人脸图像采集

人脸图像采集
人脸图像采集

人脸图像采集:当容颜成为你的电子身份证

作者: 发表时间:2012-02-27 摘自:新华网来源:人民日报海外版

人面部特征示意图

在旅客穿梭的火车站台上,一位男士眨眼间就被特工锁定;一位女杀手刚现身,特工的手机便发出报警信号,并显现出她的姓名等信息。这是正在热映的《碟中谍4》中的经典镜头,它们向观众生动地展示着人脸识别科技的魅力。实际上,该片在不经意间为人脸识别科技做了一个大广告。一走出影院,一些观众赞叹最多的竟然不是主演汤姆·克鲁斯的高超演技,而是人脸识别科技等现代科技因素的无穷魅力。

人脸图像采集是基础

对人脸识别相关问题的研究,早在100多年前的达尔文时代就开始了,其表兄弟弗朗西斯·哥尔顿就致力于这方面的探索。但直到20世纪90年代,该课题才受到重视,作为一个独立学科快速发展起来。人脸识别包括了构建人脸识别系统的一系列相关技术,包括人脸图像库的建立、人脸检测和定位、特征提取、身份确认以及身份查找等。

人脸识别技术是基于人的脸部特征信息进行身份识别的一种生物识别技术。该技术应用的过程其实并不神秘。首先对目标进行检测,即判断输入的图像中是否存在人脸。如果是,便检测出人脸器官的位置和形状等信息。然后进行人脸比对,根据面部特征定位的结果,与数据库中的人脸进行对比,从而判断该人脸的身份信息。清华大学电子工程系苏光大教授介绍说,进行人脸识

别对比的具体方法有多种,比如几何特征人脸识别方法,该方法是根据眼、鼻、嘴等的形状和它们之间的几何关系进行对比识别。此外,还有基于特征的人脸识别法、神经网络人脸识别法等。

建立人脸图像数据库是人脸识别技术应用的基础工程,数据库信息的完备程度在很大程度上决定了人脸识别技术应用效果。苏光大介绍说,清华大学电子工程系曾承担“人脸识别查询技术”国家攻关课题,为此建有256万张人脸图像的人脸识别数据库,可以达到每秒256万张高速识别,也就是说,一张人脸图像在1秒钟内就可以和256万张人脸一一比对,轻松完成核查。

准确率最高可达99%

实现《碟中谍4》中人脸识别技术的高端应用当然离不开现代移动互联科技,实际上正是两者之间天衣无缝的融合,才达到令人惊叹的神奇效果。对此,盘古搜索的刘飞解释说,影片中的特工实际上佩戴了具有无线摄像功能的隐形眼镜,它可以实时捕获信息并通过蓝牙等近距传输工具发送给手机,手机将捕获的图像或视频通过无线通信上传至云端的搜索引擎,进而利用后台强大的人脸识别系统瞬间完成审查甄别,对目标身份信息做出判断。刘飞强调,这并不是什么科幻,目前现实生活中这一点已经能够做到。实际上,国内的一些公司已在开发人脸识别或物体识别技术,其产品可将识别抽取出的数据作为搜索请求并交由搜索引擎处理,从而锁定目标人物。中国移动通信研究院主任研究员邓小宁也指出,依托云计算的搜索引擎,人脸识别智能终端产品的功能已经比较强大,现在已完全有能力快速、准确地从图像中提取人脸信息,实现人物信息数据库比对。

目前人脸识别技术的准确度如何呢?长期研究人脸识别技术的南京航空航天大学计算机科学与技术学院教授谭晓阳说,现有的人脸识别系统在用户比较配合、采集条件比较理想的情况下,可以取得令人满意的结果。但是,在用户不配合、人脸信息采集条件不理想的情况下,现有系统的识别率将陡然下降。中国科学院自动化研究所博士张小博也认为,光照、姿态、装饰等,对机器识别人脸结果的准确性都有或多或少的影响。目前世界最先进的人脸识别系统也有1%识别误读率。

应用范围日趋广泛

虽然人脸识别技术的准确率目前还无法达到100%,但是由于其拥有识别速度快、不易被察觉等其它技术无法比拟的优越性,近些年得到日益广泛的应用,已经从原有的刑侦、安检等领域,进入物业管理、公司考勤等人们的日常工作和生活中。

在推进人脸识别技术在中国的应用过程中,2008年北京奥运会功不可没。奥运会主办方在对开闭幕式入场券进行实名制管理过程中,要求入场券持有者提交个人信息和身份照片,并利用人脸识别技术进行门票实名制身份验证,旨在消除潜在的安防漏洞,提高奥运安全防范和科技反恐水平。这实际上是奥运史上首次将人脸识别技术作为人员身份识别的智能化手段引入其安保工作,是人脸识别技术在华发展的里程碑,很多中国民众正是通过北京奥运安保,第一次接触、体验到该技术。

在网络技术飞速发展的背景下,信息被窃取事件层出不穷。近期发生的国内最大的程序员社区数据库遭黑客攻击、600余万用户信息泄露事件,再次提醒人们,防范黑客攻击、确保信息安全刻不容缓。在此背景下,知名互联网企业网易近日宣布将推出电子邮箱人脸识别系统,其邮箱用户可以选择在异地登录时要求人脸认证,或者短时间多次输错密码被锁定后进行人脸认证解锁。此举把人脸识别技术一步引入网络信息安全管理领域。

(完整版)基于CCD图像采集系统毕业设计

毕业设计(论文) 基于CCD图像采集系统

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

第1章绪论 1.1课题景背 近年来,随着工业的发展和安全意识的增强,对生产监测和控制的要求不断提高,在设备检测、安全监控、自动测量等工业测控领域,都需要有性能好、成本低、工作稳定、应用灵活方便的图像采集和处理系统。而CCD图像传感器正是目前常用的图像传感器之一。 CCD是Charge Coupled Device的缩写,是一种光电转换式图像传感器。它利用光电转换原理把图像信息直接转换成电信号,这样便实现了非电量的电测量。同时它还具有体积小、重量轻、噪声低、自扫描、工作速度快、测量精度高、寿命长等诸多优点,因此受到人们的高度重视,在精密测量、非接触无损检测、文件扫描与航空遥感等领域中,发挥着重要的作用。 20世纪70年代美国贝尔实验室的W.S.Boyle,G.E.Smith发现了电荷通过半导体势阱发生转移的现象,提出了电荷藕合这一新概念和一维CCD器件模型,同时预言了CCD器件在信号处理、信号储存及图像传感中的应用前景。近年来随着半导体材料与技术的发展,尤其是集成电路技术的不断进步,CCD图像传感器得到很大发展,性能迅速提高。同时CCD图像传感器的家族也在不断壮大。在原有的可见光CCD、红外CCD、微光CCD、紫外CCD和X射线CCD等各种CCD图像传感器的基础之上,90年代以来又出现了几种新的CCD图像传感器,例如:超级空穴堆积CCD、超高感度空穴堆积CCD、超级CCD和四色超级空穴堆积CCD 。世界上CCD图像传感器主要由索尼、富士、夏普、柯达、松下和菲利浦六家公司所生产。国内CCD图像传感器的研制不够迅速,尚

第二讲 文本素材的采集与处理

第二讲文本素材的采集与处理 本讲目标: 1.明确文本素材的五种获取方法。 2.掌握扫描仪的使用方法,会用扫描仪获取大量文本,并能利用文字识别软件对获取的文本进行修改编辑。 重点:获取文本素材的方法。 难点:大量文本的采集—扫描仪扫描文字识别法。 一、五种文本素材的获取方法 文本素材的获取有直接获取与间接获取两种方式,直接获取是指通过多媒体教学制作工具软件的文字工具或在文字编辑处理软件中用键盘直接输入或复制,一般在文本内容不多的场合下使用该方式。间接获取是指用扫描仪或其他输入设备输入文本素材,常用于大量文本的获取。 文本素材的获取方法如下: (1)键盘输入方法 键盘输入方法是文本输入的主要方法,使用计算机输入汉字,需要对汉字进行编码,根据汉字的某种规律将汉字用数字或英文字符编码,然后由计算机键盘输入。汉字有音、形、义三个要素,根据汉字读音的编码叫音码,根据汉字字形的编码叫形码,兼顾汉字读音和字形的编码叫音形码或形音码。在常用的多媒体教学制作软件中,都带有文字工具,在文本内容不多的情况下,可以直接输入文字,对输入的文字可进行直接编辑处理。 (2)手写输入方法 使用“输入笔”设备,在写字板上书写文字,来完成文本输入,利用手写输入法获取文本的方式,类似于平时我们在纸上写字,但对在写字板上书写的文字要经选择。手写输入方法使用的输入笔有两种:一种是与写字板相连的有线笔,另一种是无线笔。无线笔携带和使用均很方便,是手写输入笔的发展方向。写字板也有两种,一种是电阻式,另一种是感应式。 (3)语音输入方法 将要输入的文字内容用规范的语音朗读出来,通过麦克风等输入设备送到计算机中,计算机的语音识别系统对语音进行识别,将语音转换为相应的文字,完成文字的输入。 语音输入方法目前开始使用,但识别率还不是很高,对发音的准确性要求比较高。 (4)扫描仪输入法 将印刷品中的文字以图像的方式扫描到计算机中,再用光学识别器(OCR)软件将图像中的文字识别出来,并转换为文本格式的文件。目前,OCR的英文识别率可达90%以上,中文识别率可达85%以上。 (5)从互联网上获取文本 从互联网上可以搜索到许多有用的文本素材,在不侵犯版权的情况下,可以从互联网上获取有用的文字。从互联网的html页面上获取部分文本的方法是:首先拖动鼠标选取有用的文本,或单击鼠标右键,在弹出的快捷菜单中,选择“全选”命令,将整个页面上文字全部选中,然后选择“复制”命令,打开文字处理软件(如Word),选择“编辑”/“粘贴”命令,就可以将复制的文字在文字处理软件中进行编辑处理了。如果将互联网上其他格式的文本文件(如:.pdf,.caj)格式的文件进行保存,然后使用部分有用文本,常用的方法是:选择“文件”菜单中的“另存为”命令,将文本文件进行保存,

视频采集系统

数字图象处理技术在电子通信与信息处理领域得到了广泛的应用,设计一种功能灵活、使用方便、便于嵌入到监控系统中的视频信号采集电路具有重要的实用意义。 在研究基于DSP的视频监控系统时,考虑到高速实时处理及实用化两方面的具体要求,需要开发一种具有高速、高集成度等特点的视频图象信号采集监控系统,为此监控系统采用专用视频解码芯片和复杂可编程逻辑器件(CPLD)构成前端图象采集部分。设计上采用专用视频解码芯片,以CPLD器件作为控制单元和外围接口,以FIFO为缓存结构,能够有效地实现视频信号的采集与读取的高速并行,具有整体电路简单、可靠性高、集成度高、接口方便等优点,无需更改硬件电路,就可以应用于各种视频信号处理监控系统中。使得原来非常复杂的电路设计得到了极大的简化,并且使原来纯硬件的设计,变成软件和硬件的混合设计,使整个监控系统的设计增加柔韧性。 1 监控系统硬件平台结构 监控系统平台硬件结构如图1所示。整个监控系统分为两部分,分别是图象采集监控系统和基于DSP主监控系统。前者是一个基于SAA7110A/SAA7110视频解码芯片,由复杂可编程逻辑芯片CPLD实现精确采样的高速视频采集监控系统;后者是通用数字信号处理监控系统,它主要包括:64K WORD程序存储器、64K WORD数据存储器、DSP、时钟产生电路、串行接口及相应的电平转换电路等。 监控系统的工作流程是,首先由图象采集监控系统按QCIF格式精确采集指定区域的视频图象数据,暂存于帧存储器FIFO中;由DSP将暂存于FIFO中的数据读入DSP的数据存储器中,与原先的几帧图象数据一起进行基于H.263的视频数据压缩;然后由DSP将压缩后的视频数据平滑地从串行接口输出,由普通MODEM或ADSL MODEM传送到远端的监控中心,监控中心的PC机收到数据后进行相应的解码,并将还原后的视频图象进行显示或进行基于WEB的广播。 2 视频信号采集监控系统 2.1 视频信号采集监控系统的基本特性 一般的视频信号采集监控系统一般由视频信号经箝位放大、同步信号分离、亮度/色度信号分离和A/D变换等部分组成,采样数据按照一定的时序和总线要求,输出到数据总线上,从而完成视频信号的解码,图中的存储器作为帧采样缓冲存储器,可以适应不同总线、输出格式和时序要求的总线接口。 视频信号采集监控系统是高速数据采集监控系统的一个特例。过去的视频信号采集监控系统采用小规模数字和模拟器件,来实现高速运算放大、同步信号分离、亮度/色度信号分离、高速A/D变换、锁相环、时序逻辑控制等电路的功能。但由于监控系统的采样频率和工作时钟高达数十兆赫兹,且器件集成度低,布线复杂,级间和器件间耦合干扰大,因此开发和调试都十分困难;另一方面,为达到精确采样的目的,采样时钟需要和输人的视频信号构成同步关系,因而,利用分离出来的同步信号和监控系统采样时钟进行锁相,产生精确同步的采样时钟,成为设计和调试过程中的另一个难点。同时,通过实现亮度、色度、对比度、视频前级放大增益的可编程控制,达到视频信号采集的智能化,又是以往监控系统难以完成的。关于这一点,在监控系统初期开发过程中已有深切体会[1]。 基于以上考虑,本监控系统采用了SAA7110A作为视频监控系统的输入前端视频采样处理器。 2.2 视频图象采集监控系统设计 SAA7110/SAA7110A是高集成度、功能完善的大规模视频解码集成电路[2]。它采用PLCC68封装,内部集成了视频信号采样所需的2个8bit模/数转换器,时钟产生电路和亮度、对比度、饱和度控制等外围电路,用它来替代原来的分立电路,极大地减小监控系统设计的工作量,并通过内置的大量功能电路和控制寄存器来实现功能的灵活配置。

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

图像采集卡是什么【全面解析】

图像采集卡是什么 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 图像采集卡(Image Capture Card),又称图像捕捉卡,是一种可以获取数字化视频图像信息,并将其存储和播放出来的硬件设备。很多图像采集卡能在捕捉视频信息的同时获得伴音,使音频部分和视频部分在数字化时同步保存、同步播放。 图像采集卡,其功能是将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。它是我们进行图像处理必不可少的硬件设备,通过它,我们就可以把摄像机拍摄的视频信号从摄像带上转存到计算机中,利用相关的视频编辑软件,对数字化的视频信号进行后期编辑处理,比如剪切画面、添加滤镱、字幕和音效、设置转场效果以及加入各种视频特效等等。后将编辑完成的视频信号转换成标准的VCD、DVD以及网上流行媒体等格式,方便传播。 采集,视频/图象经过采样、量化以后转换为数字图象并输入、存储到帧存储器的过程。由于图像信号的传输需要很高的传输速度,通用的传输接口不能满足要求,因此需要图像采集卡。 图像采集卡信号采集流程 从视频源得到的信号,经过视频接口送到视频采集卡,信号首先经过模数转换,然后送到数字解码器解码。模数转换器ADC实际上也是一个视频解码器,可以看出它对来自视频源的视频信号解码和数字化,另外,采用不同的颜色空间可选择不同的视频输入解码器芯片。 视频采集就是将视频源的模拟信号通过处理转变成数码信息,并将这些数码信息存储在电脑硬盘上的过程。这种模拟数码转变是通过视频采集卡上的采集芯片进行的。通常在采集过程,对数码信息还进行一定形式的实时压缩处理。

PCB图像采集系统研究背景意义及国内外现状

PCB 图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI 系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board, PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1) 容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2) 检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3) 随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4) 在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5) 有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选择丢

基于arm的视频图像采集系统

基于arm的视频图像采集系统 摘要:本系统采用了Samsung公司生产的S3C2440芯片作为嵌入式处理器,再结合系统所需的外围硬件构成基本硬件电路。主要包括二大部分:处理器和存储器部分;电源时钟复位电路部分;外围接口电路部分。在对各部分硬件进行详细设计后,接下来详细介绍了嵌入式软件平台的构建,包括如何移植Linux操作系统:基于嵌入式Linux下USB接口摄像头视频设备采集;移植H.264视频压缩库和视频传输程序的编写。 1 抓拍系统开发环境的构建 本文所设计的采集系统按功能可划分为嵌入式主控模块、视频采集模块、网络传输模块、等三大部分。图1-1为本系统的系统框架图: 1. USB数字摄像头采集图像数据: 2.采集传输应用程序通过摄像头驱动从摄像头获取到采集的图像数据: 3.采集传输应用程序调用H.264编码库对图像数据进行压缩: 4.采集传输应用程序将压缩后的图像数据通过网络传输给windows PC上 的显示程序: 5. Windows上的显示程序对图像数据进行解码并显示: 图1-1软件架构图 本系统的嵌入式主控模块是基于Samsung公司生产的S3C2440这款处理器,主要作用是实现对各模块数据的响应、处理以及控制。在硬件上,主控模块包括电源、时钟、复位电路、存储模块、以太网接口电路等。在软件上,主控模块上运行Linux操作系统,管理各应用程序模块进程并调度各进程。

1.1采集系统的硬件平台设计 本系统的核心处理器为二星公司的S3C2440,外扩64M的SDRAM存储器以及64M 的FLASH存储器,外围接口电路模块:包括USB接口电路,以太网网卡DM9000接口电路以及网眼3000的数字摄像头等。本系统的硬件结构如图1-2所示。 图1-2系统硬件架构图 1.1.1电源、时钟模块设计 系统各部分硬件要求提供1.8V和3V的电压。其中S3C2440处理器内核需要提供1.8V 电源,NandFlash, SDRAM及DM9000等芯片需要提供3V电源,所以本系统采用了LM1117-3.3和LM1117-1.8电压转换芯片设计稳压电源,得到1.8V和3.3V的所需电压。USB 控制器需要提供5V的电源。本文采用了5V直流电压供电。LM1117是一个低压差电压调节器系列。其压差在1.2V输出,负载电流为800mA时为1.2V 。LM1117有5个固定电压输出(1.8V, 2.5V, 2.85V, 3.3V和5V)的型号。根据本系统的需要,这里选用了电压输出为1.8V 和3.3V两型号。 时钟电路为CPU和其它外围电路提供精准的工作时钟,按照电路中设计使用的器件特性分为有源和无源晶振,在本系统的设计电路中采用的是无源晶振。ARM芯片均提供时钟发生电路,结合一定的辅助电路的配合就可以得到所需要的时钟信号。基十ARMS的这款S3C2440芯片的时钟控制逻辑可以产生为CPU核供给时钟信号的FCLK、为AHB总线供给时钟信号的HCLK、为APB总线供给时钟信号的PCLK。 1.1.2外部存储器的扩展 S3C2440微处理器存储空间仅有32M,应用于本系统,需要外扩存储器。本设计采用两片二星公司的HY57V561620来扩展64M的SDRAM。它们均4M* 16bit*4bank的SDRAM 芯片,这样,两片SDRAM实现了位扩展,数据总线达到了32bit,构成64M寻址空间。图1-3为S3C2440与NandFlash的接口图。

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

视频交通流采集系统解决方案

视频交通流信息采集系统解决方案 1概述 视频交通流信息采集系统主要包括视频图像采集设备、视频传输网络、交通流视频检测器等。视频检测器采用虚拟线圈技术,利用边缘信息作为车辆的检测特征,实时自动提取和更新背景边缘,受环境光线变化和阴影的影响较小;同时采用动态窗的方式来进行车辆计数,解决了采用以往固定窗方式进行车辆计数时由于车辆变道而导致的错误、重复计数问题。视频检测器能对视频图像采集设备或交通电视监视系统的视频信号自动进行检测,主要采集道路的微观交通信息如流量、速度、占有率、车辆间距、排队长度等,适用于近景监控模式。 2系统功能及特点介绍 2.1数据接口设计 视频交通流信息采集系统可以通过调用本项目提供的交通流数据统一接入接口,或由本项目提供数据格式标准化及上传程序,将采集到的交通流数据共享给本项目相关系统,以实现视频交通流数据的采集功能。 图1 数据接口设计 2.2系统功能 交通流信息视频检测系统的主要功能如下: (1)车辆检测 系统能够对输入的视频流图像进行车型、车牌等特征检测。

(2)交通流数据采集功能 系统可以采集交通流数据包括交通流量、平均车速、车道占有率、车型、平均车头间距、车辆排队长度、车辆密度、交通流状态等,交通流数据采集时间间隔在1~60分钟任意可调。 图 2 视频交通流检测模块 (3)视频图像跟踪功能 系统能对单路监控前端设备在不同预置位采集的视频图像进行不同区域不同事件的自动检测。一旦检测到特定的交通事件,事件检测器应具有该交通事件的视频图像目标自动跟踪、记录、分析功能。 当输入的视频图像不为设定的预置位的视频图像,系统应能自动不进行事件检测。一旦监控前端设备恢复至设定的预置位,系统应能自动进行事件检测。 (4)事件图像抓拍、录像功能 系统可以根据用户的设置,完成相应的录像和图片抓拍功能。 事件录像可以按摄像机、按事件类型、按时间归档存储在系统的预录像子系统中,由系统服务器进行统一的管理调用。 系统循环进行录像,当发生交通异常事件时,系统能够提供事发之前和之后的3分钟间的录像(可设置)。 系统可通过多种组合查询条件对视频交通流检测所采集的数据进行统计,包括时间-流量统计、时间-平均车速统计、时间-占有率统计、速度-流量统计等;统计结果可导出为

高清监控系统方案

高清监控系统解决方案

目录 1.系统概述 ..................................................................................................................................... 1-1 2.设计规范及标准 ......................................................................................................................... 2-1 3.缩写词和术语 ............................................................................................................................. 3-1 3.1.缩写词 .................................................................................................................................. 3-1 3.2.术语 ...................................................................................................................................... 3-2 4.系统构成 ..................................................................................................................................... 4-1 4.1.图像采集部分 ...................................................................................................................... 4-1 4.2.通信传输部分 ...................................................................................................................... 4-3 4.3.监控中心 .............................................................................................................................. 4-3 4.3.1.系统管理平台 .............................................................................................................. 4-4 4.3.2.中心显示...................................................................................................................... 4-5 4.3.3.网络存储...................................................................................................................... 4-7 5.系统功能 ..................................................................................................................................... 5-1 5.1.基本功能 .............................................................................................................................. 5-2 5.1.1.监视功能...................................................................................................................... 5-2 5.1.2.录像及回放功能 .......................................................................................................... 5-3 5.1.3.控制功能...................................................................................................................... 5-3 5.1.4.用户与权限管理 .......................................................................................................... 5-3 5.2.基于ATMS集成平台的扩展功能...................................................................................... 5-4 5.2.1.违法抓拍功能 .............................................................................................................. 5-4 5.2.2.视频分组显示功能 ...................................................................................................... 5-7

图像采集系统设计

DSP实习报告 题目:图像采集系统的设计 班级:xxx 姓名:xxx 学号:xxx 指导老师:xxxx

目录 一.实习题目 (3) 二.实习背景知识 (3) 三.实习内容 (5) 四.实习程序功能与结构说明 (8) 六.实习心得 (19)

一、实习题目 图像采集系统的设计 二、实习目的: 1、熟练掌握数字信号处理的典型设计方法与技术手段; 2、熟悉D6437视频输入,输出端的操作及编程。; 3、掌握常用电子仪器设备的使用方法; 4、熟悉锐化变换算法。 三、实习背景知识 1、计算机 2、CCS3.3.软件 3、DSP仿真器 4、EL_DM6437平台 EL-DM6437EVM是低成本,高度集成的高性能视频信号处理开发平台,可以开发仿真达芬奇系列DSP应用程序,同时也可以将该产品集成到用户的具体应用系统中。方便灵活的接口为用户提供良好的开放平台。采用该系列板卡进行产品开发或系统集成可以大大减少用户的产品开发时间。板卡结构框图如图所示:

板卡硬件资源: TMS320DM6437 DSP ,可工作在400/600 MHz; 2 路视频输入,包括一个复合视频输入及一个S端子视频输入; 保留了视频输入接口,可以方便与CMOS影像传感器连接; 3 路视频输出,包括2路复合视频,一路S端子输出; 128MByte 的DDR2 SDRAM存储器,256MBit的Nor Flash存储器;用户可选的NAND Flash接口; 可选的256K字节的I2C E2PROM; 1个10M/100Mbps自适应以太网接口; 1 路立体声音频输入、1路麦克风输入,1路立体声音频输出; USB2.0高速接口,方便与PC连接; 1个CAN总线、1个UART接口、实时时钟(带256Byte的电池保持RAM);4个DIP开关,4个状态指示LED; 可配置的BOOT模式; 10层板制作工艺,稳定可靠; 标准外部信号扩展接口; JTAG仿真器接口; 单电源+5V供电; 板卡软件资源:

图像采集系统的制作方法

本技术涉及一种图像采集系统,其能够适用于对不同分辨率、不同图像输出接口的相机,并且具备自检功能,实现对自身系统误差进行检测,大大提高了图像采集工作的工作效率和可靠性。该系统包括相机和上位机;还包括分别与相机和上位机相互通讯的相机通用检测设备;相机通用检测设备包括子板以及母板;子板包括第一基板、设置在第一基板上的N个相机接口、N个接口芯片、N个电平转换芯片以及第一电连接器;母板包括第二基板、设置在第二基板上的电源模块、第二电连接器、FPGA芯片、SDRAM芯片、串行UART接口以及数据传输接口;第一电连接器和第二电连接器是板间电连接器,通过这两个电连接器将第一基板和第二基板互联起来。 技术要求 1.一种图像采集系统,包括相机和上位机;其改进之处在于:还包括分别与相机和上位机相互通讯的相机通用检测设备; 相机通用检测设备包括子板以及母板; 子板包括第一基板、设置在第一基板上的N个相机接口、N个接口芯片、N个电平转换芯片以及第一电连接器; 母板包括第二基板、设置在第二基板上的电源模块、第二电连接器、FPGA芯片、SDRAM芯片、串行UART接口以及数据传输接口; 第一电连接器和第二电连接器是板间电连接器,通过这两个电连接器将第一基板和第二基板互联起来; 相机图像输出接口与第一基板上的接口芯片、相机接口、电平转换芯片电连接,用于对图像数据进行传输和处理; 第二基板上的SDRAM芯片、串行UART接口以及数据输出接口均与FPGA芯片电连接; 串行UART接口与上位机电连接用于接收上位机发送的控制指令,数据输出接口与上位机通过千兆以太网实现物理连接,通过标准的UDP协议实现相互通讯; 电源模块用于给相机供电。 2.根据权利要求1所述的图像采集系统,其特征在于: 所述FPGA芯片上运行的模块包括:图像接口控制模块、图像数据缓存模块、虚拟相机控制模块、以太网数据打包模块、以太网发送模块、SDRAM控制模块以及UART模块; 图像接口控制模块针对不同的接口的相机产生不同的时序接口波形,控制接口芯片完成相机图像数据的正确采集; 图像数据缓存模块将采集到的图像数据缓存到FPGA内部的FIFO中,并在缓存到特定FIFO深度的时候,通知以太网数据打包模块读取FIFO内部的数据,并按照协议进行打包; 虚拟相机控制模块根据上位机的指令设置,产生不同分辨率的15个虚拟相机图像,且在同一时刻,只产生一种虚拟相机图像用于对相机自身进行检测; 以太网数据打包模块根据上位机的指令设置,选择“图像数据缓存模块”或者“虚拟相机控制模块”的其中一个,读取其中的数据进行以太网数据打包;

基于摄像头的图像采集与处理应用

基于摄像头得图像采集与处理应用 1、摄像头工作原理 图像传感器,就是组成数字摄像头得重要组成部分。根据元件得材料不同,可分为 CCD(Charge Coupled Device,电荷耦合元件)与CMOS(plementary MetalOxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度得半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部得闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机得处理手段,根据需要与想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有得感光单位所产生得信号加在一起,就构成了一幅完整得画面。 互补性氧化金属半导体CMOS(plementary MetalOxide Semiconductor)与CCD一样同为在图像传感器中可记录光线变化得半导体。CMOS主要就是利用硅与锗这两种元素所做成得半导体,使其在CMOS上共存着带N(带–电)与P(带+电)级得半导体,这两个互补效应所产生得电流即可被处理芯片纪录与解读成影像。然而,CMOS得缺点就就是太容易出现杂点, 这主要就是因为早期得设计使CMOS在处理快速变化得影像时,由于电流变化过于频繁而会产生过热得现象。 CCD与CMOS在制造上得主要区别就是CCD就是集成在半导体单晶材料上,而CMOS就是集成在被称做金属氧化物得半导体材料上,工作原理没有本质得区别。CCD制造工艺较复杂,采用CCD得摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD与CMOS得实际效果得差距已经减小了不少。而且CMOS得制造成本与功耗都要低于CCD不少,所以很多摄像头生产厂商采用得CMOS感光元件。成像方面:在相同像素下CCD得成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS得产品往往通透性一般,对实物得色彩还原能力偏弱,曝光也都不太好,由于自身物理特性得原因,CMOS得成像质量与CCD还就是有一定距离得。但由于低廉得价格以及高度得整合性,因此在摄像头领域还就是得到了广泛得应用 工作原理:为了方便大家理解,我们拿人得眼睛来打个比方。当光线照射景物,景物上得光线反射通过人得晶状体聚焦,在视网膜上就可以形成图像,然后视网膜得神经感知到图像将信息传到大脑,我们就能瞧见东西了。摄像头成像得原理与这个过程非常相似,光线照射景物,景物上得光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分就是这样得,摄像头按一定得分辨率,以隔行扫描得方式采集图像上得点,当扫描到某点时,就通过图像传感芯片将该点处图像得灰度转换成与灰度一一对应得电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上得一行,则输出就就是

基于摄像头的图像采集与处理应用

基于摄像头的图像采集与处理应用 1、摄像头工作原理 图像传感器,是组成数字摄像头的重要组成部分。根据元件的材料不同,可分为CCD (Charge Coupled Device,电荷耦合元件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。 互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在图像传感器中可记录光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用 工作原理:为了方便大家理解,我们拿人的眼睛来打个比方。当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分是这样的,摄像头按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上的一行,则输出

基于单片机的图像处理采集系统

( 二 〇 一 二 年 六 月 本科毕业设计说明书 题 目:基于单片机的图像处理采集系统设 计与实现 学生姓名: 学 院: 系 别: 专 业: 班 级: 指导教师:

摘要 传统的工业级图像处理采集系统大多是由CCD摄像头、图像采集卡和PC机组成,虽已得到了广泛的应用,但是它具有结构复杂,成本高,体积大,功耗大等缺点。随着单片机的迅速发展,开发一种智能控制及智能处理功能的微型图像处理采集系统成为可能,并且也克服了传统图像处理采集系统的诸多缺点。 本设计提出了基于单片机的图像采集系统,该系统主要由四大模块组成:第一个是单片机控制模块,对摄像头进行控制;第二个是摄像头模块,即进行图像拍摄和取图;第三个是Zigbee无线传输模块,功能是将图像传送到上位机;最后是上位机,实现图像显示功能。其优点是硬件电路简单,软件功能完善,控制系统可靠,性价比较高,使用环境广泛及成本低等。利用Proteus和Keil进行仿真调试,可以看到设计内容的运行结果,验证系统运的行正确及稳定性,并且实现了图像处理采集功能,所以具有一定的实用和参考价值。 关键词:单片机;Proteus;图像采集

Abstract The traditional industrial image processing collection system by CCD camera, mostly image collection card and PC unit into, although already a wide range of applications, but it has the structure is complex, high cost, big volume and shortcomings, such as big power consumption. With the rapid development of the single chip microcomputer, the development of a kind of intelligent control and intelligent processing function of micro image processing collection system possible, and also overcome traditional image processing collection system of many of the faults. This design is put forward based on SCM image acquisition system, the system consists of four modules: the first one is the single chip microcomputer control module, the camera to control; The second is a camera module, the image shoot and take diagram; The third is Zigbee wireless transmission module, the function is will images to PC; Finally the PC, realize image display function. Its advantage is hardware circuit is simple, software perfect function, control system and reliable, high cost performance, use extensive and environment cost low status. Use Proteus and Keil simulation commissioning, can see the operation of the design content, as demonstrated the correct and do the system stability, and realize the image processing collection function, so has certain practical and reference value. Keywords:Single-Chip Microcomputer;Proteus; Image Capture

相关文档
最新文档