线性不确定离散系统的鲁棒H∞控制器设计

线性不确定离散系统的鲁棒H∞控制器设计
线性不确定离散系统的鲁棒H∞控制器设计

TITO系统的非线性鲁棒控制器参数整定

第21卷第21期 系统仿真学报?V ol. 21 No. 21 2009年11月Journal of System Simulation Nov., 2009 TITO系统的非线性鲁棒控制器参数整定 李东海1,徐益2,老大中2,宋跃进3,王宇楠2 (1.电力系统与发电设备控制与仿真国家重点实验室清华大学热能系,北京 100084; 2.北京理工大学宇航学院,北京 100081; 3.中国兵器工业集团二O七研究所,太原 030006) 摘要:基于Monte-Carlo实验研究了TITO (二输入二输出) 系统的非线性鲁棒控制器(NRC)参 数整定的规律。提出了以一种Monte-Carlo实验原理为基础的NRC参数整定规律研究方法。该方 法以ITAE值和超调量为控制系统性能指标,主要分析NRC参数取值变化对控制系统性能鲁棒性 的影响。以若干典型TITO非线性对象为例进行仿真研究,并在大量仿真试验结果的基础上,总结 出TITO系统的NRC参数整定的规律。 关键词:NRC;控制系统;参数整定;Monte-Carlo方法;鲁棒性 中图分类号:TP13 文献标识码:A 文章编号:1004-731X (2009) 21-6786-08 Study on Parameters Tuning Rule of Nonlinear Robust Controller for TITO Systems LI Dong-hai1, XU Yi2, LAO Da-zhong2, SONG Yue-jin3, WANG Yu-nan2 (1. State Key Laboratory of Power Systems, Dept of Thermal Engineering, Tsinghua University, Beijing 100084, China; 2. School of Aerospace Scientific Engineering, Beijing Institute of Technology, Beijing 100081, China; 3. Research Institute 207, North Industries Group, Taiyuan 030006, China) Abstract: Parameters Tuning Rule of Nonlinear Robust Controller (NRC) for TITO (Two-Input-Two-Output) Systems was studied based on Monte-Carlo method. The research scheme for NRC tuning rule was provided. This scheme made ITAE index and overshot as the control performance criteria, mainly analyzed the relation between parameters and robustness of the control system. Taking several typical TITO nonlinear plants as examples, simulation research was made. Based on the results, the parameters tuning rule of NRC for TITO systems was concluded. Key words: NRC; control system; parameters tuning; Monte-Carlo method; robustness 引言 实际情况中,控制对象往往具有参数时变、未知大扰动、多变量耦合、难以精确建模等特点。这类非线性对象的控制问题一直是研究的热点。另一方面,研究控制器的参数整定技术也同样具有十分重要的工程实践意义。因为现代过程工业中的分散控制系统往往包含数百个控制器,快速精准地确定控制器参数关系到整个分散控制系统能否正常工作,也决定了各种控制器能否投入到实际应用中去。 在多变量控制器参数整定方面前人已经作了很多专门的研究。文献[1]基于H∞性能指标,提出了一种多变量PI 控制器参数的整定方法.,通过引入新状态变量将PI控制器参数整定问题转化为设计静态输出反馈控制器的问题。文献[2]基于内模控制原理,导出了一种多变量系统的PID控制器参数整定方法。文献[3-4]将遗传算法应用于多入多出系统的PID参数整定。文献[5]基于广义预测控制思想提出了一种离散多变量PID参数整定方法。文献[6]将单变量PID极 收稿日期:2009-06-22 修回日期:2009-07-27 基金项目:国家重点实验室基金 (610103001) 作者简介:李东海(1963-), 男, 副教授, 研究方向为复杂热力系统控制和非线性控制策略;老大中(1957-), 男, 副教授, 研究方向为推进系统测试仿真技术;徐益(1982-), 男, 硕士, 研究方向为推进系统设计, 控制与仿真技术。点配置自整定方法扩展到多变量专家极点配置方法,用于多变量PID控制系统的自整定,取得了满意的效果。文献 [7]提出了一种加权多变量反馈和零极点配置方法,用于PID参数整定。文献[8]提出一种多变量PID自整定控制算法,通过设计静态矩阵预补偿器将p×p的多变量系统转化为p个自整定的单变量PID控制器。文献[9]通过多变量IMC控制器的简单反馈形式的Maclaurin级数展开,得到了多变量PID 参数的计算通式。文献[10]提出了一种基于DNA方法的多变量PID设计思路。文献[11]分析了模糊逻辑控制器参数取值与控制性能之间的关系。文献[12]则提出了一种多变量控制器在线自整定方法。 基于非线性分散控制理论设计的非线性鲁棒控制器(以下简称NRC)具有很强的鲁棒性,适用于参数变化范围宽,干扰作用大的非线性系统。它结构简单,易于实现,不依赖于对象的精确数学模型,而且有严格的理论推导来保证闭环系统的稳定[13]。通过在机器人[14-16]、水轮发电机组[17]和直升机[18]方面的仿真研究,实际验证了NRC具有较强的鲁棒性和适应性,显现出NRC广阔的应用前景。 虽然NRC已经应用到了许多方面,但其参数整定仍没有现成的理论和规律可循。尤其是多变量NRC的参数整定更是缺乏经验和依据。本文参考已有的多变量控制器参数整定思路,提出一种基于Monte-Carlo实验的NRC参数整定

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

鲁棒控制发展与理论-结课报告-H无穷与u理论

鲁棒控制的发展与理论 摘要:首先介绍了鲁棒控制的发展过程,之后主要介绍了H∞控制理论、μ理论的发展、研究内容和实际应用,和鲁棒控制尚待解决的问题及研究热点。 关键词:鲁棒控制理论、H∞控制理论、μ理论、分析、综合 1 概述 传统控制器都是基于系统的数学模型建立的,因此,控制系统的性能好坏很大程度上取决于模型的精确性,这正是传统控制的本质。现代控制理论可以解决多输入、多输出( MIMO )控制系统地分析和控制设计问题,但其分析与综合方法也都是在取得控制对象数学模型基础上进行的,而数学模型的精确程度对控制系统性能的影响很大,往往由于某种原因,对象参数发生变化使数学模型不能准确地反映对象特性,从而无法达到期望的控制指标,为解决这个问题,控制系统的鲁棒性研究成为现代控制理论研究中一个非常活跃的领域。简单地说,鲁棒控制( Robust Control )就是对于给定的存在不确定性的系统,分析和设计能保持系统正常工作的控制器。鲁棒振定是保证不确定性系统的稳定性,而鲁棒性能设计是进一步确定保有某种指标下的一定的性能。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。鲁棒控制自其产生便得到了广泛的注目和蓬勃发展。其实人们在系统设计时,常常会考虑到鲁棒性的问题。当前这一理论的研究热点是在非线形系统中控制问题,另外还有一些关于鲁棒控制的理论如结构异值理论和区间理论等。 2 鲁棒控制理论的发展 最早给出鲁棒控制问题解的是Black在1927年给出的关于真空关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理真空管特性的大范围波动。之后,Nquist( 奈奎斯特)频域稳定性准则和Black回路高增益概念共同构成了Bode( 伯德)的经典之著中关于鲁棒控制设计的基础。20世纪60年代之前这段时期可称为经典灵敏度设计时期。此间问题多集中于SISO(单变量)系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。 20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO 进行了初步的推广,人们普遍研究灵敏度设计问题,包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。 20世纪80年代,鲁棒设计进入了新的发展时期。此间研究的目的是寻求适应大范围不确定性分析的理论和方法。

非线性系统的鲁棒自适应控制

非线性系统的鲁棒自适应控制 Robust Adaptive Control of Uncertain Nonlinear Systems 郝仁剑3120120359 摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。 关键词:非线性系统鲁棒控制自适应控制 1.前言 任何实际系统都具有非线性特性,非线性现象无处不在。严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。在20世纪50年代,Bellman根据最优原理创立了动态规划。同时庞特里亚金等学者创立了最大值原理。后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。这些理论和概念的提出大大促进了现代控制理论的发展。控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。特别是Zmaes1981年发表的论文[1]标志H∞控制理论的起步。1984年Francis和Zmaes基于古典插值理论提出H∞问题的初步解法。Glover运用Hankel算子理论给出了H∞问题的解析解。Doyle在状态空间上对Glover解法进行整理和归纳。至此H∞控制理论体系初步形成。同时,Doyle首次提出结构化奇异值的概念,后来形成了μ解析理论。另外一种重要的控制器设计方法是基于Lyapunov函数的方法。在进行鲁棒控制器的设计时,一般都假设系统的不确定性属于一个可描述集,比如增益有界,且上界己知等。一般来说,鲁棒控制是比较保守的控制策略。对所考虑集合内的个别元素,该系统并不是最佳控制。对于具有参数不确定性的一类系统,自适应控制技术被提了出来,如模型参考自适应控制和自校正控制等。在实际应用中,由于被控对象具有未建模动态,过程噪声或扰动的统计特性远比设计时所设想的情况更复杂,以及持续激励条件和严正实条件等“理想条件”被打破,这都会导致自适应控制算法的失稳。于是自适应控制的鲁棒性课题,即鲁棒自适应控制受到了广泛的关注。大量的工程实践表明,对于复杂的工业对象和过程,引入自适应策略能够提高控制精度,提高生产效率,降低成本。近年来,非线性自适应控制技术取得突破性的发展,控制器的结构化设计技术也正日益得到广泛的研究与应用。

线性系统大作业1

研 究 生 课 程 论 文 (2014-2015学年第一学期) 线性系统的基本特性 研究生:

线性系统理论的研究对象为线性系统。线性系统是最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中研究最为充分、发展最为成熟和应用最为广泛的一个分支。线性系统理论中的很多概念和方法,对于研究系统控制理论的其他分支,如非线性系统理论、最优控制理论、自适应控制理论、鲁棒控制理论、随机控制理论等,同样也是不可缺少的基础。 线性系统的一个基本特征是其模型方程具有线性属性即满足叠加原理。叠加原理是指,若表系统的数学描述为L ,则对任意两个输入变量u 1和u 2以及任意两个非零有限常数c 1和c 2必成立关系式: 11221122()()()L c u c u c L u c L u +=+ 对于线性系统,通常还可进一步细分为线性时不变系统(linear time-invariant systems)和线性时变系统(linear time-varying systems)两类。 线性时不变系统也称为线性定常系统或线性常系数系统。其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都是不随时间变化的函数。从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。 线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个卷数为随时间变化的函数。在视实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间

非线性系统学习控制理论的发展与展望

非线性系统学习控制理论的发展与展望 谢振东谢胜利刘永清 摘要:论述了学习控制的基本理论问题,给出了学习与学习控制系统的基本定义,着重讨论了学习控制方法产生的历史背景、目前非线性系统学习控制的研究状况,提出了一些有待继续研究的问题. 关键词:非线性系统;学习控制;发展与展望 文献标识码:A Development and Expectation for Learning Control Theory of Nonlinear Systems XIE Zhendong,XIE Shengli and LIU Yongqing (Depatrment of Automatic Control Engineering, South China University of Technology. Guangzhou, 510640, P.R.China) Abstract:In this paper, the problem for the basic theory of learning control is discussed. After giving the basic definition of learning and learning control, we mainly discuss the background of learning control and the research status for learning control of nonlinear systems, and put forward some problems need to be researched. Key words:nonlinear systems; learning control; development and expectation▲ 1 非线性系统学习控制的研究背景(Research background for learning control theory of nonlinear systems) 1.1 引言(Introduction) 对于高速运动机械手的控制,Uchiyama提出一个思想[1]:不断重复一个轨线的控制尝试,并以此修正控制律,能达到较好的控制效果.日本学者Arimoto[2]等人根据这种思想于1984年针对机器人系统的控制研究,提出了迭代学习控制这一新颖方法.这种控制方法只是利用控制系统先前的控制经验,根据测量系统的实际输出信号和期望信号来寻求一个理想的输入,使被控对象产生期望的运动.而“寻找”的过程就是学习的过程,在学习的过程中,只需要测量系统的输出信号和期望信号,不象适应控制那样,对系统要进行复杂的参数估计[3,4],也不象一般控制方法那样,不能简化被控对象的动力学描述.特别是在一类具有较强的非线性耦合和较高的位置重复精度的动力学系统(如工业机器人、数控机床等)中,学习控制有着很好的应用,如T.Sugie[5],M.Katic[6],H.Park[7]的工作.迭代学习控制方法提出后,受到了控制界的广泛关注,人们不仅针对各种机器人系

鲁棒控制理论综述

鲁棒控制理论综述 作者学号: 摘要:本文首先介绍鲁棒控制理论涉及的两个基本概念(不确定性和鲁棒)和发展过程,然 H控制理论,最后指出鲁棒控制研后叙述鲁棒控制理论中两种主要研究方法:μ理论、∞ 究的问题和扩展方向。 H控制理论 关键词:鲁棒控制理论,μ理论,∞ 一、引言 自从系统控制(Systems and Control)作为一门独立的学科出现,对于系统鲁棒性的研究也就出现了。这是由这门学科的特色和研究对象决定的。对于世界上的任何系统。由于系统本身复杂性或是人们对其认识的不全面,在系统建立模型时,很难用数学语言完全描述刻画。在这样的背景下,鲁棒性的研究也就自然而然地出现了。 二、不确定性与鲁棒 1、不确定性 谈到系统的鲁棒性,必然会涉及系统的不确定性。由于控制系统的控制性能在很大程度上取决于所建立的系统模型的精确性,然而,由于种种原因实际被控对象与所建立的模型之间总存在着一定的差异,这种差异就是控制系统设计所面临的不确定性。这种不确定性通常分为两类:系统内部的不确定性和系统外部的不确定性。这样,就需要一种能克服不确定性影响的控制系统设计理论。这就是鲁棒控制所要研究的课题。 2、鲁棒 “鲁棒”一词来自英文单词“robust”的音译,其含义是“强壮”或“强健”。所谓鲁棒性(robustness),是指一个反馈控制系统在某一特定的不确定性条件下具有使稳定性、渐近调节和动态特性这三方面保持不变的特性,即这一反馈控制系统具有承受这一类不确定性的能力。具有鲁棒性的控制系统称为鲁棒控制系统。在工程实际控制问题中,系统的不确定性一般是有界的,在鲁棒控制系统的设计中,先假定不确定性是在一个可能的范围内变化,然后在这个可能的变化范围内进行控制器设计。鲁棒控制系统设计的思想是:在掌握不确定性变化范围的前提下,在这个界限范围内进行最坏情况下的控制系统设计。因此,如果设计的控制系统在最坏的情况下具有鲁棒性,那么在其他情况下也具有鲁棒性。 三、发展历程 鲁棒控制系统设计思想最早可以追溯到1927年Black针对具有摄动的精确系统的大增益反馈设计。由于当时不知道反馈增益和控制系统稳定性之间的确切关系,所以设计出来的控制系统往往是动态不稳定的。早期的鲁棒研究主要集中在Bode图,1932年Nyquist提出了基于Nyquist曲线的频域稳定性判据,使得反馈增益和控制系统稳定性之间的关系明朗化。1945年Bode讨论了单输入单输出(SISO)反馈系统的鲁棒性,提出了利用幅值和相位稳定裕度来得到系统能容许的不确定范围。这些方法主要用于单输入单输出系统而且这些关于鲁棒控制的早期研究主要局限于系统的不确定性是微小的参数摄动情形,尚属灵敏度分析的范畴,从数学上说是无穷小分析思想,并且只是停留在理论上。20世纪六七十年代,鲁棒控制只是将SISO系统的灵敏度分析结果向MIMIO进行了初步的推广[1],与此同时,状态空间理论引入控制论后,系统控制取得了很大的发展,鲁棒问题也显得更加重要,其中就要提到两篇对现代鲁棒控制理论的建立有重要影响的文章:一篇是Zames在1963年关于小增益定理的论文[2],另一篇是1964年Kalman关于单入单输出系统LQ调节器稳定裕量分析的研究报告[3]。鲁棒控制这一术语第一次在论文中出现是在1971年Davion的论文[4],而首先将鲁棒控制写进论文标题的是Pearson等人于1974年发表的论文[5]。当然,鲁棒控制能够

随机系统的鲁棒控制及状态估计

随机系统的鲁棒控制及状态估计 【摘要】:本文利用线性矩阵不等式方法,在随机框架下,研究了组合系统、广义系统、脉冲系统、网络化控制系统的鲁棒控制及状态估计问题。第一,研究了带有马尔可夫跳变过程的组合系统的鲁棒分散控制问题。基于Lyapunov稳定性理论,对一类跳变双线性离散时间随机组合系统,设计了分散状态反馈保成本控制律,使得相应的闭环系统鲁棒随机稳定且满足保成本性能指标。同时,对于带有马尔可夫跳变过程的连续时间组合系统,当系统的输入是扇形非线性函数时,研究了基于观测器的分散输出反馈控制问题。第二,研究具有非线性扰动的广义马尔可夫跳变系统的状态观测器的设计问题。在统一的线性矩阵不等式结构下分别设计了全阶状态观测器和降阶状态观测器,并且均能保证状态估计误差在均方意义下全局指数稳定。第三,对于两类不确定随机脉冲系统,分别研究了鲁棒H_∞控制问题和抗干扰控制问题。基于线性矩阵不等式方法,分别设计了鲁棒H_∞控制律和抗干扰控制律,它们不仅保证了相应的闭坏系统的鲁棒随机稳定性,还保证了闭坏系统具有各自的性能指标。数值例子说明了所给设计方法的有效性。最后,对两种不同的网络化控制系统(NCS)模型,研究了NCS的随机稳定性分析与设计问题。首先研究了具有非线性扰动的随机系统在出现网络诱导时延和数据包丢失时的随机稳定性问题。借助于Lyapunov-Krasovskii泛函方法和奇异系统变换,分别设计了状态反馈控制器和静态输出反馈控制器,使得相应的闭坏系统

均方意义下最终有界。然后,研究一类网络化离散时间控制系统当同时考虑网络诱导时延和数据丢失时控制器设计问题。考虑到数据丢失和网络诱导时延的存在,将NCS建模成具有时滞的离散时间随机切换系统。通过构造随机Lyapunov函数,得到了NCS在均方意义下渐近稳定的时滞依赖的充分条件。【关键词】:鲁棒控制状态估计随机系统组合系统广义系统脉冲系统网络化控制系统线性矩阵不等式 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2006 【分类号】:O231 【目录】:摘要5-6Abstract6-10第一章鲁棒控制及状态估计概述与数学准备10-221.1鲁棒控制及状态估计概述10-111.2本文的主要工作和章节安排11-131.3符号约定13-141.4线性矩阵不等式14-171.5数学准备17-22第二章马尔可夫跳变组合系统的鲁棒分散控制22-482.1跳变双线性随机离散组合系统的保成本分散控制22-352.2具有扇形执行器的跳变组合系统的分散输出反馈控制35-462.3本章小结46-48第三章广义马尔可夫跳变系统观测器的设计48-663.1全阶状态观测器的设计48-563.2降阶观测器的设计56-613.3例子61-653.4本章小结65-66第四章不确定随机脉冲系统的鲁棒控制66-874.1不确定随机脉冲系统的鲁棒H_∞控制66-774.2一类不确定随机脉冲系统的抗干扰控制77-864.3本章小结86-87第五章网络化随机控制系统的鲁棒控制87-1175.1网络环境下具有非线性扰动的随机系统的鲁棒控制

哪个大神能简单又清楚的论述一下鲁棒控制和未来发展趋势

哪个大神能简单又清楚的论述一下鲁棒控制和未来发展趋势? 鲁棒控制诞生于上世纪70年代末,当时是为了解决航空航天领域的控制问题。所采用的方法也是基于线性算子理论的纯数学技术,后来,1989年,Doyle,Glover,Khargonekar 、Francis四人提出了一套利用状态空间描述求解线性Hinf控制问题的方法,成为一直到现在求解Hinf问题的两个重要方法之一。 紧接着,自90年代以来,产生了Hinf混合灵敏度、mu方法、Hinf loop-shaping技术这一批实用价值极高、内涵优美的方法。这批线性鲁棒控制技术直接和间接地推进了美国航空工业的发展,大量飞机发动机和航天器姿态控制都基于这套技术,这套技术被业界称为DGKF方法。有数本专著完整地论述DGKF方法,其中最好当首推周克敏教授的《Robust and Optimal Control》,他把频域鲁棒控制的理论写得极其优雅,兼具理论和实用性。 90年代初,法国的Boyd提出了求解Hinf问题的线性矩阵不等式方法(LMI),这是一套更加有效和简单的方法,比DGKF所基于的求解两个Riccati方程的方式数值上更加高效,也更简洁。于是线性鲁棒控制进入了新的时期,又得到了快速发展,一大批不依赖于频域的时域技术也被相继建立,基于状态反馈的、基于输出反馈的、二次型指标的、线性不确定时滞系统等等,一大批时域定理,可以有效地解决线性不确定系统的控制问题。同样LMI也可以顺利地用于频域,去实现Hinf混合灵敏度、mu方法、Hinf loop-shaping等。这一时期有Dullerud的《A Course in Robust Control Theory》,以及近几年刘康志教授和姚郁教授刚写就的《线性鲁棒控制》(中英都有),还有Skogestad的《Multivariable Feedback Control: Analysis and Design》。

船舶航向非线性系统的H_鲁棒控制与仿真

第29卷第1期 Vo l 29,No 1 西华大学学报(自然科学版) Journa l o fX i h ua Un i v ersity N atural Sc i e nce 2010年1月 J an .2010文章编号:1673 159X (2010)01 0009 04 收稿日期:2009 10 12 作者简介:喻 洲(1985 ),男,湖南长沙人,硕士研究生,主要研究方向为非线性鲁棒控制; 船舶航向非线性系统的H 鲁棒控制与仿真 喻 洲,吴汉松,袁 雷 (海军工程大学电气与信息工程学院,湖北武汉430033) 摘 要:针对船舶航向非线性控制系统的数学模型,在考虑船舶操舵伺服机构特性的情况下,基于状态反馈线性化方法,采用闭环增益成形算法设计出了船舶航向鲁棒控制器。利用M atl ab /S i m u li nk 工具箱进行仿真,结果表明,所设计的鲁棒控制器与采用极点配置法设计的鲁棒镇定控制器相比,具有较好的控制性能,对风浪干扰也具有很强的鲁棒性。 关键词:船舶航向控制;非线性系统;闭环增益成形;鲁棒性 中图分类号:TP273;U 664 文献标识码:A H I RC and Si m ulation of Nonli near Shi p A utopilot Syste m YU Zhou ,WU H an song ,YUAN Lei (Colle g e of E lectrical and Informati on Eng i neering ,N aval U ni .of Engineer i ng,W uhan 430033China ) Abstrac t :The re l a tionsh i p bet w een t he m aneuve r of a shi p and t he characteristi cs o f t he rudder w as stud ied usi ng a non li near m od e.l A robust con tro ll er for ship course was proposed by c l o sed loop gain shapi ng a l gor it h m based on t he state feedback li neariza tion m ethod .T he si m u l a ti on results obta i ned from t he si m u l a ti on so ft w are Si m uli nk ofM atl ab show that the desi gned contro ller ism ore effec ti ve t han the controller based on po le placem ent . K ey word s :sh i p course contro,l nonli near syste m,closed l oop ga i n shapi ng ,robustness 控制策略是船舶运动控制学的主要研究对象。从20世纪20年代PI D 控制律应用于船舶航向控制 系统以来,由于航行安全、节能、降低船员劳动强度等需求,航向控制一直受到人们的高度重视。但是船舶在大洋航行时受风、海浪、海流等各种环境因素干扰,以及船舶的船型、装载、航速、吃水等各种工况影响,船舶运动表现出非线性、不确定性、大滞后等复杂的动态特性[1 2] 。因此,设计船舶航向不确定非线性系统的鲁棒控制策略是船舶控制领域的一个研究热点。 本文针对考虑舵机特性的船舶航向非线性系统模型设计鲁棒控制器,通过状态反馈精确线性化方法得到系统的线性模型,并基于闭环增益成形算法,导出了H 鲁棒控制律。研究表明,所设计的鲁棒控制器与采用极点配置的方法来设计的鲁棒镇定控制器相比,具有较好的控制性能,能够使船舶航向有效跟踪并对系统的不确定性和干扰具有较强的鲁棒性。 1 系统的数学描述 在船舶自动舵设计中,船舶操纵系统模型一般采用线性的野本(N o mo to)方程 T ! + =K (1) 式中, 为舵角; 为航向角;T 为时间常数;k 为增益。该方程只适用于小舵角和低频动舵情况。在某些操纵条件下,例如舵角较大时,船舶存在严重的非线性特性,就不能忽略力和力矩泰勒级数展开式中的非线性项,这时上述模型就不适宜。为了更加准确地描述实际情况,提高模型描述精度,式(1)中的 以非线性项H ( )代之,用以描述船舶非线性操纵特性: H ( )= 0+ 1 + 2 2 + 3 3 (2)式中, i (i =0,1,2,3)为Norr b i n 系数。对于具有对称船体的船舶, 0和 2为0;对于稳定的船舶, 1=1;对于不稳定的船舶, 1= 1;而 3的值可由

鲁棒控制及其发展概述

鲁棒控制及其发展概述 摘要 本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。 关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法 一、引言 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。 最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。20世纪60年代之前这段时间可称为经典灵敏度设计时

期。此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。 20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。 20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。 二、正文 1. 鲁棒控制理论 方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。 鲁棒控制理论是在空间(即Hardy 空间)通过某些性能指标 的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论。空间是在开右半平面解析且有界的矩阵函数空间,其范数定义为: (1) 即矩阵函数在开右半平面的最大奇异值的上界。范数的物理意义是指系统获得的最大能量增益[3]。 鲁棒控制理论的实质是为MIMO(多输入多输出)且具有模型

非线性鲁棒控制

非线性鲁棒控制 1. 课题意义 针对机机械手的不确定性有两种基本控制策略:自适应控制和鲁棒控制。当受控系统参数发生变化时,自适应控制通过及时的辨识、学习和调整控制规律,可以达到一定的性能指标,但实时性要求严格,实现比较复杂,特别是存在非参数不确定性时,自适应控制难以保证系统的稳定性;而鲁棒控制可以在不确定因素一定变化范围内,做到“以不变应万变”,保证系统稳定和维持一定的性能指标,它是一种固定控制,比较容易实现,在自适应控制器对系统不确定性变化来不及做辨识以校正控制律时更显鲁棒控制的重要。 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。鲁棒控制的基本特征是用一个结构和参数都固定不变的控制器,来保证即使不确定性对系统的性能品质影响最恶劣的时候也能满足设计要求.不确定性可分为两大类,不确定的外部干扰和系统的模型误差,其中,模型误差受系统本身状态激励,同时又反过来作用于系统的动态。由于工况变动、外部干扰以及建模误差的缘故,而系统的各种故障也将导致模型的不确定性,实际工业过程的精确模型很难得到,在设计鲁棒控制器时,所有的不确定性可以是不可量测的,但是必须属于某个可描述集.鲁棒控制器就是基于标称系统数学模型和不确定的描述参数来设计的.因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为了国内外科研人员热衷的研究课题。 2. 发展与研究现状 μ方法。1981年Zames首次提出了著名的鲁棒控制理论发展的最突出标志是H∞和 H∞控制思想。Zames考虑了这样一个单输入、单输出系统的设计问题,即对于属于一个有限能量集的干扰信号,设计一个控制器使得闭环系统稳定且干扰对系统期望输出影响最小。由于传递函数H∞的范数可以描述有限能量到输出能量的最大增益,所以表示上述影响的传递函数H∞范数作为目标函数对系统进行优化设计,这就可使具有有限功率谱的干扰对系统期望输出的影响最小。 目前线性系统的鲁棒控制理论主要集中在进一步寻求行之有效的解法,从而使控制系统设计更加精确,更加实用,更加符合实际的需要,并将所得理论和方法进一步向Lurie系统、线性跳跃系统和关联系统扩展 3. 改进方法 变结构控制,其基本思想是在误差系统的状态空间中,寻找一个合适的超平面,以该超平面为基准不断切换控制器的结构,并保证超平面内所有的状态轨迹都收敛于零.这样,控制系统的行为就完全由滑模表面的特性所确定,而与系统本身的行为无关,因而变结构控制对于外界的干扰和模型误差是不敏感的,具有很强的鲁棒性能。由于变结构控制本身的不连续性,容易引起“抖振”现象,它轻则会引起执行部件的机械磨损,重则会激励未建模的高频动态响应。利用变结构的思想强迫状态轨迹趋于边界层,而在时变的边界层内,保持控制的平滑。这实际上达到了控制带宽和控制精度的最优折衷,这样就消除了控制的“抖振”,增加了系统对未建模动力学的不敏感性, 鲁棒自适应控制方法结合了自适应与鲁棒控制方法两者的优点在抗千扰能力以及克服“抖振”现象等方面都要比单独的自适应控制方法和变结构控制方法强,自适应控制律的鲁棒性增强方法

鲁棒控制系统设计

鲁棒控制系统设计

文档仅供参考,不当之处,请联系改正。 鲁棒控制设计报告 学院 专业 报告人

目录 1 绪论 (3) 1.1控制系统设计背景 (3) 1.2本文主要工作分配 (4) 2 一级倒立摆模型建立 (5) 2.1一级倒立摆的工作原理 (5) 2.2一级倒立摆的数学模型 (5) 3 H∞鲁棒控制器设计 (8) 3.1基于Riccati方程的H∞控制 (9) 3.2基于LMI的H∞控制 (10) 4 一级倒立摆系统的仿真 (13) 4.1一级倒立摆控制系统设计 (13) 4.2闭环控制系统仿真及分析 (14) 5 结论 (18)

1 绪论 1.1控制系统设计背景 一级倒立摆系统是一个典型非线性多变量不稳定系统,在研究火箭箭身的姿态稳定控制、机器人多自由度运动稳定设计、直升机飞行控制等多种领域中得到了广泛的应用,因此以倒立摆作为被控对象进行控制方法的研究具有重要的现实意义。为解决一级倒立摆系统的非线性、强耦合、多变量、自然不稳定问题,本文利用H∞鲁棒控制实现对一级倒立摆的控制。 Mg 图1.1 一级倒立摆系统结构图 本文采用的直线一级倒立摆的基本系统如图 1.1所示,它是由沿直线导轨运动的小车以及一端固定于小车上的材质均匀的摆杆组成,它是一个不稳定的系统,当倒立摆出出现偏角θ后,如

果不给小车施加控制力,倒立摆会倾倒。因此本文采用H∞鲁棒控制方法的目的是经过调节水平力F的大小控制小车的运动,使倒立摆处于竖立的垂直位置。控制指标为:倒立摆系统的从初始状态调节到小车停留在零点、并使摆杆的摆角为0的稳定状态。1.2本文主要工作分配 第一章:对一级倒立摆系统的特点、结构以及控制要求进行阐述。 第二章:根据一级倒立摆的结构,利用机理建模法建立被控对象的精确数学模型,并在系统平衡点处进行线性化,得到系统简化的状态方程。 第三章:首先H∞鲁棒控制的基本原理,然后分别利用Riccati方程和LMI方法设计H∞状态反馈控制器。 第四章:首先使用MATLAB计算基于Riccati方程的H∞状态反馈控制器和基于LMI的H∞状态反馈控制器,然后进行闭环控制系统的仿真并控制系统的性能分析。 第五章:对本次设计进行总结。

相关文档
最新文档