Sun ONE Directory Serve

Sun ONE Directory Serve
Sun ONE Directory Serve

Sun ONE Directory Server简明安装配置步骤

支持操作系统:windows 2003server

1、准备windows服务器

确定服务器tcp端口389、390ldap默认服务器均使用389端口提供390

端口用于Starting Directory Server Console

可根据实际

8899

将server.domain在%SYSTEM%/drivers/etc/hosts

DNS

在本机hosts

server.domain解析到IP地址,

找到%SYSTEM%/drivers/etc windows server 2003

C:\WINDOWS\system32\drivers\etc hosts

# Copyright (c) 1993-1999 Microsoft Corp.

#

# This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

#

# This file contains the mappings of IP addresses to host names. Each

# entry should be kept on an individual line. The IP address should

# be placed in the first column followed by the corresponding host name.

# The IP address and the host name should be separated by at least one

# space.

#

# Additionally, comments (such as these) may be inserted on individu # lines or following the machine name denoted by a '#' symbol.

#

# For example:

#

# 102.54.94.97 https://www.360docs.net/doc/a312785046.html, # source server

# 38.25.63.10 https://www.360docs.net/doc/a312785046.html, # x client host

127.0.0.1 localhost

192.168.0.233 https://www.360docs.net/doc/a312785046.html,

保存即可.

https://www.360docs.net/doc/a312785046.html,,如下所有配置均以该目录服务为示例。

确定可以解析https://www.360docs.net/doc/a312785046.html,

双击setup.exe

4、在Sun ONE Directory Server中添加用户信息

Sun Jav TM System Server Console 5.2

AAA SERER 中使用的LDAP 的login的值是管理员DN:

1、在LDAP服务器中,开始——》程序——》Sun Java(TM) System Server Console

5.2 ,如下图所示:

在该图中,可查看到【端口*】46382 。

2、在上图中双击红色标记区域的“Directory Server”,打开后点击选项卡

“Directory”,如下图所示:

在该图中,如图所示找到“admin”,图片最下方显示的是管理员DN,如下:【管理员DN* 】uid=admin,ou=Administrators,ou=TopologyManagement,o=NetscapeRoot

3、右击“dc=testad,dc=local”,New——》User,新建一个用户p11。

在上图中,右侧红色标记区域为基准DN。

【基准DN*】dc=testad,dc=local

锂电池充电电路

所有的 输入关键字 联系我们 | TI 全球网站: 中国 (简体中文) | my.TI 登录 返回目录页 先进的锂电池线性充电管理芯片BQ2057及其应用 北京理工大学机电工程学院 魏维伟 李杰 摘要:本文介绍美国TI 公司生产的先进锂电池充电管 理芯片BQ2057,利用BQ2057系列芯片及简单外围电 路可设计低成本的单/双节锂电池充电器,非常适用于 便携式电子仪器的紧凑设计。本文将在介绍BQ2057 芯片的特点、功能的基础上,给出典型充电电路的设 计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管 理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或 双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol) 电池的充电需要,同时根据不同的应用提供了MSOP 、 TSSOP 和SOIC 的可选封装形式,利用该芯片设计的 充电器外围电路及其简单,非常适合便携式电子产品 的紧凑设计需要。BQ2057可以动态补偿锂电池组的内 阻以减少充电时间,带有可选的电池温度监测,利用 电池组温度传感器连续检测电池温度,当电池温度超 出设定范围时BQ2057关闭对电池充电。内部集成的 恒压恒流器带有高/低边电流感测和可编程充电电流, 充电状态识别可由输出的LED 指示灯或与主控器接 口实现,具有自动重新充电、最小电流终止充电、低 功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可 选封装及型号,其封装形式如图2-1所示,有MSOP 、

铜铟镓硒(CIGS)薄膜太阳能电池研究

铜铟镓硒(CIGS)薄膜太阳能电池研究 【摘要】:铜铟镓硒Cu(InGa)Se_2(CIGS)薄膜太阳能电池,具有转换效率高、成本低、稳定性好等特点,是最有发展前景的薄膜太阳能电池之一。到目前为止,基于三步共蒸发工艺制备的CIGS薄膜太阳能电池的效率已达19.99%,是所有薄膜太阳能电池中最高的。尽管这种制备方法有很多优点,制备成分均匀的大面积电池却具有难以克服的困难,不能满足大规模产业化的要求。在CIGS薄膜太阳能电池产业化进程中,克服其层间的附着力差,制备符合化学计量比具有黄铜矿结构的多晶薄膜吸收层是必须解决的两个最重要的工艺技术。本论文主要研究一种工艺简单、可控、适合产业化需要的技术工艺,即溅射制备合金预制膜后硒化的制备方法。研究采用的溅射系统,是本中心自行设计研制的三靶共溅设备,阴极大小为3英寸,衬底基座可以旋转,以保证制备薄膜的均匀。首先,在碱石灰玻璃衬底上制备厚度约1微米的钼电极,在溅射过程中通过改变工作气压,使Mo电极具有类似层状结构,消除了内应力的影响。通过扫描电镜分析,薄膜表面具有鱼鳞状结构,从而增加了Mo电极和CIGS吸收层之间的接触面积。Mo电极和玻璃衬底之间,及其和CIGS吸收层之间的附着力得到显著提高。然后,在沉积有Mo电极的玻璃衬底上,通过共溅射的方法制备约700纳米厚度的Cu(InGa)预制层薄膜,靶材采用CuIn和CuGa合金靶。硒化采用低温和高温过程依次进行的2步方法,采用固态硒源,硒化室是一个半密封的石墨盒。通过在高温区保温30分钟,制备出了性能优异的CIGS

吸收层薄膜,具有(112)晶面择优取向,显示明显的黄铜矿单一结构。薄膜表面平整,晶粒大小均匀、排列紧密,晶粒大小达到3到5微米。用化学水浴法,制备厚度约70纳米的CdS过渡层。分别采用醋酸镉和硫尿作为镉源和硫源。研究了ZnS薄膜的制备工艺,对无镉电池的制备做了初步探索。最后用射频磁控溅射的方法,研究了常温下制备透明导电材料IT0和ZnO的制备工艺,研究了溅射功率和溅射气压对薄膜性能的影响。所制备的透明导电薄膜在可见光谱范围内,透过率到达80%到90%,方块电阻达到15Ω/□以下。在CIGS薄膜太阳能中,作为上电极材料,具有广泛的应用前景。通过大量的实验,优化了背电极Mo、吸收层CIGS、过渡层CdS(ZnS)、本征氧化锌i-ZnO和搀杂氧化锌n-ZnO(或者ITO)的制备工艺。最后,制备出了结构为Glass/Mo/CIGS/CdS/i-ZnO/n-ZnO/A1的CIGS电池器件。对器件的性能做了测试分析,在没有减反射层的情况下,转化效率达到7.8%。该研究采用的CIGS薄膜太阳能电池的制备工艺简单、过程容易控制、设备和材料费用低,没有采用剧毒的气源,适合大规模产业化的要求,为以后进一步的研究开发做了技术储备。【关键词】:CIGS薄膜太阳能电池TCO磁控溅射合金靶固态硒源硒化 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2009

基于单片机的太阳能充电器

本科生毕业设计便携式太阳能充电器 2013 年04 月

独创性声明 本人郑重声明:所呈交的毕业设计是本人在指导老师指导下取得的研究成果。除了文中特别加以注释和致谢的地方外,设计中不包含其他人已经发表的研究成果。与本研究成果相关的所有人所做出的任何贡献均已在设计中作了明确的说明并表示了谢意。 签名: 年月日 授权声明 本人完全了解许昌学院有关保留、使用本科生毕业设计的规定,即:有权保留并向国家有关部门或机构送交毕业设计的复印件和磁盘,允许毕业设计被查阅和借阅。本人授权许昌学院可以将毕业设计的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编设计。 本人设计中有原创性数据需要保密的部分为(如没有,请填写“无”): 学生签名: 年月日 指导教师签名: 年月日

便携式太阳能充电器 摘要 16到20世纪,随着工业革命的兴起,科学技术的不断发展,人们对自然界中化石能源的索取速度越来越快、数量越来越多。与此同时,化石能源的燃烧对于自然界的生态环境造成了难以弥补的破坏。作为可再生能源,太阳能有着广阔的应用前景,可以成为移动设备供电的有吸引力的能源。当我们外出或旅游时,常常因为手机没电所带来的麻烦而苦恼,但又不能及时找到可以充电的场所,影响了手机的正常使用。为了解决这一问题,本毕业设计介绍一种便携式的太阳能手机充电器,利用单片机控制,实现对移动设备充放电的自由与智能控制。与常规的充电器相比,太阳能充电器必将因为便携式而得到长远的发展。 关键词:能源;太阳能;电池;单片机;便携式

Portable Solar Charger based on Microcontroller Abstract From 16 to 20 century, with the rise of industrial revolution and continuous development of science and technology, people demand a large quantity of fossil energy with increasing speed. At the same time, the burning of fossil energy has caused irreparable damage to the environment. As a renewable energy, solar energy enjoys broad application prospect. Solar power is attractive, because it supplies power for portable devices. When we go out or travel, we are often bothered by the failing power of cellphone. And we can’t find places to charge in time, which affects the normal use of mobile phone. In order to solve this problem, this thesis will introduce a type of portable solar mobile charger, using single-chip microcomputer so that the charge and discharge of mobile devices can be freely and intelligently controlled. Compared with the conventional charger, solar energy charger will definitly have a long-term development for its portable type. Key words: energy;solar energy;battery;intelligent;portable

LT8490锂电池充电器电路设计详解

LT8490 锂电池充电器电路设计详解 标签:LT8490(3) 低功耗(190)电源管理(505) LT8490( $12.5700)是降压升压开关稳压电池充电器,实 现恒流恒压( CCCV )充电模式,适用于大多数电池,包括密封铅酸电池( SLA )、溢流电池、胶体电池和锂电池。片上 逻辑在太阳能应用时提供自动最大功率点跟踪( MPPT),并 具有自动温度补偿功能。主要用在太阳能电池充电器、多种类型铅酸电池充电、锂电池充电器以及电池供电的工业或手持军用设备。 状态和故障引脚含有充电器的信息可以被用来驱动 LED指示灯。该器件采用扁平(高度仅0.75mm)7mm x 11mm 64 引脚QFN 封装。 图1 LT8490 框图 LT8490 主要特性

-VIN 范围:6V?80V - VBAT 范围:1.3V?80V ?单 电感器允许VIN高于,低于或等于VBAT ?自动MPPT,用于太阳能充电?自动温度补偿?无需任何软件或固件开发?从 太阳能电池板或直流电源供电?输入和输出电流监视器销弓 脚?四位一体的反馈回路?同步固定频率: 100kHz?400kHz 的-64 引脚(7mm X 11mm x 0.75mm 高度)QFN 封装LT8490 应用?太阳能电池充电器?多种铅酸蓄电池充电?锂离子电池充电器?电池供电工业产品或便携式军用设备 图2 LT8490 27.4V 锂电池充电器电路图 DC2069A( $195.9800)-LT8490 演示板高效率MPPT 电池充电器控制器17V?54V ,最高200W 太阳能电池板的输入电压。12V SLA 电池,最高16.6A 充电电流。演示电路2069A采用了LTR8490 (高性能降压-升压型转换器),实现了最大功率点跟踪功能和灵活的充电特性,适用于大多数类型的电池,如水淹电池,密封铅酸电池和锂离子电池,可在输入电压高于、低于或等于电池电压的情况下工作。 该演示板配置为17V~54V 的输入电压范围,电源可以 是太阳能电池板36?72单元(最高200W),或直流电压源。 提供两种输入接口。LTC4359($2.5500)理想的二极管控制器可以保护直流电源的输出(不受太阳能电池板回流的影响)这使得,例如在 24VDC 电源接通的同时,又可以使具有更高的电压的太阳能电池板,被用于对电路供电。

CN3063 CN3065和CN3082利用太阳能对电池充电

利用太阳能板对电池充电的应用 本文主要讨论太阳能电池的工作原理和电气输出特性,以及利用CN3063、CN3065和CN3082这三款芯片利用太阳能为电池充电的解决方案。 太阳能电池的I-V 特性 太阳能电池一般由p-n 结组成,p-n 结中的光能(光子)通过导致电子和空穴的重新组合而产生电流。由于p-n 结的特性类似于二极管的特性,我们一般以如图1中所示的电路作为太阳 能电池特性的一个简化模型。 IPH 图1 太阳能电池简化电路模型 电流源IPH 产生的电流和太阳能电池上的光量度成正比。在没有负载连接的时候,几乎所有产生的电流都流过二极管D ,其正向电压决定着太阳能电池的开路电压(V OC )。该电压会因各种类型太阳能电池的特性不同而有所差异。但是,对于大多数硅电池而言,这一电压都在0.5V 到0.6V 之间,这也是p-n 结二极管的正常正向电压。 在实际太阳能电池应用中,并联电阻(RP)的泄漏电流很小,而RS 则会产生连接损耗。图2展示了太阳能电池在输出上的特性。由于串联电阻(RS)的原因,电压会稍有下降。然而,有时如果通过内部二极管的电流太小,会导致偏置不够,并且穿过它的电压会随着负载电流的增加而急剧下降。最后,如果所有电流都只流过负载而不流过二极管,输出电压就会变为零。这个电流被称为太阳能电池的短路电流(I SC )。I SC 和V OC 都是定义太阳能工作性能的主要参数之一。因此,太阳能电池被认为是“电流限制”型电源。它的输出电压会随着输出电流的增加而降低,并在负载电流达到短路电流时降为零。 由于太阳能电池的输出电流同光照强度的变化而变化,所以一般不能用太阳能电池给用电系统直接供电,一般需要将太阳能电池的能量先存储在蓄电池中,然后通过电池为系统供电。这就要求充电电路能够适应太阳能电池的电压-电流输出特性。 CN3063、CN3065和CN3082就是根据太阳能电池的电压-电流输出特性而设计的,芯片内部集成有8位模数转换器,它能够根据输入电压源的电流输出能力自动调节充电电流。所以 只要太阳能电池的开路电压V OC 在4.35V~6V 之间, 那么CN3063、CN3065和CN3082就可以对电池进行充电。而且用户不需要考虑最坏情况,只要根据最好情况设置充电电流就可以了,最大限度地利用了输入电压源的电流输出能力。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

铜铟镓硒薄膜太阳能电池的研究进展及展望

铜铟镓硒薄膜太阳能电池的研究进展及展望 摘要:铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的 综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电 池的特性和竞争优势;介绍了国内外在铜铟镓硒薄膜太阳能电池领域的研究现状; 最后探讨了铜铟镓硒薄膜太阳能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1 铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的[1]。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大[2]。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以高效晶体硅电池为主。但向薄膜

关于编制铜铟镓硒CIGS薄膜太阳能电池项目可行性研究报告编制说明

铜铟镓硒CIGS薄膜太阳能电池项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.360docs.net/doc/a312785046.html, 高级工程师:高建

关于编制铜铟镓硒CIGS 薄膜太阳能电池项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国铜铟镓硒CIGS薄膜太阳能电池产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5铜铟镓硒CIGS薄膜太阳能电池项目发展概况 (13)

中国铜铟镓硒(CIGS)薄膜太阳能电池未来发展趋势报告

2010-2012年中国铜铟镓硒(CIGS)薄膜太阳能电池市场全景调查及未来发展趋势报告 报告简介 报告目录、图表部份 目录 第一章铜铟镓硒(CIGS)薄膜太阳能电池概述 1 第一节太阳能电池的分类 1 一、硅系太阳能电池 1 二、多元化合物薄膜太阳能电池 3 三、聚合物多层修饰电极型太阳能电池 3 四、纳米晶化学太阳能电池 5 第二节铜铟硒(CIS)薄膜太阳能电池介绍7 一、CIS太阳电池的结构7 二、CIS太阳电池的特点7 三、生产高效CIS太阳电池的难点8 第三节铜铟镓硒(CIGS)薄膜太阳能电池介绍8 一、CIGS太阳能电池基本概念8 二、CIGS太阳电池的结构9 三、CIGS薄膜太阳电池的优势9 四、CIGS薄膜三种制备技术的特点10 第二章2008-2009年世界CIGS薄膜太阳能电池产业发展状况分析12 第一节2008-2009年世界薄膜太阳能电池的发展分析12 一、全球薄膜太阳能电池产业迅速发展12 二、三种薄膜太阳能电池进入规模生产12 三、薄膜太阳能电池企业纷纷布局14 第二节2008-2009年世界CIGS薄膜太阳能发展概况14

二、全球CIGS电池发展现状16 三、全球铜铟镓硒太阳能电池领导厂商发展概况19 第三节2009-2012年世界CIGS薄膜太阳能电池产业发展趋势分析21 第三章2008-2009年世界主要国家CIGS薄膜太阳能电池发展分析23 第一节2008-2009年世界CIGS薄膜太阳能企业发展动态23 一、IBM与TOK将共同开发新型CIGS太阳能电池23 二、德国SOLIBRO开始提供CIGS太阳能电池23 三、IBM涂布法CIGS太阳能电池转换效率突破12.8%24 四、VEECO公司CIGS薄膜太阳能电池设备获得订单24 五、亚化宣布进军CIGS薄膜太阳能领域25 第二节2008-2009年美国CIGS薄膜太阳能电池发展分析25 一、美国化合物太阳能电池专利权人分析25 二、美国CIGS化合物太阳能电池研发状况26 三、美国CIGS化合物太阳能电池厂商商业化动向27 四、2008年美国CIGS电池转换效率再创历史新高28 第三节2008-2009年日本CIGS薄膜太阳能研发状况28 一、日本研制成功CIGS太阳电池新制法28 二、日本采用CIGS太阳电池技术成功试制图像传感器29 三、日本量产型CIGS型太阳电池模块光电转换率实现15.9% 30 四、日本柔性CIGS太阳能电池单元转换率达全球之首31 第四章2008-2009年国外CIGS太阳电池主要生产企业运营透析32 第一节美国GLOBAL SOLAR ENERGY INC.(GSE)32 一、公司概况32 二、2008年GSE美国CGIS太阳能电池生产厂投产32 三、世界最大CIGS薄膜太阳能电池阵在GSE投入使用32 第二节日本的HONDA SOLTEC CO.,LTD 33 一、公司概况33 二、本田SOLTEC开发出CIGS型太阳能电池33

智能太阳能充电电路设计

智能太阳能充电电路设计 针对油田无线示功仪及其无线网络节点的供电问题,采用开关电源技术实现了太阳能组件电压变化或负载波动时自动调节占空比的供电网络,运用自动控制技术设计了过电压保护电路、过放电保护电路与应急充电电路等,采用充电管理技术实现了锂电池充电及电压调节电路,根据光敏传感器输出差值比较电压设计了太阳自动跟踪控制器。该太阳能充电电路思路新颖,在应用上是一种突破,工作效率达到92%,输出电压精度为98%,系统运行一年来,工作性能安全、稳定。应用证明具有较高的实用和推广价值。 随着无线技术的发展,无线网络技术越来越多投入到实际应用中,无线传感器网络一般分布范围较广,架设供电线路,投资大,维护成本高。如采取干电池方式供电,则每个节点的电源供电能力有限,对每个节点更换电池不仅费时、费力,增加成本,而且影响工作效率。能否稳定持续的供电,成为制约油田无线示功仪及其无线网络发展的一个重要因素,太阳能技术的发展使供电方式产生了飞跃式的发展,已经成为油田无线示功仪及其中继网络节点供电方式的发展方向。本文拟对油田监测示功仪及中继网络节点设计一种智能化、免维护型的太阳能充电电路,为无线网络节点供电。该设计电路具有以下特点:①基于开关电源技术设计的充电网络具有自动调节占空比的功能,具有很宽的输入电压范围。②采用线性电源管理芯片,用先预充2恒流2恒压的充电方式完成整个充电过程。③采用低噪声、高速度的CMOS型电压调节器,具有高精度的恒压、恒流输出。④充电过压保护、锂电池过放电保护功能,使锂电池充、放电安全可靠。⑤自动跟踪太阳的功能,太阳能采集板始终保持对准太阳,充分利用太阳能。 1系统设计 现有的光伏电池,单体的输出电压都很低(在1V以下),本设计中,将多个光伏电池相串联,组成太阳能组件。通过可以自动调节占空比的供电网络保证在光照强度变化和负载变化时,输出电压基本稳定,为充电管理芯片提供稳定的电压输入。通过对供电网络的副边电压监测,保护充电管理芯片不因电压过高而损坏。通过对电池两端的电压监测,保证锂电池不会因过放电而损坏。由于无线示功仪及其中继网络节点的供电要求是313V,采用低噪声、高速度的CMOS 型电压调节器。在自动跟踪控制器作用下,始终保持全天候跟踪太阳。为了防止因连续阴雨天而导致的太阳能供电不足,设计应急充电电路,充电期间,无线示功仪及其节点正常运行。具体系统设计模块如图1所示。

铜铟镓硒薄膜太阳能电池的现状及未来

铜铟镓硒薄膜太阳能电池的现状及未来学术界和产业界普遍认为太阳能电池的发展已经进入了第三代。第一代为单晶硅太阳能电池,第二代为多晶硅、非晶硅等太阳能电池,第三代太阳能电池就是铜铟镓硒CIGS(CIS中掺入Ga)等化合物薄膜 太阳能电池及薄膜Si系太阳能电池。 铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电池的特性和竞争优势;介绍了国内外在铜铟 镓硒薄膜太阳能电池领域的研究现状;最后探讨了铜铟镓硒薄膜太阳 能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达

105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1、铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以

锂电池充电电路及原理简介

锂离子电池的原理及充电器 锂离子电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,放电时,锂变成锂离子,脱离电池阳极,到达锂离子电池阴极。锂离子在阳极和阴极之间移动,电极本身不发生变化。这是锂离子电池与金属锂电池本质上的差别。锂离子电池的阳极为石墨晶体,阴极通常为二氧化锂。充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,所以这种电池叫做锂离子电池。 一、锂离子电池的充放电特性 500mAh的AA型锂离子电池的充放电特性曲线如图1。单只锂离子电池的充电电压最好保持在4.1V+50mV,充电电流通常限制在1C(500mA)以下,否则会造成锂离子电池永久性损坏。锂离子电池通常采用恒流/恒压充电模式,即先采用1C的恒定电流充电,电池电压不断上升,当上升到4.1V时充电器应立即转入恒压方式(4.1V+50mV),充电电流逐渐减小,当电池充足电时,电流降到涓流充电电流。用此方法,大约两个小时电池可以充足(500mAh)。锂离子电池放电电流不应超过3C(1.5A),单体电池电压不应低于2.2V,否则会造成损坏。采用0.2C的放电电流,电池电压下降到2.7V时,可以放出额定电池容量(500mAh),采用1C的放电电流时,电池能够放出90%的电池容量,另外环境的温度对电池的放电容量也会产生影响,所以规定了锂离子电池放电时的温度为-20℃~+60℃。锂离子电池的一个特点是比较容易显示剩余电量,因为锂离子电池的工作电压随时间徐徐下降,锂离子电池放电起始电压为4.1V(4.2V),放电终止电压为2.5V。 二、锂离子电池的优缺点 优点:1.工作电压高;2.体积小、重量轻、能量高;3.寿命长;4.安全快速充电;5.允许温度范围宽;6.放电电流小、无记忆效应、无环境污染。 缺点:1.与干电池无互换性;2.不能快速充电;3.内部阻抗高;4.工作电压变化大;5.放电速率大,容量下降快,无法大电流放电。 三、锂离子电池充电器 下面介绍一种新型的锂离子电池充电器模块PS1719,它采用恒流/恒压方式控制锂离子电池充电。恒流、恒压调整方便,以充电电流减小到最大电流(恒流)的15%作为充满判别基准,并终止充电。此外还有充电显示和充满显示功能。PS1719模块工作电压为9V,内部结构见图2。 图3给出了PS1719的典型电路图,按图可以组成简单且功能齐全的锂离子电池充电器。

(经典)锂电池过充电_过放_短路保护电路详解

(经典)锂电池过充电_过放_短路保护电路详解 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状

4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响?

锂电池充电电路及电源自动切换电路的设计

BATT BATT-8.4V 图1 锂电池充电电路原理图 输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A 1、充电电流的设置 恒流充电电流由下式决定:CS CH R mV I 200=,取A I CH 25.1=,得 Ω=16.0CS R 选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150 200 200=== 2、充电结束电流的设置 在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定: 6 10 ) 314350(278.1×+×= CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择 在正常工作时,瞬态电感电流是周期性变化的。在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,

随着输入电压的增大而增大。较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。所以电感的纹波电流应该被限制在一个合理的范围内。 电感的纹波电流可由下式估算: )1(1 VCC V V L f I BAT BAT L ?×××= Δ 其中: f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压 在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。 4、电源自动切换电路 VOUT 给后续电路供电 图2 电源自动切换电路 当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

锂电池过充电-过放-短路保护电路详解

本文由https://www.360docs.net/doc/a312785046.html,提供 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右

5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度

相关文档
最新文档