本条件:浇注系统预热温度、金属液面高度;热平衡条件:铸轧温度、铸轧速度、冷却强度。

金属塑性加工工艺

1.材料加工: 金属坯料在外力作用下产生塑性变形,从而获得具有一定几何形状,尺寸和精度,以及服役性能的材料、毛坯或零件的加工方法。 2.适用范围: 钢、铝、铜、钛等及其合金。 3.主要加工方法: (1) 轧制:金属通过旋转的轧辊受到压缩,横断面积减小,长度增加的过程。(可实现连续轧制)纵轧、横轧、斜轧。 举例:汽车车身板、烟箔等; 其它:多辊轧制(24辊)、孔型轧制等。 (2) 挤压:金属在挤压筒中受推力作用从模孔中流出而制取各种断面金属材料的加工方法。

定义:金属材料在挤压模内受压被挤出模孔而变形的加工方法。挤压法非常适合于生产品种、规格、批数繁多的有色金属管、棒、型材及线坯。 正挤压——坯料流动方向与凸模运动方向一致。 反挤压——坯料流动方向与凸模运动方向相反。 正挤反挤 举例:管、棒、型; 其它:异型截面。 卧式挤压机 特点: ①具有比轧制更为强烈的三向压应力状态图,金属可以发挥其最大的塑性,获得大变形量。 可加工用轧制或锻造加工有困难甚至无法加工的金属材料。 ②可生产断面极其复杂的,变断面的管材和型材。

③ 灵活性很大,只需更换模具,即可生产出很多产品。 ④ 产品尺寸精确,表面质量好。 (3) 锻造:锻锤锤击工件产生压缩变形 ? 定义 :借助锻锤、压力机等设备对坯料施加压力,使其产生塑性变形,获得所需形状、尺寸和一定组织性能的锻件。垂直方向(Z 向)受力,水平方向(X 、Y 向)自由变形。 A.自由锻:金属在上下铁锤及铁砧间受到冲击力或压力而产生塑性变形的加工 B.模锻:金属在具有一定形状的锻模膛内受冲 击力或压力而产生塑性变形的加工。 举例:飞机大梁,火箭捆挷环等。 我国自行研制的万吨级水压机 万吨级水压机模锻的飞机大梁、火箭捆挷环

金属塑性加工原理考试试卷

金属塑性加工原理考试试卷

考试试卷(一) 一、名词解释(本题10分,每小题2分) 1.热效应 2.塑脆转变现象 3.动态再结晶 4.冷变形 5.附加应力 二.填空题(本题10分,每小题2分) 1.主变形图取决于______,与_______无关。 2.第二类再结晶图是_____,_______与__________的关系图。 3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。 4.保证液体润滑剂良好润滑性能的条件是_______,__________。 5.出现细晶超塑性的条件是_______,__________,__________。 三、判断题(本题10分,每小题2分) 1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。 2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。 3.金属的塑性是指金属变形的难易程度()。 4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。 5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。 四、问答题(本题40 分,每小题10 分) 1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么? 2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。试问简单拉伸时材料出现细颈时的应变量为多少? 3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施? 4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧制方向)

2011《金属塑性加工原理》试题

重庆大学试题答卷 科目《金属塑性加工理论》 学院材料科学与工程学院 姓名 学号 2010年-2011年第1学期

注意事项: (1)本学期结束前,将纸质答卷(加封面,注明姓名、学号)交给任课教师。(2)请勿相互抄袭,否则后果自负。 一、简述金属塑性加工的特点及其应用情况。(20分) 二、什么叫初始与后继屈服?写出常用的各向同性和各向异性材料的初始屈服准则的表达式,并说明其物理意义。(20分) 三、设材料是理想刚塑性体。证明在平面应变下(设dεz = 0 ),有: dσ1 - dσ2 =0 其中,σ1和σ2为(x,y)平面内的主应力。(20分) 四、简述金属塑性成形问题主要求解方法的基本内容及其应用范围。(20分) 五、简述板料应变强化指数n和厚向异性指数r的意义及其对板料成形性能的影响。

一、答: 1)与金属切削加工、铸造、焊接等加工方法相比,金属塑性加工主要有以下特点: ①产品组织性能好,性能得到改善和提高: 金属材料经过相应的塑性加工后,其内部组织发生显著变化使材料结构致密、组织改善、性能提高。特别是对于铸造组织的改善,效果更为显著。此外,经过塑性成形后,金属的流线分布合理,从而改善制件的性能。 ②材料利用率高: 金属塑性成型主要是靠金属在塑性状态下的体积转移来实现的,不产生切削,因而材料利用率高,可以节约大量的金属材料。 ③生产效率高,适于大量生产: 对于零件毛坯或零件成品,当采用塑性成形工艺来生产时,一般都以模具为主要的工装,加上普遍采用机械化、自动化流水作业实现大批量乃至大规模生产,可以达到很高的生产率。这一点在金属的轧制,拉丝和挤压等工艺中尤为明显。 ④尺寸精度高: 表面粗糙度较低,形状和尺寸规格的一致性好:如果采用精密模锻、冷挤压和精密冲裁等精密成形工艺,所得工件的一致性好,其尺寸精度、表面粗糙度完全可达到切削加工中的磨削加工的水平。 2)应用情况:由于金属塑性加工具有上述特点,因而在汽车、拖拉机与农业机械、机床、航空航天、兵器、舰船、工程机械、起重机械、动力机械、是有化工机械、冶金机械、仪器仪表、轻工、家用电器和信息产业等制造业中起着极为重要的作用。

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

金属塑性加工试卷及答案

中南大学考试试卷 2001 —— 2002 学年第二学期时间110 分钟金属塑性加工原理课程64 学时 4 学分考试形式:闭卷 专业年级材料1999 级总分100 分,占总评成绩70% 一、名词解释(本题10分,每小题2分) 1.热效应 2.塑脆转变现象 3.动态再结晶 4.冷变形 5.附加应力 二.填空题(本题10分,每小题2分) 1.主变形图取决于______,与_______无关。 2.第二类再结晶图是_____,_______与__________的关系图。 3.第二类硬化曲线是金属变形过程中__________与__________之间的关系曲线。 4.保证液体润滑剂良好润滑性能的条件是_______,__________。 5.出现细晶超塑性的条件是_______,__________,__________。 三、判断题(本题10分,每小题2分) 1.金属材料冷变形的变形机构有滑移(),非晶机构(),孪生(),晶间滑动()。 2.塑性变形时,静水压力愈大,则金属的塑性愈高(),变形抗力愈低()。 3.金属的塑性是指金属变形的难易程度()。 4.为了获得平整的板材,冷轧时用凸辊型,热轧时用凹辊型()。 5.从金相照片上观察到的冷变形纤维组织,就是变形织构()。 四、问答题(本题40 分,每小题10 分) 1.分别画出挤压、平辊轧制、模锻这三种加工方法的变形力学图,并说明在生产中对于低塑性材料的开坯采用哪种方法为佳?为什么?

2.已知材料的真实应变曲线,A 为材料常数,n 为硬化指数。试问简单拉伸时材料出现细颈时的应变量为多少? 3.试比较金属材料在冷,热变形后所产生的纤维组织异同及消除措施? 4.以下两轧件在变形时轧件宽度方向哪一个均匀?随着加工的进行会出现什么现象?为什么?(箭头表示轧 制方向) 五、证明题(本题10 分) 证明Mises 塑性条件可表达成:

第三篇--金属塑性加工习体

第三篇金属塑性加工 一、填空题 1.金属的可锻性就金属的本身来说主要取决于金属的塑性和变形抗力。 2.冲模可分为简单冲模、__连续冲模___和复合冲模三种。 3.落料时, 4.冲孔时,凹 凸 模刃口尺寸等于工件尺寸。 模刃口尺寸等于工件尺寸。 5.金属塑性变形的基本方式是热变形和冷变形。 6.模锻不能锻出通孔,中间一般会有冲孔连皮。 7.金属的塑性越好,变形抗力越小,则金属的可锻性越好。 8.对于形状较复杂的毛坯一般采用 9.冷变形后金属的强度增加,塑性铸造 降低 加工方法。。 10.锻压是__锻造___和____冲压____的总称。 11.按锻造的加工方式不同,锻造可分为自由锻、_模锻___等类型 12.自由锻造的基本工序主要有镦粗、拔长、冲孔、弯曲、切 断等,自由锻造按使用设备不同,又可分为手工锻造和机器锻造。 13.冲压的基本工序可分为两大类,一是分离工序,二是成型工序。 14.根据胎模的结构特点,胎模可分为扣模、筒模和合模等。 15.分离工序是指使冲压件与板料沿一定的轮廓线相互分离的冲压工序,主要 有切断、冲孔、落料、切口等。 16.改善金属可锻性的有效措施是提高金属变形时的温度。 17.纤维组织的明显程度与金属的变形程度有关。变形程度越大,纤维组织 越__明显 18.模锻件上垂直于锤击方向的表面必需具有斜度,以便于从模膛中取出锻件。 19.分模面最好是一个平面,以便于锻模的安装与调试,并防止锻造过程 中上下锻模错动。 20.再结晶温度以上的塑性变形叫____热变形___。 21.再结晶温度以下的塑性变形叫____冷变形___。 22.锻造完成的螺钉比切削出来的螺钉质量__要好___。 23.冷挤压与热挤压相比,坯料氧化脱碳少,表面粗糙度值较低,产品 尺寸精度24.拉深系数 较高 越小 。 ,表明拉深件直径越小,变形程度越大,坯料被拉

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

《金属塑性加工原理》试题及答案

、简述“经典塑性力学”的主要内容,以及“现代塑性力学”的发 展概况(选2?3个发展方向加以简单介绍) (20 分) 答:“经典塑性力学”的主要内容 经典塑性理论主要基于凸性屈服面、正交法则和塑性势等概念,描述的是一种均匀连续的介质在外力作用下产生不可恢复的位移或滑移现象的唯象平均。 经典塑性理论主要基于以下三个方面:(1)初始屈服准则;(2)强化准则;(3)流动规则。 经典塑性力学的三个假设 (1)传统塑性势假设。众所周知,传统塑性势是从弹性势借用过来的,并非由固体力学原理导出。因此这是一条假设。按传统塑性势公式,即可得出塑性主应变增量存在如下比例关系: 式中Q为塑性势函数。可推证塑性主应变增量与主应力增量有如下关系 d吕二[ApJsxjdu; (;= 1.Z 3) 由式(1)知式⑵ 中矩阵[Ap]中的各行元素必成比例,即有 L 2. 3) 且[Ap]的秩为1,它只有一个基向量,表明这种情况存在一个势函数。由式(1)或式(2)或传统塑性势理论,都可推知塑性应变增量的方向只与应力状态有关,而与应力增量无关,所以它的方向可由应力状态事先确定。 传统塑性势假设数学上表现为[Ap]中各行元素成比例及[Ap]的秩为1, 物理上表现为存在一个势函数,且塑性应变增量方向与应力具有唯一性。 (2)关联流动法则假设,假设屈服面与塑性势面相同。 无论在德鲁克塑性公设提出之后还是之前,经典塑性力学中都一直引 用这条假设。对于稳定材料在每一应力循环中外载所作的附加应力功为非负,即有 0 ( ij ij0门ij 0⑷ lj 式(4)本是用来判断材料稳定性的,而并非是普遍的客观规律。然而有人错误地认为德鲁克公设可依据热力学导出,即应力循环中弹性功为零,塑性功必为非负,因而式⑷成立。按功的定义,应力循环中,外载所作的真实功应为 式(5)表明,应力循环中只存在塑性功,并按热力学定律必为非负。由 式(5)还可看出,真实功与起点应力ij无关。由此也说明附加应力功并非

金属塑性加工

单日志页面显示设置网易首页 网易博客 金属塑性加工 默认分类 2008-07-07 18:27 阅读620 评论0 字号:大中小 绪论 一、金属塑性加工及其分类 金属塑性加工是使金属在外力(通常是压力)作用下,产生塑性变形,获得所需形状、尺寸和组织、性能的制品的一种基本的金属加 工技术,以往常称压力加工。 金属塑性加工的种类很多,根据加工时工件的受力和变形方式,基本的塑性加工方法有锻造、轧制、挤压、拉拔、拉深、弯曲、剪切等几类(见表0-1)。其中锻造、轧制和挤压是依靠压力作用使金属发生塑性变形;拉拔和拉深是依靠拉力作用发生塑性变形;弯曲是依靠弯矩作用使金属发生弯曲变形;剪切是依靠剪切力作用产生剪切变

形或剪断。锻造、挤压和一部分轧制多半在热态下进行加工;拉拔、拉深和一部分轧制,以及弯曲和剪切是在室温下进行的。 1.锻造靠锻压机的锻锤锤击工件产生压缩变形的一种加工方法,有自由锻和模锻两种方式。自由锻不需专用模具,靠平锤和平砧间工件的压缩变形,使工件镦粗或拔长,其加工精度低,生产率也不高,主要用于轴类、曲柄和连杆等单件的小批生产。模锻通过上、下锻模模腔拉制工作的变形,可加工形状复杂和尺寸精度较高的零件,适于大批量的生产,生产率也较高,是机械零件制造上实现少切削或 无切削加工的重要途径。 2.轧制使通过两个或两个以上旋转轧辊间的轧件产生压缩变形,使其横断面面积减小与形状改变,而纵向长度增加的一种加工方法。根据轧辊与轧件的运动关系,轧制有纵轧、横轧和斜轧三种方式。 (1)纵孔两轧辊旋转方向相反,轧件的纵轴线与轧辊轴线垂直,金属不论在热态或冷态都可以进行纵轧,是生产矩形断面的板、带、箔材,以及断面复杂的型材常用的金属材料加工方法,具有很高的生产率,能加工长度很大和质量较高的产品,是钢铁和有色金属板、带、箔材以及型钢的主要加工方法。 (2)横轧两轧辊旋转方向相同,轧件的纵轴线与轧辊轴线平衡,轧件获得绕纵轴的旋转运动。可加工加转体工件,如变断面轴、丝杆、周期断面型材以及钢球等。

材料加工新技术与新工艺重点资料

一、绪论 1)材料与新材料的概念,生产特点及分类 材料:人类用以制造用于生活和生产的物品、器件、构件、机器以及其他产品的物质,也可简单定义为:材料是可以制造有用器件的物质。 新材料:新出现或正在发展之中的具有优异性能或特定功能的材料,或在传统材料基础上通过新技术处理获得性能明显提高或产生了新功能的材料。 2)材料的作用与地位 1,自20世纪70年代,人们就把信息、能源和材料誉为人类文明的三大支柱,把材料的重要性提高到一个前所未有的高度。2,20世纪80年代又把新材料技术与信息技术、生物技术一起列为高新技术革命的重要标志;事实上,新材料的研究、开发与应用反映着一个国家的科学技术与工业化水平。3,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展和突破为前提。 3)材料技术的概念及其分类 材料技术:可以理解为是关于材料的制备、成形与加工、表征与评价,以及材料的使用和保护的知识、经验和诀窍;从学科的观点来考虑,将材料科学和其他相关学科(如计算机、机械、自动控制)的知识应

用于材料(制备)生产和使用的实际,以获得所需的材料产品、提高材料的使用效能的技艺。分类:(1)制备技术;(2)成形与加工技术;(3)改质改性技术;(4)防护技术;(5)评价表征技术;(6)模拟仿真技术;(7)检测与监控技术。 4)材料加工技术的分类及材料科学与工程要素 按照传统的三级学科进行分类,材料加工技术(方法)包括机加工(车钻刨铣磨等)、凝固加工(铸造)、粉末冶金、塑性加工(压力加工)、焊接(连接)、热处理等。 按照被加工材料在加工时所处的相态不同进行分类,材料加工技术包括气态加工、液态加工(凝固成形)、半固态加工、固态加工。 一般认为,现代材料科学与工程由四个基本要素组成:即材料的成分与结构、性质、制备与加工工艺、使用性能,它们之间形成所谓的四面体关系;材料的制备与加工与材料的成分和结构、材料的性质一起,构成决定材料使用性能的最基本的一大要素,也充分反映了材料制备与加工技术的重要作用和地位 发展趋势:过程综台、技术综合、学科综台。 主要特征:(1)性能设计与工艺设计的一体化;(2)在材料设计、制备、成形与加工处理的全过程中对材料的组织性能和形状尺寸进行精确控制 发展方向:(1)常规材料加工工艺的短流程化和高效化;(2)发展先进

金属塑性加工原理考试总复习

金属塑性加工原理考试 总复习 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

《金属塑性加工原理》考试总复 习 一、 填空题 1. 韧性金属材料屈服时, 米塞斯 准则较符合实际的。 2. 描述变形大小可用线尺寸的变化与方位上的变化来表示,即线应变(正应变)和切应变(剪应变) 3. 弹性变形时应力球张量使物体产生体积变化,泊松比5.0<ν 4. 在塑形变形时,需要考虑塑形变形之前的弹性变形,而不考虑硬化的材料叫做理想刚塑性材料。 5. 塑形成形时的摩擦根据其性质可分为干摩擦,边界摩擦和流体摩擦。 6. 根据条件的不同,任何材料都有可能产生两种不同类型的断裂:脆性断裂和韧性断裂。 7. 硫元素的存在使得碳钢易于产生 热脆 。 8. 塑性变形时不产生硬化的材料叫做 理想塑性材料 。 9. 应力状态中的 压 应力,能充分发挥材料的塑性。 10. 平面应变时,其平均正应力m 等于 中间主应力2。 11. 钢材中磷使钢的强度、硬度提高,塑性、韧性 下降 。 12. 材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫 超塑 性 。 13. 材料经过连续两次拉伸变形,第一次的真实应变为1=0.1,第二次的真实应 变为2=0.25,则总的真实应变= 14. 固体材料在外力作用下发生永久变形而不破坏其完整性的能力叫材料的 塑 性 。

15.塑性成形中的三种摩擦状态分别是:干摩擦、流体摩擦、边界摩擦 16.对数应变的特点是具有真实性、可靠性和可加性。 17.就大多数金属而言,其总的趋势是,随着温度的升高,塑性升高。 18.钢冷挤压前,需要对坯料表面进行磷化、皂化处理。 19.为了提高润滑剂的润滑、耐磨、防腐等性能常在润滑油中加入的少量活性物 质的总称叫添加剂。 20.对数应变的特点是具有真实性、可靠性和可加性。 21.塑性指标的常用测量方法拉伸实验,扭转实验,压缩试验。 22.弹性变形机理原子间距的变化;塑性变形机理位错运动为主。 23.物体受外力作用下发生变形,变形分为变形和变化。 24.当物体变形时,向量的长短及方位发生变化,用线应变、切应变 来描述变形大小 25.当物体变形时,向量的长短及方位发生变化,用线应变、切应变来 描述变形大小。 26.在研究塑性变形时,即不考虑弹性变形,又不考虑变形过程中的加工硬化的 材料称为理想刚塑性材料 27.材料的塑性变形是由应力偏张量引起的,且只与应力张量的第二不变量 有关。 28.金属塑性加工时,工具与坯料接触面上的摩擦力采用库伦摩擦条件、最大 摩擦条件、摩擦力不变条件三种假设。 29.轴对称条件下,均匀变形时,径向的正应变等于周向的正应力。

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

材料加工前沿讲座

材料加工前沿讲座学习报告 院系:研究生学院材料系 班级: 1003 学号: S2******* :雷尚军 2011/6/15

讲座一:快速原型制造技术 一、快速原型制造技术的产生 ?全球市场一体化、制造业竞争激烈,产品的开发速度成为市场竞争的主要矛盾。 ?从技术发展角度,计算机、CAD、材料、激光等技术的发展和普及为新的制造技术的产生奠定了基础。 ?快速原型制造技术于20世纪80年代后期产生于美国,并很快扩展到日本及欧洲,与20世纪90年代初引入我国,是近二十年制造领域的一项 重大突破。 ?借助计算机、激光、精密传动、数控技术等现代手段,将CAD和CAM集成于一体,根据计算机建立的三维模型,能在很短的时间内直接制造出 产品样本,使设计工作进入一种全新的境界。 ?改善了设计过程中的人机交流,缩短了产品开发周期,加快了产品更新换代速度,降低企业投资新产品的风险。 二、快速原型制造技术的基本原理 传统的零件加工过程是先制造毛坯,然后经过切削加工,从毛坯上去除多余的材料得到零件的形状和尺寸,这种方法称之为材料去除制造。 快速原型制造技术彻底摆脱了传统的“去除”加工法,而是基于“材料逐层堆积”的制造理念,将复杂的三维加工分解为简单的材料二维添加的组合过程,它能在CAD模型的直接驱动下,快速制造任意复杂形状的三维实体,是一种全新的制造技术。其成型过程为: (1)建立零件的三维CAD模型 (2)模型Z向离散(分层) (3)逐层堆积制造 快速原型工艺流程 三、快速原型制造技术的的典型方法 1、光固化成型工艺(Sterelithography Apparatus)又称为立体光刻,简

金属塑性加工工艺

金属塑性加工工艺综述 摘要:塑性加工技术随着科技的不断进步和生产率的提高,其应用越来越广泛、越来越引起人们的重视。金属材料经过不同的加工过程会导致金相组织的不同变化,进而影响材料的机械性能。本文分析了当前金属塑性加工的各种新技术, 并对其进行了归类和分析, 预测了金属塑性加工技术的发展趋势。 关键词: 塑性加工; 新技术; 发展趋势 1 引言 塑性加工技术是指包括锻造、冲压、挤压、轧制及其他以材料发生永久变形为特点的材料加工技术。塑性加工过程是在一定外力( 载荷) 和边界条件诸如加载方式、加载速度、约束条件、几何形状、接触摩擦条件、温度场等作用下对材料进行“力”处理和“热处理”的过程, 从而使材料发生所希望的几何形状的变化( 成形) 与组织性能的变化。现代塑性加工业是制造业的一个重要组成部分。随着国民经济的健康持续发展, 塑性加工技术迎来了空前的发展机遇, 同时也面临诸多挑战。 2 塑性加工新技术 目前科学技术面临着巨大的变革。通过与计算机的紧密结合, 数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性加工相关联的技术发展速度之快, 学科领域交叉之广是过去任何时代所无法比拟的。塑性加工新工艺和新设备如雨后春笋般地涌现, 把握塑性加工技术的现状和发展前景, 有助于及时研究、推广和应用高新技术, 推动塑性加工技术的持续发展。 2.1 基于新能源的塑性成形新技术 激光、电磁场、超声波和微波等新能源的应用为塑性加工提供了新的方法。 激光热应力成形是利用激光扫描金属薄板, 在热作用区域内产生强烈的温度梯度, 引起超过材料屈服极限的热应力, 使板料实现热塑性变形。激光冲压成形是在激光冲击强化基础上发展起来一种全新的板料成形技术, 其基本原理是利用高功率密度、短脉冲的强激光作用于覆盖在金属板料表面上的能量转换体, 使其汽化电离形成等离子体, 产生向金属内部传播的强冲击波。由于冲击波压力远远大于材料的动态屈服强度, 从而使材料产生屈服和冷塑性变形。电磁成形工艺是利用金属材料在交变电磁场中产生感生电流( 涡流) , 而感生电流又受到电磁场的作用力, 在电磁力的作用下坯料发生高速运动而与单面凹模贴模产生塑性变形。电磁成形适用于薄壁板料的成形、不同管材间的快速连接、管板连接等加工过程, 是一种高速成形工艺。 超声塑性成形是对变形体或工装模具施加高频振动, 坯料与工装模具之间的摩擦力可以显著降低, 引起坯料变形阻力和设备载荷显著降低, 并且还能大幅度提高产品的质量和材料成形极限, 因此成为一些特殊新材料的最有效加工途径。管材、线材和棒材的拉拔成形、板料拉深成形都可以采用超声塑性成形技术加工。 有些金属在常温或低温下不易轧制成形, 而采用高温轧制则存在坯料前处理工艺复杂、成品率低, 或金属间易发生反应而形成脆性化合物等缺陷。若采用爆炸成形复合后再用常规轧制法加工则可解决上述问题, 称为爆炸焊接轧制成形法。 2.2 基于新介质的塑性成形新技术 传统的塑性加工都是利用锤头、模具等刚性物体对坯料施加外部载荷, 而液体、气体、黏性物质等新介质在塑性加工中的使用产生了新的成形技术。液压成形技术通过液体压力的直接作用使材料变形, 分为板料液压成形技术、管件液压成形技术与流体引伸技术。由于其成形的构件重量轻、质量好,加上产品设计灵活, 工艺过程简捷, 同时又具有近净成形与绿色制造等特点, 在汽车轻量化领域中获得了广泛的应用。

金属塑性加工原理试题及答案中南大学考试试卷(试题三)

中南大学考试试卷 2003 —— 2004 学年第二学期时间110 分钟金属塑性加工原理课程64 学时4 学分考试形式:闭卷 专业年级材料2001 级总分100 分,占总评成绩70% 一、名词解释(本题8分,每小题2分) 1.最小阻力定律 2.温度效应 3.加工硬化 4.形变热处理 二、填空题(本题10分,每小题2分) 1.金属塑性变形通常经历________、________、_______三个阶段。 2.塑性加工中其工作应力、基本应力、附加应力三者的关系________. 3.根据塑性加工成形时的摩擦性质,摩擦可分为_______、_______、________三种类型。 4.塑性加工润滑剂分为_______、________、________、________几种类型。 5.塑性加工中控制制品的力学性能的两种主要工艺措施是控制________和控制________。 三、判断题(12分) 1.塑性加工时静水压力越大,金属塑性越好,所需的变形力越小.( ) 2.润滑剂的粘度越大,润滑越好。( ) 3.变形织构导致各向异性,纤维组织没有各向异性。( ) 4.细晶超塑性中,应变速率敏感性指数m越大,其塑性越好。() 5.在平辊轧制实验中,对于一个方向具有凹形断面的坏料,无论采用哪种喂料方向都易出现裂纹.() 6.对于塑性比较差的材料,塑性加工要优先选用三向压缩的主应力图与二向压缩一向延伸的主应变图的加工方式。 四、问答题(本题38分,1-6小题第小题3分,7,8小题第小题7分,9小题6分) 1.一点的应力状态的定义是什么?掌握它有何实际意义? 2.平衡方程是以应力偏微分方程形式表达的,实际上应是什么量的平衡? 3.与的差别在哪里? 4.Tresca屈服准则与材料力学中的第三强度理论有何区别? 5.弹性本构方程与塑性本构方程有何区别?由此说明哪个求解更容易?

金属塑性加工

金属塑性加工:指使金属在外力作用下,产生塑性变形,获得所需形状,尺寸和组织性能制品的一种基本的金属加工技术。 轧制:轧件通过两个以上旋或两个旋转辊时产生压缩变形,其横断面面积减小与形状改变,而纵向长度增加的一种加工方法。 全量应变:指反映单元体在某一变形过程终了时的变形大小,其度量基准是变形以前的原始尺寸。 增量应变:指变形过程中某一瞬间阶段的无限小应变,其度量基准是变形过程中某一瞬间尺寸。 简单加载:指单元体的应力张量各分量之间的比值保持不变,按同一比例参量之单调增长,应变主方向与应力主方向重合。Bauschinger效应:在简单压缩下,忽略摩擦影响,得到的压缩实验屈服极限与拉伸试验屈服极限数值基本相等,但是若将拉伸屈服后的试样经卸载并反向加载至屈服,发现反向屈服极限值一般低于初始屈服极限值。同理,先压后拉也有类似现象,这种正向变形软化的现象称做Bauschinger效应。变形力:金属塑性加工时,加工工具使金属产生塑性变形所需加的外力称为变形力。 滑移线:塑性变形区内,最大剪切应力等于材料屈服切应力k 的轨迹线。 汉盖第一定理:同族的两条滑移线与另一族的任意一条滑移线相交于两点的倾角差△φ和静水压力变化量△P均保持不变。 汉盖第二定理:一动点沿某族任意一条滑移线移动时,过该动点起始位置的另一族两条滑移线的曲率变化量等于该点所移动的路程。 有心扇形:滑移线场由一族汇集于一点的辐射线和与之正交的另一族为同心圆弧所构成。 无心扇形:滑移线场由一族为不汇集于一点的直线和一族为不同心的圆弧线所构成的滑移线场。 最小阻力定律:在变形过程中,物体各质点将向着阻力最小的方向移动,即做最小的功,走最捷径的路。 残余应力:塑性变形完毕后保留在变形物体内的附加应力。附加应力:物体不均匀变形受到其整体性限制,而引起物体内相互平衡的应力。 塑性图:表示金属塑性指标的变形温度及加载方式的关系曲线图形,称为塑性状态图或简称塑性图。 非晶机构:指在一定的变形温度和速度条件下,多晶体中的原子非同步地连续地在应力场和热激活的作用下,发生定向迁移的过程。 塑性:指固体金属在外力作用下能稳定地产生永久变形而不破坏其完整性的性能。拉伸,压缩,扭转,轧制模拟试验法。温度效应:塑性变形过程中因金属发热而促进金属的变形温度升高的效果,称为温度效应。 热效应:指变形过程中金属的发热现象。 金属塑性加工有何特点:依靠塑性变形使物质发生转移来实现工件形状和尺寸的变化,不会产生切屑。因而材料的利用率高得多。结构致密,粗晶破碎细化和均匀,性能提升。适用于大批量生产,生产效率高。塑性加工产品的尺寸精度和表面质量较高。设备较庞大,能耗较高。 塑性力学上应力的正负号是如何规定的:对于正应力,正应力的符号以拉伸为正,压缩为负。对于切应力,外法线方向与坐标轴正方向为正面,反之为负面。正面上指向坐标轴正向的切应力为正值,反之为负,负面上指坐标轴负方向的切应力也为正值,反之为负。 金属塑性变形有哪些特点:在塑性变形时,弹性变形依然存在。在塑性变形时,加载卸载过程不同的σ—ξ关系。塑性变形的σ—ξ关系与变形历史或路径有关。σ> σs以后的对应点都可以看成是重新加载时的屈服点,且对σs以后的点加载之后再卸载,再加载,一般存在有为此使的应力小于σs,材料的及一强化现象称为材料的加工硬化。 常见的测量应力-应变曲线的试验有哪些:单向压缩试验曲线,平面应变压缩试验,扭转实验,双向等拉实验,单向拉伸试验 影响金属塑性流动与变形的主要因素有哪些:接触面上的外摩擦,变形区的几何因素,变形物体与工具的形状,变形温度及金属本身性质等。 变形不均匀产生的原因和后果:产生的原因是金属质点的不均匀流动引起的。后果是使物体外形歪扭和内部组织不均匀,而且还使变形体内应力分布不均匀,产生附加应力,由不均匀变形引起附加应力造成许多不良后果。引起变形体的应力状态发生变化,是应力分布更不均匀。造成物体的破坏,使材料变形抗力提高和塑性降低。使产品质量降低。使生产操作复杂。形成残余应力。 减少不均匀变形的主要措施有哪些:正确选定变形的温度-速度制度。尽量减小接触面上外摩擦的有害影响。合理设计加工工具形状。尽可能保证变形金属的成分及组织均匀。 金属的可加工性:不同加工方法进行塑性加工时,工件出现第一条可见裂纹前达到的最大变形量。 Levy-Mises增量理论的基本假设有:材料是刚塑性件,材料符合Mises塑料条件σe=σT。塑性变形时体积不变。塑性应变增量主轴的偏应力主轴相重合。 外摩擦:发生在金属和工具相接触表面之间的,阻碍金属自由流动的摩擦。 干摩擦:指不存在任何外来介质时金属与工具的接触表面之间的摩擦。 工程法的基本要点和基本假设有哪些:把实际变形过程视具体情况的不同看作是平面应变问题和轴对称问题,如平板压缩,宽板轧制等。假设变形体内的应力分布是均匀,仅是一个坐标的函数,这样就可获得近似的平衡微分方程。或直接在变形区内截取单元体假定切面的正应力为主应力且均匀分布,由此建立改单元体的平面微分方程为常微分方程。采用近似的塑性条件,工程法把接触面上的正应力假定为主应力,于是对于平面应变问题,塑性条件 简化接触面上的摩擦,采用两种近似法,库伦摩擦定律,常摩擦定律。不考虑工模受弹性变形的影响,材料变形均质和各向同性等。要点是工程法师一种近似解析法,通过对物体应力状态作一些简化假设,建立以主应力表示的简化平衡微分方程和塑性条件。 多余应变:指物体中某一部位所受的剪切变形对工件的外形变化并没有直接贡献,故通常把这种变形叫做多余应变。多余攻指消耗于多余应变上的能量。 滑移线的主要几何性质有哪些:滑移线为最大切应力等于材料屈服切应力为k的迹线,与主应力迹线相交成π/4角。滑移线场由两族彼此正交的滑移线构成,布满整个塑性变形区。滑移线上任意一点的倾角值与坐标的选择有关,而静水压力p 的大小与坐标的选择无关。沿一滑移线上的相邻两点间静水压力差与相应的倾角差城正比。同族的两条滑移线与另族任意一条滑移线相交两点的倾角差和静水压力变化量均保持不变。一点沿某族任意一条滑移线移动时,过该动点起始位置的另一族两条滑移线的曲率变化量等于该点所移动的路程。同族滑移线必然有个相同的曲率方向。 滑移线的边值问题有哪几种:有特征线问题,特征值问题,混合问题。 滑移线场的应力边界条件有哪些:有四种,自由表面,无摩擦接触表面,粘着摩擦接触表面,滑动摩擦接触表面。 简述塑性加工工艺润滑剂选择的基本原则:润滑剂应有良好的耐压性能。应具有良好的耐高温性能。有冷却模具的作用。不应对金属和模具有腐蚀作用。对人体是无害,不污染环境。要求使用清理方便,来源方便丰富,价格便宜。 冷变形金属显微组织的变化:纤维组织,原来等轴的晶粒沿着主变形方向被拉长,金属中的夹杂物和第二相粒子也沿延伸方向拉长或链状排列。亚结构, 简述塑性加工工件残余应力的来源及减小或消除的措施:来源,塑性变形完后保留在变形物体内的附加应力所形成的。措施:减小材料在加工处理过程中产生不均匀变形。对加工件进行热处理。进行机械处理:使零件彼此碰撞。用木追打击表面。表面辗压或压平。表面拉制。在模子中作表面校形或精压。 简述塑脆性转变温度及其影响因素:规定塑性下降百分之五十的点的温度为塑性-脆性转变温度。影响对于因素:对于一定材料来说,脆性转变温度高,表征该材料脆性趋势愈大。变形速度的影响,在一定条件下,高于临界变形程度,便产生脆性断裂,应变速度的提高相当于变形温度降低的效果。应力状态的影响,拉应力状态越强,材料的脆性转变温度越高,脆性趋势越大。金属材料的化学成分和组织状态的影响。

相关文档
最新文档