【教科版】2018-2019学年高中物理选修3-2全一册学案设计(含答案)

【教科版】2018-2019学年高中物理选修3-2全一册学案设计(含答案)
【教科版】2018-2019学年高中物理选修3-2全一册学案设计(含答案)

学案1电磁感应的发现感应电流产生的条件

[学习目标定位] 1.能理解什么是电磁感应现象.2.能记住产生感应电流的条件.3.会使用线圈以及常见磁铁完成简单的实验.4.能说出磁通量变化的含义.5.会利用电磁感应产生的条件解决实际问题.

1.磁通量的计算公式Φ=BS的适用条件是匀强磁场且磁感线与平面垂直.若在匀强磁场B 中,磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁场方向上的投影面积.2.磁通量是标量,但有正、负之分.一般来说,如果磁感线从线圈的正面穿入,线圈的磁通量就为“+”,磁感线从线圈的反面穿入,线圈的磁通量就为“-”.

3.由Φ=BS可知,磁通量的变化有三种情况:

(1)磁感应强度B不变,有效面积S变化;

(2)磁感应强度B变化,有效面积S不变;

(3)磁感应强度B和有效面积S同时变化.

一、奥斯特实验的启迪

1820年,奥斯特从实验中发现了电流的磁效应,不少物理学家根据对称性的思考,提出既然电能产生磁,是否也存在逆效应,即磁产生电呢?

二、电磁感应现象的发现

1831年,英国物理学家法拉第发现了电磁感应现象.他将“磁生电”现象分为五类:(1)变化中的电流;(2)变化中的磁场;(3)运动中的恒定电流;(4)运动中的磁铁;(5)运动中的导线.三、电磁感应规律的发现及其对社会发展的意义

1.电磁感应的发现,使人们发明了发电机,把机械能转化成电能;使人们发明了变压器,解决了电能远距离传输中能量大量损耗的问题;使人们制造出了结构简单的感应电动机,反过来把电能转化成机械能.

2.法拉第在研究电磁感应等电磁现象中,从磁性存在的空间分布逐渐凝聚出“场”的科学创新思想.在此基础上,麦克斯韦建立了电磁场理论,并预言了电磁波的存在.

四、产生感应电流的条件 穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生.

一、磁通量及其变化

[问题设计]

如图1所示,框架的面积为S ,匀强磁场的磁感应强度为B .试求:

图1

(1)框架平面与磁感应强度B 垂直时,穿过框架平面的磁通量为多少?

(2)若框架绕OO ′转过60°,则穿过框架平面的磁通量为多少?

(3)若从图示位置转过90°,则穿过框架平面的磁通量的变化量为多少?

(4)若从图示位置转过180°,则穿过框架平面的磁通量变化量为多少?

答案 (1)BS (2)12

BS (3)-BS (4)-2BS [要点提炼]

1.磁通量的计算

(1)公式:Φ=BS

(2)适用条件:①匀强磁场,②磁场方向和平面垂直.

(3)B 与S 不垂直时:Φ=BS ⊥,S ⊥为平面在垂直磁场方向上的投影面积,在应用时可将S 投影到与B 垂直的方向上,如图2所示Φ=BS sin_θ.

图2

(4)磁通量与线圈的匝数无关.

2.磁通量的变化量ΔΦ

(1)当B 不变,有效面积S 变化时,ΔΦ=B ·ΔS .

(2)当B 变化,S 不变时,ΔΦ=ΔB ·S .

(3)B和S同时变化,则ΔΦ=Φ2-Φ1,但此时ΔΦ≠ΔB·ΔS.

特别提醒计算穿过某面的磁通量变化量时,要注意前、后磁通量的正、负值,如原磁通量Φ1=BS,当平面转过180°后,磁通量Φ2=-BS,磁通量的变化量ΔΦ=-2BS.

二、感应电流产生的条件

[问题设计]

实验1(导体在磁场中做切割磁感线的运动):如图3所示,导体AB垂直磁感线运动时,线路中有电流产生,而导体AB沿着磁感线运动时,线路中无电流产生(填“有”或“无”).

图3

实验2(通过闭合电路的磁场发生变化):如图4所示,将小螺线管A插入大螺线管B中不动,当开关S接通或断开时,电流表中有电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中有电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中无电流产生.若将螺线管A放在螺线管B的正上方,并使两者的轴线互相垂直,则不管进行什么操作,电流表中均无电流产生(填“有”或“无”).

图4

1.实验2中并没有导体在磁场中做切割磁感线的运动,但在接通或断开电源的瞬间及改变滑动变阻器的阻值时,B线圈却出现感应电流,这说明什么?

答案说明导体在磁场中做切割磁感线运动不是产生感应电流的本质原因,通过闭合电路的磁场变化也可以产生感应电流.

2.当实验2中开关闭合后,A线圈电流稳定时,B线圈中也存在磁场,但不出现感应电流,这说明什么?

答案说明感应电流的产生,不在于闭合回路中是否有磁场.

3.实验2中同样的磁场变化,螺线管B套在螺线管A外边时,能产生感应电流,而两个线圈相互垂直放置时不能产生感应电流,这又说明什么?试总结产生感应电流的条件.

答案说明感应电流的产生,不在于磁场是否变化.

总结实验1中,磁场是稳定的,但在导体切割磁感线运动时,通过回路的磁通量发生变化,

回路中产生了感应电流;实验2通过改变电流从而改变磁场强弱,进而改变了磁通量,从而产生了感应电流,所以可以将产生感应电流的条件描述为“只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流”.

[要点提炼]

1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.

2.特例:闭合电路的一部分导体在磁场内做切割磁感线运动.在利用“切割”来讨论和判断有无感应电流时,应该注意:

(1)导体是否将磁感线“割断”,如果没有“割断”就不能说切割.如图5所示,甲、乙两图中,导线是真“切割”,而图丙中,导体没有切割磁感线.

图5

(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动,如图丁.如果由切割不容易判断,则要回归到磁通量是否变化上去.

[延伸思考]电路不闭合时,磁通量发生变化是否能产生电磁感应现象?

答案当电路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象.

一、磁通量Φ及其变化量ΔΦ的理解与计算

例1如图6所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图6所示的虚线位置时,试求:

图6

(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;

(2)磁通量的变化量ΔΦ.

解析(1)解法一:在初始位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=S sin θ,所以Φ1=BS sin θ.在末位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥′=S cos θ.由于磁感线从反面穿入,所以Φ2=-BS cos θ. 解法二:

如图所示,把磁感应强度B沿垂直于面积S和平行于面积S进行分解,得B上=B sin θ,B左=B cos θ

所以Φ1=B上S=BS sin θ,

Φ2=-B左S=-BS cos θ.

(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BS sin θ;当线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,穿过线框的磁通量减少为零,继续转动至90°时,磁感线从另一面穿过,磁通量变为“负”值,Φ2=-BS cos θ.所以,此过程中磁通量的变化量为

ΔΦ=Φ2-Φ1=-BS cos θ-BS sin θ

=-BS(cos θ+sin θ).

答案(1)BS sin θ-BS cos θ(2)-BS(cos θ+sin θ)

二、产生感应电流的分析判断及实验探究

例2如图7所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,且井字形回路中有感应电流通过,则可能()

图7

A.v1>v2B.v1<v2

C.v1=v2D.无法确定

解析只要金属棒ab、cd的运动速度不相等,穿过井字形回路的磁通量就发生变化,闭合回路中就会产生感应电流.故选项A、B正确.

答案AB

例3在研究电磁感应现象的实验中所用器材如图8所示.它们是①电流表、②直流电源、③带铁芯的线圈A、④线圈B、⑤开关、⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连好一根导线).

图8

答案连接电路如图所示

1.(对电磁感应现象的认识)下列现象中,属于电磁感应现象的是()

A.小磁针在通电导线附近发生偏转

B.通电线圈在磁场中转动

C.因闭合线圈在磁场中运动而产生的电流

D.磁铁吸引小磁针

答案 C

解析电磁感应是指“磁生电”的现象,而小磁针和通电线圈在磁场中转动以及磁铁吸引小磁针,反映了磁场力的性质,所以A、B、D不是电磁感应现象,C是电磁感应现象.2.(对磁通量Φ及其变化量ΔΦ的理解)如图9所示一矩形线框,从abcd位置移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下列叙述正确的是(线框平行于纸面移动) ()

图9

A.一直增加

B.一直减少

C.先增加后减少

D.先增加,再减少直到零,然后再增加,然后再减少

答案 D

解析离导线越近,磁场越强,当线框从左向右靠近导线的过程中,穿过线框的磁通量增大,当线框跨在导线上向右运动时,磁通量减小,当导线在线框正中央时,磁通量为零,从该位置向右,磁通量又增大,当线框离开导线向右运动的过程中,磁通量又减小;故A、B、C 错误,D正确,故选D.

3.(产生感应电流的分析判断)如图10所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的是()

图10

A.将线框向左拉出磁场

B.以ab边为轴转动(小于90°)

C.以ad边为轴转动(小于60°)

D.以bc边为轴转动(小于60°)

答案ABC

解析将线框向左拉出磁场的过程中,线框的bc部分切割磁感线,或者说穿过线框的磁通量减少,所以线框中将产生感应电流.

当线框以ab边为轴转动(小于90°)时,线框的cd边的右半段在做切割磁感线运动,或者说穿过线框的磁通量在发生变化,所以线框中将产生感应电流.

当线框以ad边为轴转动(小于60°)时,穿过线框的磁通

量在减小,所以在这个过程中线框内会产生感应电流.如果转过的角度超过60°(60°~300°),bc边将进入无磁场区,那么线框中将不产生感应电流.

当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形线框面积的一半的乘积).

4.(产生感应电流的分析判断)如图11所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是()

图11

A.线圈中通以恒定的电流

B.通电时,使滑动变阻器的滑片P做匀速移动

C.通电时,使滑动变阻器的滑片P做加速移动

D.将电键突然断开的瞬间

答案 A

解析只要通电时滑动变阻器的滑片P移动,电路中的电流就会发生变化,变化的电流产生变化的磁场,铜环A中磁通量发生变化,有感应电流;同样,将电键断开瞬间,电路中电流从有到无,仍会在铜环A中产生感应电流.

题组一对磁通量Φ及其变化量ΔΦ的理解与计算

1.关于磁通量,下列叙述正确的是()

A.在匀强磁场中,穿过一个面的磁通量等于磁感应强度与该面面积的乘积

B.在匀强磁场中,a线圈的面积比b线圈的大,则穿过a线圈的磁通量一定比穿过b线圈的磁通量大

C.把一个线圈放在M、N两处,若放在M处时穿过线圈的磁通量比放在N处时大,则M 处的磁感应强度一定比N处大

D.同一线圈放在磁感应强度大处,穿过线圈的磁通量不一定大

答案 D

解析磁通量等于磁感应强度与垂直磁场方向上的投影面积的乘积,A错误;线圈面积大,但投影面积不一定大,B错误;磁通量大,磁感应强度不一定大,C错误、D正确.

2.关于磁通量的概念,以下说法中正确的是()

A.磁感应强度越大,穿过闭合回路的磁通量越大

B.磁感应强度越大,线圈面积越大,则磁通量越大

C.穿过线圈的磁通量为零,但磁感应强度不一定为零

D.磁通量发生变化,一定是磁场发生变化引起的

答案 C

解析根据磁通量的定义,Φ=B·S·sin θ,因此A、B选项错误;穿过线圈的磁通量为零时,磁感应强度不一定为零;磁通量发生变化,可能是面积变化引起的,也可能是磁场变化引起的,D错.

3.如图1所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

教科版高中物理选修3-1全册学案

第一章静电场 第1节电荷及其守恒定律 三种起电方式的区别和联系 摩擦起电感应起电接触起电 产生及条件两不同绝缘体摩擦时导体靠近带电体时带电导体和导体接触时现象 两物体带上等量异种电 荷 导体两端出现等量异种 电荷,且电性与原带电体 “近异远同” 导体上带上与带电体相 同电性的电荷原因 不同物质的原子核对核 外电子的束缚力不同而 发生电子转移 导体中的自由电子受到 带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

高中物理选修3-3必做大题

选修3-3 大题部分 11.如图所示,粗细均匀的弯曲玻璃管A 、B 两端开口,管内有一段水银柱,右管内气体柱长为39cm ,中管内水银面与管口A 之间气体柱长为40cm ,先将口B 封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳定后右管内水银面比中管内水银面高2cm ,求: ①稳定后右管内的气体压强p ; ②左管A 端插入水银槽的深度h(大气压强p 0=76cmHg) 12.(9分)如图所示,竖直放置的气缸,活塞横截面积为S=0.01m 2,可在气缸内无摩擦滑 动。气缸侧壁有一个小孔与装有水银的U 形玻璃管相通,气缸内封闭了一段高为80cm 的气柱(U 形管内的气体体积不计)。此时缸内气体温度为7℃,U 形管内水银面高度差h 1=5cm 。已知大气压强p 0=1.0×105Pa ,水银的密度3 106.13?=ρkg/m 3,重力加速度g 取10m/s 2。 ①求活塞的质量m ; ②若对气缸缓慢加热的同时,在活塞上缓慢添加沙粒,可保持活塞的高度不变。当缸内气体温度升高到37℃时,求U 形管内水银面的高度差为多少? 13.(9分)一个密闭的气缸内的理想气体被活塞分成体积相等的左右两室,气缸壁与活塞都是不导热的,活塞与气缸壁之间没有摩擦。开始时,左右两室中气体的温度相等,如图所示。现利用左室中的电热丝对左室中的气体加热一段时间。达到平衡后,左室气体的体积变为原来体积的1.5倍,且右室气体的温度变为300 K 。求加热后左室气体的温度。(忽略气缸、活塞的热胀冷缩)

14.(6分)如图所示,气缸内装有一定质量的气体,气缸的截面积为S,其活塞为梯形,它的一个面与气缸成 角,活塞与器壁间的摩擦忽略不计,现用一水平力F推活塞,汽缸 P,求气缸内气体的压强P. 不动,此时大气压强为 15.某同学用一端封闭的U形管,研究一定质量封闭气体的压强,如图乙所示,U形管竖直放置,当封闭气柱长为L0时,两侧水银面的高度差为h ,大气压强为P0 。求 ①封闭气体的压强(用cmHg作单位); ②若L0=20cm,h=8.7cm,该同学用与U形管口径相同的量筒往U形管内继续缓慢注入水银,当再注入13.3cm长水银柱时,右侧水银面恰好与管口相平齐。设环境温度不变,求大气压强是多少cmHg?

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

高中物理选修3-3知识点整理

选修3—3期末复习知识点汇总 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成 立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= ===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显; 温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分子 做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。 分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距 离的增加,分子力先减小,后增加,再减小。。在图1图象中实 线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横 坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m , 相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系: 273.15T t K =+。热力学温度是国际单位制中的基本单位。 5、分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分 子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置, 势能最小。分子势能随距离增加,先减小,再增加。 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

(完整word)高中物理选修3-3资料

高中物理选修3-3复习 专题定位本专题用三讲时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有: 选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题; ④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容. 选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质. 选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等. 应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆. 选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力. 选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力. 第1讲热学 高考题型1热学基本知识 解题方略 1.分子动理论 (1)分子大小 ①阿伏加德罗常数:N A=6.02×1023 mol-1. ②分子体积:V0=V mol N A(占有空间的体积).

③分子质量:m0=M mol N A. ④油膜法估测分子的直径:d=V S. (2)分子热运动的实验基础:扩散现象和布朗运动. ①扩散现象特点:温度越高,扩散越快. ②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈. (3)分子间的相互作用力和分子势能 ①分子力:分子间引力与斥力的合力.分子间距离增大, 引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快. ②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r0(分子间的距离为r0时,分子间作用的合力为0)时,分子势能最小. 2.固体和液体 (1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化. (2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性. (3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-2知识点汇总

第一章 电磁感应 1. 磁通量 穿过某一面积的磁感线条数;标量,但有正负; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2 。 2. 电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3. 感生电场 变化的磁场在周围激发的电场。 4. 感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5. 楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6. 右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7. 法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的 磁通量的变化率成正比;E=n t ??Φ 。 8. 动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv ·sin θ。 9. 互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。 10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。 11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ??;日光灯的应用。 12.自感系数 上式中的比例系数L 叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。 13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章 直流电路 1. 电流 电荷的定向移动;单位是安,符号A ;规定正电荷定向移动的方向为正方向;宏观定义I= t q ; 微观解释I=neSv ,n 为单位体积的电荷数,e 是每个自由电荷的电量,S 为横截面积,v 是定向移动的速率。 2. 电阻 导体两端电压与电流的比值;R=I U 。 3. 电阻率 导体材料自身的性质。电阻率与温度有关,一般金属的电阻率随温度升高而增大,绝缘体和半导体随温度升高而减小,电阻率为零是称做超导。 4. 电阻定律 R=ρ S l ,S 为导体横截面积,l 为电阻丝长度, ρ 为电阻率。 5. 电阻的连接 串联和并联。 6. 电功 导体内静电力对自由电荷做的功;W=UIt ;单位是焦。 7. 电功率 单位时间内电流做的功;P=t W =UI ;单位是 瓦。 8. 电热 电流流过导体产生的热量;由焦耳定律计算,Q=I 2 Rt 。 9. 电功与电热的关系 在纯电阻电路中,W=Q ;在非纯电阻电路中,W>Q 。

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理选修3-4基础知识

高中物理选修3-4基础知识 第十一章机械振动 一、简谐运动 1.概念:如果质点的位移与时间的关系遵从________函数的规律,即它的振动图象(x-t图象)是一条________曲线,这样的振动叫简谐运动. 2.动力学表达式F=________. 运动学表达式x=Asin (ωt+φ). 3.描述简谐运动的物理量(1)位移x:由____________指向______________________的有向线段表示振动位移,是矢量.(2)振幅A:振动物体离开平衡位置的____________,是标量,表示振动的强弱.(3)周期T和频率f:做简谐运动的物体完成____________所需要的时间叫周期,而频率则等于单位时间内完成________________;它们是表示振动快慢的物理量.二者互为倒数关系. 4.简谐运动的图象(1)物理意义:表示振动物体的位移随时间变化的规律.(2)从平衡位置开始计时,函数表达式为x=Asinωt,图象如图2所示.从最大位移处开始计时,函数表达式为x=Acosωt,图象如图3所示. 5.简谐运动的能量:简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与________有关,________越大,能量越大. 二、单摆如右下图所示,平衡位置在最低点. (1)定义:在细线的一端拴一个小球,另一端固定在悬点上,如果线的________和________都不计,球的直径比________短得多,这样的装置叫做单摆. (2)视为简谐运动的条件:________________. (3)回复力:小球所受重力沿________方向的分力,即:F=G2=Gsinθ=mg l x,F的方向与位移x的方向相反.(4)周期公式:T= (5)单摆的等时性:单摆的振动周期取决于摆长l和重力加速度g,与振幅和振子(小球)质量无关.注意单摆振动时,线的张力与重力沿摆线方向的分力的合力提供单摆做圆周运动的向心力.重力沿速度方向的分力提供回复力,最大回复力大小为mg l A,在平衡位置时回复力为零,但合外力等于向心力,不等于零.三、受迫振动和共振1.受迫振动:系统在________________作用下的振动.做受迫振动的物体,它的周期(或频率)等于________的周期(或频率),而与物体的固有周期(或频率)______关. 2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者________时,振幅达到最大,这就是共振现象.共振曲线如右图所示. 第十二章机械波 一、机械波1.波的形成:机械振动在介质中传播,形成机械波.(1)产生条件:①________; ②________. (2)特点①机械波传播的只是振动的________和________,质点只在各自的平衡位置附近做简谐运动,并不随波________.②介质中各质点的振幅相同,振动周期和频率都与________振动周期和频率相同.③各质点开始振动(即起振)的方向均________.④一个周期内,质点完成一次全振动,通过的路程为______,位移为________. 2.机械波的分类(1)横波:质点的振动方向与波的传播方向相互_______的波,有_______(凸部)和_______(凹部).(2)纵波:质点的振动方向与波的传播方向在__________上的波,有________和________. 3.波长、波速、频率及其关系(1)波长:在波动中,振动相位总是________的两个相邻质点间的距离,用λ表示.(2)波速:波在介质中的传播速度.由________本身的性质决定.(3)频率:由________决定,等于________的振动频率.(4)波长、波速和频率的关系:v=fλ. 特别提醒

相关文档
最新文档