STM32F103串口通信寄存器设置

STM32F103串口通信寄存器设置
STM32F103串口通信寄存器设置

STM32f103寄存器配置串口通信

主程序接收数据,上位机串口发送的数据已回车键结束,单片机接之后将所有数据发回。

#include "stm32f10x_lib.h"

#include "sys.h"

//#include "ioshezhi_jb.h"

unsigned char res; //串口接受数据临时存储

unsigned char enddd=0; //接受完成标志

unsigned int len=0; //数据长度

unsigned char shubiao[200]; //数据存储表,限制长度为200字节

unsigned int t; //通信数据操作for循环控制

unsigned long i=0;

int main()

{

Stm32_Clock_Init(); //系统时钟设置

// io_init(); //io时钟以及输入输出选项设置

RCC->APB2ENR|=0x4000; //开启USART1时钟;○1

RCC->APB2ENR|=0x0004; //开启GPIOA口时钟;○2

GPIOA->CRH&=0xfffff00f; //PA9、PA10IO设置清零

GPIOA->CRH|=0x000008b0; //P9推挽输出,max50MHZ;P10上拉输入

RCC->APB2RSTR|=0x4000; //串口复位○3

RCC->APB2RSTR&=0xbfff; //串口停止复位○4

//USART1->BRR=0x1d4c; //主频72M时,波特率为9600○5 USART1->BRR=0x0ea6; //主频36M时,波特率为9600

// USART1->BRR=0x0139; //主频36M时,波特率为115200

//USART1->CR1|=0x200c; //串口开,发送长度8字节,无校验,发送开,接收开;

USART1->CR1|=0x340c; //串口开,发送长度9字节,偶校验,发送开,接收开;

//(有效数据还是8位长度)○6

while (1)

{

//shuru_init(); //计算输入口的值

if(0x0020==((USART1->SR)&0x0020)) //如果接受到了一个字节的数据○7

{ res=USART1->DR; //读取串口寄存器数据并存在临时位置res○8

if(res!=0x0a){shubiao[len]=res;len++;} //如果该数据不是回车符的最后一个

//字节0x0a,则存入数表

else{if(shubiao[len-1]==0x0d){enddd=1;len--;};}; };

//如果是0x0a,则判断前一个字符是不是0x0d,(回车符ASCII码为0x0a0d)

//是的话则标记接受完成标志eddd并删掉已接受到的前一个字节的数据

if(enddd==1) //如果接受完成了

{for(t=0;t

{ USART1->DR=shubiao[t]; //○9

while((USART1->SR&0X40)==0); //等待当前字节数据发送结束○10

};

enddd=0;

for(t=0;t<=len;t++){shubiao[t]=0;}; //将数表中数据清零

len=0;

};

i++;

// if(i==20000){PC151;}; //程序运行状态指示灯

// if(i==40000){PC150;i=0;};

};

}

寄存器注释:

○1、○2时钟使能寄存器RCC->APB2ENR参考不完全手册P108页面

需要开启的PORTA和USART1的时钟使能位,分别在bit2 和bit14,只要将这两位置1 就可以使能PORTA和USART1的时钟了。寄存器各位功能定义如下:

○3、○4串口复位寄存器RCC->APB2RSTR 参考不完全手册P124页面

串口1 的复位是通过配置APB2RSTR寄存器的第14位来实现的。APB2RSTR寄存器的各位描述如图8.1.1所示。串口1的复位设置位在APB2RSTR的第14位,通过向该位写1复位串口1,写0结束复位。其他串口的复位位在APB1RSTR 里面。

○5波特率设置寄存器USART1->BRR参考不完全手册P100页面

STM32 的每个串口都有一个自己独立的波特率寄存器USART_BRR,通过设置该寄存器就可以达到配置不同波特率的目的。USART_BRR 的最低 4 位(位[3:0])用来存放小数部分DIV_Fraction,紧接着的12 位(位[15:4])用来存放整数部分DIV_Mantissa,最高16 位未使用。

计算方法为:

首先计算DIV =主频/(波特率*16)

比如主频为36MHZ,波特率要设置为115200时,

则DIV=36000000/(115200*16)=19.53125;

整数部分DIV_Mantissa=19=0x13;

小数部分DIV_Fraction=0.53125*16=8.5;取9,即0x9;

故USART1->BRR=0x0139

○6发送接收数据格式以及串口开关设置USART1->CR1 参考中文手册542页

STM32 的每个串口都有3 个控制寄存器USART_CR1~3,串口的很多配置都是通过这3 个寄存器来设置的。这里我们只要用到USART_CR1 就可以实现我们的功能了,该寄存器的各位描述如下图所示:

该寄存器的高18 位没有用到,低14 位用于串口的功能设置。

13.UE 为串口使能位。1:开启串口功能;0:关闭。

12.M 为字长选择位。0:串口数据寄存器USART_DR收发数据长度为8个字长外加1个停止位;1:9位长度,1个停止位

11. 唤醒方式选择位。0:被空闲总线唤醒;1:被地址标记唤醒。(这里默认设置为0) 10.PCE 为校验使能位。0:禁止校验;1:使能校验。

9.PS 为校验位选择。0:偶校验;1:奇校验。

8. PE中断使能。0:禁止产生中断;1:当USART_SR中PE为1时产生串口中断。默认0 7.TXIE为发送缓冲区空中断使能位。1:当USART_SR中的TXE位为1时将产生串口中断。

6. TCIE 为发送完成中断使能位。1:当USART_SR中的TC位为1时将产生串口中断。

5. RXNEIE 为接收缓冲区非空中断使能。1:当USART_SR中的ORE或者RXNE位为1 时

将产生串口中断。

4. 接收缓冲区非空中断使能。0:禁止产生中断;1:当USART_SR中的ORE或者RXNE为

1时,产生串口中断。(这里默认设置为0)

3. TE 为发送使能位。1:开启串口的发送功能。

2. RE 为接收使能位。1:开启串口的接收功能。

1. 接收唤醒。该位用来决定是否把USART置于静默模式。当唤醒序列到来时,硬件会将

其清零。0:接收器处于正常工作模式;1:接收器处于静默模式。

注意:1.在把USART置于静默模式(设置RWU位)之前,USART要已经先接收了一个数据字节。否则在静默模式下,不能被空闲总线检测唤醒。2.当配置成地址标记检测唤醒(WAKE位=1),在RXNE位被置位时,不能用软件修改RWU位。(这里不用管,默认设置为0)

0. 发送断开帧。(这里不用管,默认设置为0)

○7、○10串口状态寄存器USART1->SR参考中文手册540页

串口的状态可以通过状态寄存器USART_SR 读取。USART_SR 的各位描述如下图所示

这里我们关注一下两个位,第5、6 位RXNE 和TC

6. TC为发送完成标志位。当该位被置1时,表示USART_DR 内的数据已经发送完了。如

果设置了这个位的中断,则会产生中断。该位有两种清零方式:1)写USART_DR;2)直接向该位写0。

5. RXNE为读数据寄存器。当该位被置1时,表示USART_DR已经有数据接收到了,并且

可以读出来了。这时候我们要做的就是尽快去读取USART_DR,通过读USART_DR 可以将该位清零,也可以向该位写0直接清除。

○8、○9串口数据存储寄存器USART1->DR参考不完全手册125页

STM32 的发送与接收是通过数据寄存器USART_DR 来实现的,这是一个双寄存器,包含了TDR 和RDR。当向该寄存器写数据的时候,串口就会自动发送,当收到数据的时候,也是存在该寄存器内。该寄存器的各位描述如下图所示

它是由两个寄存器组成的,一个给发送用(TDR),一个给接收用(RDR),该寄存器兼具读和写的功能。TDR 寄存器提供了内部总线和输出移位寄存器之间的并行接口。RDR 寄存器提供了输入移位寄存器和内部总线之间的并行接口。

当使能校验位(USART_CR1 中PCE 位被置位)进行发送时,写到MSB 的值(根据数据的长度不同,MSB 是第7 位或者第8 位)会被后来的校验位取代。当使能校验位进行接收时,读到的MSB 位是接收到的校验位。

调试说明:

数据后面需要敲入回车键之后才能有发送返回,否则不返回数据。

如果无法通信,改变一下串口的波特率,当前用的是9600,不行的话试一下4800或者19200,当前用的是8位数据位,1位停止位,偶校验。

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频 单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY 这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0 即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率) 在PLL(锁相环)程序执行前 内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR 时钟合成寄存器 、REFDV 时钟分频寄存器 、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令 使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构 VCOFRQ[1:0]控制压控振动器VCO的增益 默认值为00 VCO的频率与VCOFRQ[1:0]对应表

05_STM32F4通用定时器详细讲解精编版

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

STM32通用定时器_15-1-6

通用定时器的相关配置 1、预装入(Preload) 预装入实际上是设置TIMx_ARR寄存器有没有缓冲,根据“The auto-reload register is preloaded。Writing to or reading from the auto-reload register accesses the preload register。”可知: 1)如果预装入允许,则对自动重装寄存器的读写是对预装入寄存器的存取,自动重装寄存器的值在更新事件后更新; 2)如果预装入不允许,则对自动重装寄存器的读写是直接修改其本身,自动重装寄存器的值立刻更新; 3)设置方式:TIMx_CR1 →ARPE(1) 2、更新事件(UEV) 1)产生条件:①定时器溢出 ②TIMx_CR1→ UDIS = 0 ③或者:软件产生,TIMx_EGR→ UG = 1 2)更新事件产生后,所有寄存器都被“清零”,注意预分频器计数 器也被清零(但是预分频系数不变)。若在中心对称模式下或DIR=0(向上计数)则计数器被清零;若DIR=1(向下计数)则计数器取TIMx_ARR的值。 3)注意URS(复位为0)位的选择,如下:

如果是软件产生更新,则URS→1,这样就不会产生更新请求 和DMA请求。 4)更新标志位(UIF)根据URS的选择置位。 5)可以通过软件来失能更新事件: 3、计数器(Counter) 计数器由预分频器的输出时钟(CK_CNT)驱动,TIMx_CR1→CEN = 1 使能,注意:真正的计数使能信号(CNT_EN)在 CEN 置位后一个周期开始有效。 4、预分频器(Prescaler) 预分频器用来对时钟进行分频,分频值由TIMx_PSC决定,计数器的时钟频率CK_CNT= fCK_PSC / (PSC[15:0] + 1)。 根据“It can be changed on the fly as this control register

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

stm32定时器的区别

STM32高级定时器、通用定时器(TIMx) 、基本定时器(TIM6和TIM7) 区别? 高级定时器TIM1和TIM8、通用定时器(TIM2,TIM3,TIM4,TIM5) 、基本定时器(TIM6和TIM7) 区别? TIM1和TIM8主要特性TIM1和TIM8定时器的功能包括: ● 16位向上、向下、向上/下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任意数值 ● 多达4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 死区时间可编程的互补输出 ● 使用外部信号控制定时器和定时器互联的同步电路 ● 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器 ● 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较─ 刹车信号输入 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIMx主要功能通用TIMx (TIM2、TIM3、TIM4和TIM5)定时器功能包括: ● 16位向上、向下、向上/向下自动装载计数器 ● 16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536之间的任意数值 ● 4个独立通道:─ 输入捕获─ 输出比较─ PWM生成(边缘或中间对齐模式) ─ 单脉冲模式输出 ● 使用外部信号控制定时器和定时器互连的同步电路 ● 如下事件发生时产生中断/DMA:─ 更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ─ 触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ─ 输入捕获─ 输出比较 ● 支持针对定位的增量(正交)编码器和霍尔传感器电路 ● 触发输入作为外部时钟或者按周期的电流管理 TIM6和TIM7的主要特性TIM6和TIM7定时器的主要功能包括: ● 16位自动重装载累加计数器 ● 16位可编程(可实时修改)预分频器,用于对输入的时钟按系数为1~65536之间的任意数值分频 ● 触发DAC的同步电路注:此项是TIM6/7独有功能. ● 在更新事件(计数器溢出)时产生中断/DMA请求 强大,高级定时器应该是用于电机控制方面的吧

STM32学习笔记通用定时器PWM输出

STM32学习笔记(5):通用定时器PWM输出 2011年3月30日TIMER输出PWM 1.TIMER输出PWM基本概念 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。一般用来控制步进电机的速度等等。 STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出。 1.1PWM输出模式 STM32的PWM输出有两种模式,模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。模式1和模式2的区别如下: 110:PWM模式1-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。 由此看来,模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。 而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式,关于3种模式的具体资料,可以查看《STM32参考手册》的“14.3.9 PWM模式”一节,在此就不详细赘述了。 1.2PWM输出管脚 PWM的输出管脚是确定好的,具体的引脚功能可以查看《STM32参考手册》的“8.3.7 定时器复用功能重映射”一节。在此需要强调的是,不同的TIMx有分配不同的引脚,但是考虑到管脚复用功能,STM32提出了一个重映像的概念,就是说通过设置某一些相关的寄存器,来使得在其他非原始指定的管脚上也能输出PWM。但是这些重映像的管脚也是由参考手册给出的。比如

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

飞思卡尔寄存器整理

S12的输入/输入端口(I/O口) I/O端口功能 可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。 设置I/O口工作方式的寄存器有: DDR、IO、RDR、PE、IE和PS。 DDR:设定I/O口的数据方向。 IO :设定输出电平的高低。 RDR:选择I/O口的驱动能力。 PE:选择上拉/下拉。 IE:允许或禁止端口中断。 PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。 I/O端口设置 1、A口、B口、E口寄存器 (1)数据方向寄存器DDRA、DDRB、DDRE DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。 当DDRA=0、 DDRB=0、 DDRE=0 时A口、B口和E口均为输入口。 否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一位置1时,则该位对应的引脚被设置为输出。 例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff; (2)A口、B口、E口上拉控制寄存器PUCR PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B 口、E口为地址/数据总线时,PUPAE和PUPBE无效。 (3)A口、B口、E口降功率驱动控制寄存器RDRIV RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时, A口、B口、E口输出引脚的驱动功率下降 (4)数据寄存器PORTA、PORTB、PORTE PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。 由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

飞思卡尔单片机外设模块寄存器翻译

PIT 模块译: 翻译来自MC9S12X128英文原文PDF.P347-P357 PIT 块结构图: PIT0中断向量66, 1->67, 2->68, 3->69 PIT 相关寄存器详解: 1、 PITCFLMT :寄存器基本控制和基本时钟加载控制寄存器(8位) 1:PIT 使能 PITSWAI: 0:等待模式下仍然工作 1:等待模式下不工作 PITFRZ: 0:冻结模式下仍然工作 1:冻结模式下不工作 PFLMT1: 写1强制加载基本定时计数器1,写0无效,读也总为0 PFLMT0: 同PFLMT1 2、 PITFLT :PIT 计数器强制加载定时器寄存器(8位)

PFLT[3:0]写1相对应的16位计数寄存器会立即载入相对应的16位计数加载寄存器(PITLDn)中的值。 3、PITCE:PIT通道使能存器(8位) PCE[3:0]:如果PITE已经使能,对寄存器PCEn写1后,每输入一个时钟相对应的计数寄存器 开始递减,写0无效。 4、PITMUX:PIT基本时钟通道选择寄存器(8位) PMUX[3:0]:对PMUXn写1,则对应定时器通道选择基本时钟1作为输入,写0则选择基本时 钟0为输入。 5、PITINTE:PIT定时中断使能寄存器(8位) PINTE[3:0]:对PINTEn写1,当相对应的计数寄存器和基本计数寄存器归0时,产生中断请求,否则无效。 6、PITTF:PIT时钟输出标志寄存器(8位)

7、PITMTLD0-1:PIT基本时钟计数器预加载寄存器(8位) 会被加载到基本定时器n,无论什么时刻PFLMTn置“1”会立即更新基本定时器寄存器的值. 8、PITLD0–3:PIT0-3计数器预加载寄存器(16位) PITLD0-3的值用来加载到相对应计数器0-3的寄存器中。当相应通道计数器归零时,或PITFLT寄存器中相应的强制加载位置“1”时,PITLDn中的值将会被立即加载到PITCNTn。 9、PITCNT0–3:PIT0-3计数寄存器(16位) 变计数周期。

飞思卡尔单片机 DG128 Timer寄存器说明

Timer寄存器说明 1、定时器/计数器系统控制寄存器1(TSCR1) TSCR1 寄存器是定时器模块的总开关,它决定模块是否启动以及在中断等待、BDM 方式下的行为,还包括标志的管理方式。其各位的意义如下: TEN:定时器使能位,此外它还控制定时器的时钟信号源。要使用定时器模块的IC/OC 功能,必须将TEN 置位。如果因为某种原因定时器没有使能,脉冲累加器也将得不到ECLK/64 时钟,因为ECLK/64 是由定时器的分频器产生的,这种情况下,脉冲累加器将不能进行引脚电平持续时间的累加。 0:定时器/计数器被禁止,有利于降低功耗。 1:定时器/计数器使能,正常工作。 TSWAI:等待模式下计时器关闭控制位。 【注意】定时器中断不能用于使MCU 退出等待模式。 0:在中断等待模式下允许MCU 继续运行。 1:当MCU 进入中断等待模式时,禁止计时器。 TSFRZ:在冻结模式下计时器和计数器停止位。 0:在冻结模式下允许计时器和计数器继续运行。 1:在冻结模式下禁止计时器和计数器,用于仿真调试。 【注意】TSFRZ 不能停止脉冲累加。 TFFCA:定时器标志快速清除选择位。 0:定时器标志普通清除方式。 1:对于TFLGl($0E)中的各位,读输入捕捉寄存器或者写输出比较寄存器会自动清除相应的标志位CnF。对于TFLG2($0F)中的各位,任何对TCNT 寄存器($04、$05)的访问均会清除TOF 标志;任何对PACN3 和PACN2 寄存器($22,$23)的访问都会清除PAFLG 寄存器($21)中的PAOVF 和PAIF 位。任何对PACN1 和PACN0 寄存器($24,$25)的访问都会清除PBFLG 寄存器($21)中的PBOVF 位。 【说明】这种方式的好处是削减了另外清除标志位的软件开销。此外,必须特别注意避免对标志位的意外清除。 2、计时器系统控制寄存器2(TSCR2) 寄存器偏移量:$000D

STM32入门篇之通用定时器彻底研究

STM32入门篇之通用定时器彻底研究 STM32的定时器功能很强大,学习起来也很费劲儿,本人在这卡了5天才算看明白。写下下面的文字送给后来者,希望能带给你点启发。在此声明,本人也是刚入门,接触STM32不足10天,所以有失误的地方请以手册为准,欢迎大家拍砖。 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER 做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚ETR:外部触发输入 ETRP:分频后的外部触发输入ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚TIx:应该叫做定时器输入信号x

ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装 载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存 器,称为shadow register(影子寄存器);(详细请参考版主博客 https://www.360docs.net/doc/a612794238.html,/STM32/401461/message.aspx) 2、输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。(具体也请参考版主博客 https://www.360docs.net/doc/a612794238.html,/STM32/263170/message.aspx ) 3、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、向下、中央对齐。通俗的说就是0—ARR、ARR—0、0—(ARR-1)—ARR—1. 三、时钟源的选择 这个是难点之一。从手册上我们看到共有三种时钟源: 1、内部时钟。 也就是选择CK_INT做时钟,这个简单,但是有一点要注意,定 时器的时钟不是直接来自APB1或APB2,而是来自于输入为

飞思卡尔MC9S12XET256 SCI串口寄存器说明

串口寄存器说明 该模块指南提供了串行通信接口(SCI)模块概述。 SCI的允许与外围设备和其他CPU异步串行通信。 1.1 SCI包括这些特征: ?全双工或单线运行 ?标准标记/空间不归零(NRZ)格式 ?可选的IrDA1.4返回到零倒置(RZI)与可编程脉冲宽度格式 ?13位的波特率选择 ?可编程8位或9位数据格式 ?分别使能发射机和接收机 ?可编程极性对发射机和接收机 ?可编程发送器输出校验 ?两个接收器唤醒的方法: -唤醒空闲线 - 地址标志唤醒 ?中断驱动的操作有八个标志: -发送器空 - 传输完成 - 接收器满 - 空闲接收器输入 - 接收器溢出 -噪声误差 -帧错误 - 奇偶错误 - 接收有效边缘唤醒 - 发送冲突检测支持LIN -间隔检测支持LIN ?接收帧错误检测 ?硬件奇偶校验 ?1 / 16位时间噪声检测 1.2 操作模式 SCI的功能相同在正常、特殊和仿真模式。它有两种低功耗模式,等待和停止模式。 ?运行模式 ?等待模式 ?停止模式 1.3 寄存器说明 1、波特率控制寄存器(SCIBDH、SCIBDL) SCIBDH和SCIBDL一起构成了一个16位的波特率控制寄存器。SBR12~~SBR0为波特率常数。

IREN:红外调制模式使能位 1 使能 0 禁止 TNP[0..1]:窄脉冲发射位,这些位使能SCI是否能发送一个1 / 16,3 /16,1/ 32或1 / 4的窄脉冲。见表20-3。 SBR[0..12]:波特率设置位 When IREN = 0 then, SCI baud rate = SCI bus clock / (16 x SBR[12:0]) When IREN = 1 then, SCI baud rate = SCI bus clock / (32 x SBR[12:1]) 【说明】波特率发生器在复位后是禁止的,在设置TE、RE(在SCICR2寄存器中)后才会工作。当(SBR[12:0] = 0 and IREN = 0) 或者(SBR[12:1] = 0 andIREN = 1),波特率发生器不工作。 【注意】在未写入SCIBDL,写SCIBDH没有反应。一般地,设置IREN=0,SR=52(总线频率8MHz),波特率为9600。 2、控制寄存器(SCICR1) 一般此寄存器可默认设置。

STM32通用定时器

STM32通用定时器 一、定时器的基础知识 三种STM32定时器区别 通用定时器功能特点描述: STM3 的通用 TIMx (TIM2、TIM3、TIM4 和 TIM5)定时器功能特点包括: 位于低速的APB1总线上(APB1) 16 位向上、向下、向上/向下(中心对齐)计数模式,自动装载计数器(TIMx_CNT)。 16 位可编程(可以实时修改)预分频器(TIMx_PSC),计数器时钟频率的分频系数 为 1~65535 之间的任意数值。 4 个独立通道(TIMx_CH1~4),这些通道可以用来作为: ①输入捕获 ②输出比较 ③ PWM 生成(边缘或中间对齐模式) ④单脉冲模式输出 可使用外部信号(TIMx_ETR)控制定时器和定时器互连(可以用 1 个定时器控制另外一个定时器)的同步电路。 如下事件发生时产生中断/DMA(6个独立的IRQ/DMA请求生成器): ①更新:计数器向上溢出/向下溢出,计数器初始化(通过软件或者内部/外部触发) ②触发事件(计数器启动、停止、初始化或者由内部/外部触发计数) ③输入捕获 ④输出比较 ⑤支持针对定位的增量(正交)编码器和霍尔传感器电路 ⑥触发输入作为外部时钟或者按周期的电流管理 STM32 的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和 PWM)等。 使用定时器预分频器和 RCC 时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。 STM32 的每个通用定时器都是完全独立的,没有互相共享的任何资源。 定时器框图:

倍频得到),外部时钟引脚,可以通过查看数据手册。也可以是TIMx_CHn,此时主要是实现捕获功能; 框图中间的时基单元 框图下面左右两部分分别是捕获输入模式和比较输出模式的框图,两者用的是同一引脚,不能同时使用。

飞思卡尔寄存器使用

PLLSEL:选定锁环位 1 选定锁相环时钟0 选定外部时钟 PSTP:选定伪停止位伪停止模式下振荡器(工作1)/(停止0) SYSWAI:选定时钟停止位等待模式下系统时钟(停止1)/(继续工作0) ROAWAI:等待模式下降低振荡器放大倍数位 1 等待模式下降低振荡器放大倍数 0 等待模式下振荡器正常放大倍数 PLLWAI:等待模式下锁相环停止工作位 1等待模式下锁相环停止工作 0等待模式下锁相环正常工作 CWAI:等待模式下内核时钟停止工作位 1 等待模式下内核时钟停止工作 0 等待模式下内核时钟正常工作 RTIWAI:等待模式下实时时钟停止工作位 1 等待模式下实时时钟停止工作 0 等待模式下实时时钟正常工作 COPWAI:等待模式下看门狗时钟停止工作位 1 等待模式下看门狗时钟停止工作 0 等待模式下看门狗时钟正常工作 CME:时钟监控使能位。 PLLON:锁相环电路使能位。 AUTO:自动带宽控制位 1 选择高频带宽控制0 选择低频带宽控制 ACQ:自动带宽控制滤波器选择位(当AUTO=1时,该位无意义)。 PRE:CPU 伪停止状态时,实时中断(RT1)允许位。 PCE:CPU 虚拟停止时,看门狗(COP)允许位。 SCEM:自给时钟方式使能位,默认为1,探测到外部晶振停振时进入自给时钟模式,为0时,

禁止自给时钟模式,探测到外部晶振停振时复位。 时钟合成寄存器SYNR 读写Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Read 0 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 Write VCOFRQ[1:0](BIT7 BIT6)控制压控振动器VCO的增益,默认值为00,VCO的频率与VCOFRQ[1:0]对应表如下所示: 读写Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Read/Write REFFRQ1 REFFRQ0 REFDV5 REFDV4 REFDV3 REFDV2 REFDV1 REFDV0 REFFRQ[1:0]默认值为00,表示参考时钟频率在1~2MHZ之间,要求的参考时钟频率与REFFRQ[1:0]的设置值如下表如示: 读写Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Read RTIF PORF 0 LOCKIF LOCK TRACK SCMIF SCM Write RTIF:实时中断(RTI)标志位 1 发生实时中断0 未发生实时中断PROF:上电复位标志位 1 发生上电复位0 未发生上电复位LOCKIF:锁相环中断标志位 1 锁相环锁定位发生变化时,产生中断请求 0 锁相环锁定位未发生变化

飞思卡尔MC9S12XS128(定时器)ECT寄存器详解

1、定时器IC/OC功能选择寄存器TIOS IOS[7..0]IC/OC功能选择通道 0 相应通道选择为输入捕捉(IC) 1 相应通道选择为输出比较(OC) 2、定时器比较强制寄存器 CFORC FOC[7..0]设置该寄存器某个FOCn位为1将导致在相应通道上立即产生一个输出比较动作,在初始化输出通道时候非常有用。 【说明】这个状态和正常状态下输出比较发生后,标志位未被置位后的情况相同。 3、输出比较7屏蔽寄存器 OC7M OC7M[7..0]OC7(即通道7的输出比较)具有特殊地位,它匹配时可以直接改变PT7个输出引脚的状态,并覆盖各个引脚原来的匹配动作结果,寄存器OC7M决定哪些通道将处于 OC7的管理之下。OC7M中的各位与PORTT口寄存器的各位一一对应。当通过 TIOS将某个通道设定为输出比较时,将OC7M中的相应位置1,对应的引脚就是输 出状态,与DDR中的对应位的状态无关,但OC7Mn并不改变DDR相应位的状 态。 【说明】OC7M具有更高的优先级,它优于通过TCTL1和TCTL2寄存器中的OMn和OLn 设定的引脚动作,若OC7M中某个位置1,就会阻止相应引脚上由OM和OL设定的动作。

4、输出比较7数据寄存器 OC7D OC7D[7..0]OC7M对于其他OC输出引脚的管理限于将某个二进制值送到对应引脚,这个值保存在寄存器OC7D中的对应位中。当OC7匹配成功后,若某个OC7Mn=1,则内部逻辑将OC7Dn送到对应引脚。OC7D中的各位与PORTT口寄存器的各位一一对 应。当通道7比较成功时,如果OC7M中的某个位为1,OC7D中的对应位将被输 出到PORTT的对应引脚。 【总结】通道7的输出比较(OC7)具有特殊的位置,在OC7Mn和OC7Dn两个寄存器设置以后,OC7成功输出后将会引起一系列的动作。比如:OC7M0=1,则通道0处在OC7的管理 下,在OC7成功后,系统会将OC7D0的逻辑数据(仅限0或者1)反应在PT0端口上。另 外,在OC7Mn置位后,相应的引脚就被设置为输出引脚,与DDRTn无关了,OC7Mn 并不改变DDR相应位的状态。 5、定时器核心计数寄存器 TCNT TCNT[15..0]XS128 Timer模块的核心是一个16位自由运行计数器(TCNT),所有输入捕捉和输出比较功能的计时信息都来源于TCNT,当定时器系统启用时,通过设置TSCR1的 TEN位,计数器从$0000开始,每经过一个模块时钟加1,直到加到$FFFF,然后自动 溢出为$0000并继续计数.16位自由记数器的当前值保存在两个8位寄存器中,高 的存在TCNTH,低的存在TCNTL中.综合这两个寄存器就形成TCNT.定义TCNT的 话,要定义为word型。 【说明】这里的模块时钟指的是,经过分频后的ECT模块所用的时钟,分频系数在TSCR2的低三位。TCNT是一个递增的计数器,有很多人一直把它当做是递减的计数器。总之,TCNT就是对ECT时钟进行计数的。

STM32通用定时器学习

STM32通用定时器 STM32的定时器功能很强大,学习起来也很费劲儿. 其实手册讲的还是挺全面的,只是无奈TIMER的功能太复杂,所以显得手册很难懂,我就是通过这样看手册:while(!SUCCESS){看手册…}才搞明白的!所以接下来我以手册的顺序为主线,增加一些自己的理解,并通过11个例程对TIMER做个剖析。实验环境是STM103V100的实验板,MDK3.2 +Library2.东西都不怎么新,凑合用…… TIMER主要是由三部分组成: 1、时基单元。 2、输入捕获。 3、输出比较。 还有两种模式控制功能:从模式控制和主模式控制。 一、框图 让我们看下手册,一开始是定时器的框图,这里面几乎包含了所有定时器的信息,您要是能看明白,那么接下来就不用再看别的了… 为了方便的看图,我对里面出现的名词和符号做个注解: TIMx_ETR:TIMER外部触发引脚 ETR:外部触发输入 ETRP:分频后的外部触发输入 ETRF:滤波后的外部触发输入 ITRx:内部触发x(由另外的定时器触发) TI1F_ED:TI1的边沿检测器。 TI1FP1/2:滤波后定时器1/2的输入 TRGI:触发输入 TRGO:触发输出 CK_PSC:应该叫分频器时钟输入 CK_CNT:定时器时钟。(定时周期的计算就靠它) TIMx_CHx:TIMER的输入脚 TIx:应该叫做定时器输入信号x ICx:输入比较x ICxPS:分频后的ICx OCx:输出捕获x OCxREF:输出参考信号 关于框图还有以下几点要注意: 1、影子寄存器。 有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预 装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的 寄存器,称为shadow register(影子寄存器);(详细请参考版主博客 https://www.360docs.net/doc/a612794238.html,/STM32/401461/message.aspx) 2、输入滤波机制 在ETR何TIx输入端有个输入滤波器,它的作用是以采样频率 Fdts来采样N次进行滤波的。(具体也请参考版主博客 https://www.360docs.net/doc/a612794238.html,/STM32/263170/message.aspx) 3、输入引脚和输出引脚是相同的。 二、时基单元 时基单元有三个部分:CNT、PSC、ARR。CNT的计数方式分三种:向上、

飞思卡尔入门程序总结

1.对IO口输入输出操作程序举例:A口接流水灯并实现闪烁 void main(void) { while(1) { DDRA=0xff; delay(500); PORTA=0xff; delay(500); PORTA=0; } 另外,B、E口的IO功能操作也是一样的,因为位数一样寄存器一样,其他口的寄存器就不太一样了!J,P,M,T,S这五个口除具有数据寄存器外,他们都另外多出另一个端口输入寄存器(该寄存器功能我未知)! 2.SPI总线接口 SPI是一种高速高效的同步串行接口,这种接口主要用于MCU与外部的接口芯片交换数据,只要有SPI口的芯片都可以与单片机相连形成主从机系统进行数据的传递,比如SPI用于移位寄存器74HC164,这是个串入并出的芯片这样可以实现扩展IO口。 还有AD转换芯片AD7793,可以实现数模转换,还有飞思卡尔公司的电源管理芯片MC33389。 因设备有限此功能待以后调试! 3.SCI总线接口 MC9S12DG128单片机有两个SCI模块,可以选用其中任何一个。他的使用有8个相应寄存器共设置,其中有波特率设置寄存器SCIBDH,SCIBDL,还有控制寄存器SCICR1,SCICR2,状态寄存器SCISR1,SCISR2,数据寄存器SCIDRH,SCIDRL; 简单讲SCI的使用就是寄存器初始化,数据传送方式设置,下面举个初始化使用的简单例子:SCICR2=0x08;//发送使能设置 SCIBDH=0x00;//波特率设置为9600 SCIBDL=0x9c; 就是这样这个是简单实用时的设置,发送函数如下: While(!(SCISR1&0x40))//检测是否发送完毕,一旦发送完毕就进入到死循 环里边 {} SCIDRL=C;//C代表需要传送的数据 4.有关定时器TCNT TCNT是芯片内部的16位主定时器,他不停地对内部时钟信号进行计数,从0x0000直到0xffff,计满后溢出又返回到0x0000,程序随时可以读取,但在普通模式下禁止写入。 TCNT应该按字访问,分别访问高低字节将出现错误! 可以直接利用它的来实现一些延时的功能! 例如下面的程序: #include #include "derivative.h" void TimerOverflow() { unsigned char i=1,j=0x80;

相关文档
最新文档