电光源资料-坐标与色温公式

电光源资料-坐标与色温公式
电光源资料-坐标与色温公式

用InGaN蓝光LED与YAG荧光粉制造自然白光LED The Fabrication of White LED Using InGaN Blue LED

and YAG Fluorescence

物理学院物理学系98级王宇方

摘要

本文报导了通过结合自行研制的InGaN/GaN蓝光发光二极管(LED)与钇铝石榴石(YAG)荧光粉结合而得的白光发光二极管(W-LED)。在室温、正向电压3.5V、正向电流20mA时W-LED轴向亮度为1cd,CIE色坐标为(0.31,0.38),接近纯白色(0.33,0.33)。

关键词:白光,LED,Y AG荧光粉

Abstract

It is reported that the white light emitting diodes are fabricated by combining InGaN/GaN blue LED and YAG fluorescence. At forward voltage

V f =3.5V, forward current I

f

=20mA, and room temperature, the luminous

intensity of the white LED is 1cd, and the chromaticity coordinate (x, y) (0.31, 0.38), which is near to the pure white (0.33,0.33).

Key words: white light, LED, YAG fluorescence

全固体白光发光二极管(W-LED)将作为照明光源取代以爱迪生发明的白炽灯泡为代表的照明光源,引发照明界的一场革命,已取得科学界与产业界的共识。[1,2]

作为照明光源,W-LED具有体积小、寿命长等优点,而且,与白炽灯相比,后者的辐射主要集中在红外区,产生大量热量,W-LED则是一种冷光源,辐射主要集中在可见光区,几乎不产生热,也消除了非可见光区电磁波对人体的危害;与荧光灯相比,W-LED的制造与使用过程都不会引入汞的污染,与叠有许多线状光谱的荧光灯光谱,W-LED的连续光谱更接近自然光;此外,由于使用低于5V 的直流电源,W-LED不会有50Hz的闪烁现象;由于灯体封装在树脂中,W-LED 对震动等因素不敏感,比灯丝或灯管对环境的适应性更高。

基于LED的种种优点,它将能取代部分难以更换或昂贵的发光设备,比如目前已开始应用在交通照明以及背景光照明等,[4]甚至在医学上,W-LED被用于内窥镜的照明,使无引线内窥镜得以实现。[5]

近年来,随着气相外延生长的化合物半导体薄膜技术的改进,特别是在金属有机化合气相沉积(MOCVD)技术方面取得的巨大进展。用MOCVD方法制成的发光二极管(LED)显著的提高了发光强度,并增加了颜色的变化范围。GaN基蓝色LED出现后,红绿蓝三色LED全部完成,几乎可以实现人眼能分辨的全部颜色。其中白色LED成了人们关注的焦点。[6]

1931国际照明委员会(CIE)色度图(如图1)显示了颜色之间的关系。色度图是建立在人眼视网膜上有三种不同的颜色感应细胞的基础上。相应每种细胞的不同响应,每种颜色可以用三个色度参量(X,Y,Z)来表示。又由于理论上任何颜色都可以用三基色混合而成,用归一化的色坐标(x,y,z)表示这三种

基色所占的份量,x+y+z=100%,z由(x,y)唯一确定,因此任何颜色都可以用(x,y)色度图上的点来表示。图中E是概念中的纯白色,坐标为(0.33,0.33)。作为色彩混合的一个例子,白光可以用若干方法得到。它可以是可见光区的连续光谱,如日光、白炽灯的黑体辐射,也可以是由若干光谱色合成,如汞灯的线状光谱。[7] 这里的W-LED所发出的白光是由InGaN/GaN蓝光LED的蓝光与YAG荧光粉发出的黄光合成,[5]色坐标(0.31,0.38)接近纯白色点。

图1:CIE(x,y)色度图。其中E代表纯白色,X带表W-LED的颜色。

照明光的光谱不同,物体反射光的颜色也不同,甚至面目全非。人们习惯于看日光下的东西,所以用日光来定义照明光的显色指数,也就是色彩还原性。规定能将标准检测色还原到日光下颜色的光源,其显色指数为100,显色指数的最大值。W-LED显色指数为60~70,与普通荧光灯接近。

采用低压MOCVD技术制成的单量子阱(SQW)InGaN/GaN蓝光LED的电致发光光谱如图2,发光峰为460nm,半峰值全宽(FWHM)为30nm,荧光染料是高温烧结制成的含Ce3+的钇铝石榴石(YAG)荧光粉,吸收峰为460nm,发射光谱如图3。发射谱是可见光区内的宽谱,峰值550nm,颜色为黄色。蓝光LED基片安装在碗形反射腔中,覆盖以混有YAG的树脂薄层,约200-500nm,YAG的质量含量为30-50%。LED基片发出的蓝光部分被荧光粉吸收,另一部分蓝光与荧光粉发出的黄光混合,可以得到得白光。之所以采用这种方法,是因为这样得到的白光均匀稳定,与红绿蓝三基色白光等相比,更接近自然日光。[4]发光部分封装在树脂中,成为直径3mm(Φ3)的LED。

图2,蓝光光谱图3,YAG发射光谱

改变YAG的含量制得一系列LED,它们颜色的(x,y)坐标如图4所示。正如色彩相加混合原理所预计,它们分布在直线AB上,E是概念中的纯白光。这说明可以通过改变YAG的含量来控制LED的固有色。进一步加大YAG含量,则有可能得到不同的白色甚至黄色。

图4.LED色度随荧光粉含量的变化

W-LED的xy色坐标为(0.31,0.38)。根据相关色温公式(McCamy,1992)[8]:T=-437n3+3601n2-6861n+5514.31 n=(x-0.3320)/(y-0.1858)

可知其色温为6400K。调节荧光粉的含量,色温可以在5000~20000K间变化。通过对标准检测色的还原程度计算[8],W-LED的显色指数多在70左右。

发光光谱如图5,亮度通常是1cd,个别达到2cd,甚至3cd以上。可以看出发光光谱是由一个宽带和一个窄带组成,峰值分别在460nm,即蓝光LED发射峰和主要在550nm的宽带谱,即YAG的发射峰。光谱能量分布集中在可见光区,包含了从蓝到红的全可见波长。

图5.白色LED光谱图6.白色LED光强角分布

W-LED光强的角分布如图6。可以看出它是一种高聚光发光二极管,半强度角约为150。同时,改善封装工艺,减小半强度角或提高YAG在树脂中溶解的均匀性,也有助于提高轴向亮度。使其具有更好的色彩还原性。并且通过控制YAG 含量得到一系列适用于不同用途的白色,如冷白、日光色、暖白、紫白等。

总之,W-LED是结合InGaN蓝色LED与YAG荧光粉而得,固有色随荧光物质的量变化而改变。在室温,正向电压3.5V,正向电流20mA时,轴向亮度1cd,xy色度坐标(0.31,0.38)。

致谢

衷心感谢张国义老师一年来在科研上给我的精心指导与接触前沿科技的机遇,张老师渊博的知识,严谨的治学态度,独到的见解给我留下了深刻的印象。感谢杨志坚老师在实验上对我的指导,鼓励我放开手脚,大胆灵活地实现我的想法。感谢丁晓民老师教我养成一丝不苟的科研习惯,丁老师对我的学习、生活和工作都十分关心,她无微不至的关怀让我深受感动。感谢GaN系列材料与器件研究组的全体老师和同学对我的关心与帮助。感谢 政基金给我这个走进实验室的机会。

参考文献:

[1]梁春广,半导体情报 2000,37(1):1

[2]Savage N, Technology Review, 2000, 103(5):38

[3]Engelke R, Electronic Design, 1999, 47(1):20

[4]Cohen S, Electronic News, 1997, 43(2115):25

[5]Iddan G, Nature, 2000, 405(6785):417

[6]杨笑卫,中国照明电器2000,1:27

[7]Ponce F A, Bour D P. Nature 1997,386(2):351-9

[8]大田登,色彩工学,西安交通大学出版社1998:102

作者简介:王宇方,女,1981年生,江西南昌人,1998年入北京大学物理系学习并参加北京大学理科试验班。2000年参加 政基金活动,在张国义老师指导下研究白光发光二极管的实现。2000年底研究组的白光发光二极管项目通过863成果验收。2001年参加全国光电子器件与集成技术会议,论文收入会议论文集,后来被转载于“国际光电与显示”2001年8月第141页。同时该论文也被“高技术通讯”杂志接收。

感悟与寄语:这一年来我看了很多书,学到很多知识;接触了很多人,交了很多

朋友。而最主要的就是我感受到了研究的乐趣。虽然由于进实验室,我不得不牺牲一些课余时间,推迟一些个人的计划,但这段宝贵的经历将使我终生难忘。

指导教师简介:张国义博士是北京大学物理学院教授,博士生导师,中国物理学会发光学会理事会常务理事,中国电子协会理事,《发光学报》、《液晶与显示》编辑委员会委员。自1993年领导课题组开展氮化物半导体材料和器件的研究,先后两次组织召开国际氮化物半导体材料和器件专题研讨会,多次参加国际会议,多次被聘任为重大氮化物半导体国际会议的委员,发表论文100多篇,取得了丰硕研究成果。

照度计算公式

照度计算公式 E=(Φ×n×N×MF×UF)/A 式中,E=工作面的维护平均照度(lx); Φ=灯初始光通量(lm) n= 每个灯具所含光源的数量 N=灯具数量 MF=设备维护系数 UF=设备利用系数 A=工作面的面积 一个灯具在给室内的利用系数UF是照射到工作面上所有光通量与设备中所有灯发出的光通量之比。这一系数包括反射光、相互反射光及来自灯具的直接光。它的值取决于房间的形状、高度、墙壁的反射率及灯具的光强分布。 MF=设备维护系数一般取之间。 UF=设备利用系数(由于范围更宽)一般取之间。 一般室内取,体育取 维护系数:一般取~ 实例:一个100平方米的办公室,层高3米,工程方要求的照度是

500lx,要用我公司的3*36W T8灯盘,请问要用多少套用上面的公司计算,取MF(设备维护系数)为,UF(设备利用系数)为,假设要用3*36W T8灯盘X套, 公式E=(Φ×n×N×MF×UF)/A 即:500=(3300×3×X××)/100 X= 约9套 照度计算方法 利用系数法计算平均照度 平均照度 (Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数: 一般室内取,体育取 维护系数:一般取~ 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)××÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例 2: 体育馆照明:20×40米场地, 使用POWRSPOT 1000W金卤灯60套 平均照度=光源总光通量×CU×MF/面积

色温 (CCT) 和色度坐标 (x, y 值)

一、关于led灯具SSL规范的概述 今年 5 月份,LED 灯具的能源之星的规范,美洲已公开草案;估计今年的 8 至9 月份,会上升为最终版本,并于9 个月后,即08 年6 月份,授理ENERGY STAR申请;本规范是由 美国能源部DOE 负责组织, Lighting Research Center 技术负责; 二、重要流行词 1、SSL (Solid-State Lighting 固态照明) vs. Semi-conductor Lighting (半导体照明) vs. LED Lighting (LED 照明) SSL:(在Internet 网络上,SSL 在90 年代即有, 是Internet 传输加密协议缩略词SSL =Secure Socket Layer; )如今,在国外,有关研究 LED 的政府机构,公司和机构,很流行用 SSL 代替LED; 然而,目前,SSL 还没有给出正式定义,在美国的LRC 网站上,“What is SSL?”,只是解释为: SSL 是区别于传统的灯丝白帜发光和气体放电发光原理,由半导体的电子发光,包括LED,OLED,Laser Diode (LD),light-emitting polymers. 2、半导体照明 (Semi-conductor Lighting), 在中国政府机构,沿用过去的称谓“半导体照明”较多;但是,LED 产品,技术和标准,美国领先其他国家许多;中国也会随美国技术潮流使用SSL 称谓,尤其在DOE 公开本规范后; 三、我们的目的 1、本规范是第一部LED 照明的性能参数标准,指明了LED 照明的基本要求; 2、LED 灯具的ENERGY STAR认证,要在08 年6 月前讨论;但是,我们可以提前借鉴此规范化的参数标准,应用到研发品质行销工作中,是有帮助的; 3、本规范是如何基于荧光灯,建立 SSL-LED 灯具的光效目标和特性参数要求:

色坐标计算方法

先计算色坐标。方法是,必须先有光谱P(λ)。 然后光谱P(λ),与三刺激函数X(λ)、Y(λ)、Z(λ),分别对应波长相乘后累加,得出三刺激值,X、Y、Z。 那么色坐标x=X/(X+Y+Z)、Y/(X+Y+Z) 一般,光谱是从380nm到780nm,间隔5nm,共81个数据。 X(λ)、Y(λ)、Z(λ),是CIE规定的函数,对应光谱,各81个数据,色度学书上可以查到。 再计算色温,例如色度坐标x=0.5655,y=0.4339。 用“黑体轨迹等温线的色品坐标”有麦勒德、色温、黑体轨迹上的(xyuv)、黑体轨迹外的(xyuv)。我们用xy的数据来举例。 一、为了方便表达,把黑体轨迹上的x写成XS、y写成YS,黑体轨迹外的x写成XW、y写成YW。 先把每一行斜率K算出,K=(YS-YW)/(XS-XW),写在表边上。 例如: 麦勒德530斜率K1=(.4109-.3874)/(.5391-.5207)=1.3352 麦勒德540斜率K2=(.4099-.3866)/(.5431-.5245)=1.2527 麦勒德550斜率K3=(.4089-.3856)/(.5470-.5282)=1.2394 二、找出要计算的x=.5655、y=.4339这个点,在哪两条等温线之间,就是这点到两条等温线距离一正一负。 如果不知道它的大概色温,计算就繁了;因为你说是钠灯,那么它色温在1800到1900K之间。 用下公式算出这点到麦勒德530,1887K等温线的距离D1 D1=((x-YS)-K(y-XS))/((1+K×K)开方) =((.4339-.4109)-1.3352(.5655-.5391))/((1+1.3352×1.3352)开方) =(.023-.03525)/(1.6682)=-.0073432 再计算出这点到麦勒德540,1852K等温线的距离D2 D2=((.4339-.4099)-1.2527(.5655-.5431))/((1+1.2527×1.2527)开方) =(.024-.02806)/(1.6029)=-.0025329 因为D1、D2都是负数,没找到。 再计算出这点到麦勒德550,1818K等温线的距离D3 D3=((.4339-.4089)-1.2394(.5655-.5470))/((1+1.2394×1.2394)开方) =(.025-.02293)/(1.6029)=+.0013005 D2负、D3正,找到了。D2对540麦勒德记为M2、D3对550麦勒德记为M3 三、先把距离取绝对值。按比例得出这点麦勒德M,公式是

照度计算方法

利用系数法计算平均照度 平均照度(Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数:一般室内取0.4,体育取0.3 维护系数:一般取0.7~0.8 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)×0.4×0.8÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例 2:体育馆照明:20×40米场地,使用POWRSPOT 1000W金卤灯 60套 平均照度=光源总光通量×CU×MF/面积 =(105000×60)×0.3×0.8÷20÷40 =1890 Lux 结论:平均水平照度1500Lux以上 某办公室平均照度设计案例:

设计条件:办公室长18.2米,宽10.8米,顶棚高2.8米,桌面高0.85米,利用系数0.7,维护系数0.8,灯具数量33套,求办公室内平均照度是多少? 灯具解决方案:灯具采用DiNiT 2X55W 防眩日光灯具,光通量3000Lm,色温3000K,显色性Ra90以上。 根据公式可求得: Eav = (33套X 6000Lm X 0.7 X 0.8) ÷ (18.2米X 10.8米) = 110880.00 ÷ 196.56 m2 = 564.10Lux 备注: 照明设计必须必须要求准确的利用系数,否则会有很大的偏差,影响利用系数的大小,主要有以下几个因素: *灯具的配光曲线 *灯具的光输出比例 *室内的反射率,如天花板、墙壁、工作桌面等 *室内指数大小 复杂的区域照明设计,需利用专业的照明设计软件,进行电脑模拟计算。 浅析照度计算的研究与探讨 照度计算是实现建筑光环境设计总体构想的重要手段。采用单位容量法计算,能较好平衡准确度与简便度,为照度计算的实际运用加大了可操作性。

坐标正反算定义及公式

坐标正反算定义及公式 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算: 式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?

35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。可知,由下式计算水平距离与坐标方位角。 (6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角 、水平距离。

=62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。 坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、 =1771.03、=1719.24,试计算坐标方位角、水平距离。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。

色坐标转换色温

首先,你要有一“黑体轨迹等温线的色品坐标”表。此表“色度学”书中有。 然后,运用内插法和三角形垂足法计算色温 在“黑体轨迹等温线的色品坐标”表中,每一行(每一色温)有“黑体轨迹上”x、y,设为x1、y1,“黑体轨迹外” x、y,设为x2、y2。用仪器测得色度坐标x、y设为x0、y0。 从最低色温起,取其x1、y1,x2、y2;代入D1 = (x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D1 = 0则(相关)色温得到。如果D1不等于0,取上一行x1、y1,x2、y2;代入D2 = (x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。如果D2不等于0,判断D1*D2是否小于0。 如果D1*D2大于0,使D1 = D2,再取上一行x1、y1,x2、y2;代入D2 = (x0-x1)(y1-y2)-(x1-x2)(y0-y1),如果D2 = 0则(相关)色温得到。如果D2不等于0,判断D1*D2是否小于0。 如果D1*D2小于0,则找到“测得坐标在这两条等温线之间”。D1、D2取绝对值,相对应色温为T1、T2。 那么CCT ≈ T1 + D1 * (T1+T2) / (D1+D2) 如果一直找不到D1*D2小于0,那是测得坐标在∞(无穷大)等温线左下方,那片区域是没有(相关)色温的。 按理说,离开黑体轨迹一定距离,就没有(相关)色温概念了,可是现在给搞混淆了。

或者,你在附图中,把你坐标点上去,看左右两条等温线的色温,估算出。 特征点对应的色坐标值和色温 光源点X坐标Y坐标色温(K) A 0.4476 0.4074 2854 B 0.3484 0.3516 4800 C 0.3101 0.3162 6800 D 0.313 0.329 6500 E 0.3333 0.3333 5500

色坐标分档

能源之星之色坐标分档 ANSI C78.377 - 2008 色温 2700K 色温范围 2725±145色坐标中心点 x y 色坐标 范围y x 0.43190.4813 0.45620.42600.39440.45930.43730.38930.4101 0.4578 0.38140.41470.43730.38930.41650.42990.4562 0.42600.40440.4006 0.37360.38740.37160.38980.36700.35780.36900.38890.41470.38140.40150.39960.4299 0.41650.37600.3551 0.33760.36160.34870.35150.33660.33690.32430.32220.33660.33690.34620.32070.33760.36160.35480.37360.35780.36700.35120.34650.34810.3205 0.30280.33040.3261 0.3221 0.30680.31133000K 3500K 4000K 5700K 6500K 5000K 4500K 0.43380.4030 3045±1750.38180.3797 3985±2753465±2450.40730.3917 0.3417 0.32870.3553 0.34470.36110.3658 4503±2435028±2835665±3556530±5100.31230.3282 0.3736 0.3874单位 K 单位 K 2580~2870 2870~3220 3710~4260 4260~4746 5310~6020 4745~53316020~7040 3220~3710

灯具数量计算公式与光通量表

计算公式: 灯具数量=(平均照度E×面积S)/(单个灯具光通量Φ×利用系数CU ×维护系数K ) 室内灯具平均照度计算公式 平均照度(Eav)= 单个灯具光通量Φ×灯具数量(N)×空间利用系数(CU)×维护系数(K)÷地板面积(长×宽) 因为误差总是存在:20%-30%,所以建议使用专业的照明设计软件进行精确计算,而对于特殊或场地条件所限,而不能采用照明软件模拟计算时,在计算地板、桌面、作业台面平均照度可以用下列基本公式进行,略估算出灯具照度(勒克斯lx)=光通量(流明lm)/面积(平方米m^2) 即平均1勒克斯(lx)的照度,是1流明(lm)的光通量照射在1平方米(m^2)面积上的亮度。 公式说明: 1、单个灯具光通量Φ,指的是这个灯具内所含光源的裸光源总光通量值。 2、空间利用系数(CU),是指从照明灯具放射出来的光束有百分之多少到达地板和作业台面,所以与照明灯具的设计、安装高度、房间的大小和反射率的不同相关,照明率也随之变化。 常用灯盘在3米左右高的空间使用,其利用系数CU可取0.6--0.75之间; 悬挂灯铝罩,空间高度6--10米时,其利用系数CU取值范围在0.7--0.45; 筒灯类灯具在3米左右空间使用,其利用系数CU可取0.4--0.55; 光带支架类的灯具在4米左右的空间使用时,其利用系数CU可取0.3--0.5。 3、维护系数(K),是指伴随着照明灯具的老化,灯具光的输出能力降低和光源的使用时间的增加,光源发生光衰或由于房间灰尘的积累,致使空间反射效率降低,致使照度降低而乘上的系数。 一般较清洁的场所,如客厅、卧室、办公室、教室、阅读室、医院、高级品牌专卖店、艺术馆、博物馆等维护系数K取0.8; 一般性的商店、超市、营业厅、影剧院、加工车间、车站等场所维护系数K取0.7; 而污染指数较大的场所维护系数K则可取到0.6左右。 (光源光通量)(CU)(MF) /照射区域面积 适用于室内,体育照明,利用系数(CU):一般室内取0.4,体育取0.3 1. 灯具的照度分布 2. 灯具效率 3. 灯具在照射区域的相对位置 4. 被包围区域中的反射光 维护系数MF=(LLD)X(LDD)一般取0.7~0.8 举例:1、室内照明,4×5米房间,使用3×36W隔栅灯9套 计算公式: 平均照度=光源总光通×CU×MF/面积

麦克亚当色区图讲解

麦克亚当色区RD1 2013-9-2

麦克亚当色区 色差 固态照明标准 麦克亚当理论 色容差定义 Contents 产出分布

色容差:是表征光色电检测系统的X,Y值与标准光源之间差别。数值越小,准确度越高。 相关色温:当光源发出光的颜色与黑体在某一温度下辐射的颜色接近时,该黑体温度就称为该光源的相关色温。 a.相关色温与色坐标转换公式: T=-437n3+3601n2-6861n+5514.31,n=(x-0.3320)/(y-0.1858) T:色温 n:系数 x,y:色坐标 小结:从公式和定义可知: 1、色坐标与色温是一对多的关系,相同 的色温有不同的XY值。 2、相同的色温能产生不同颜色的感官。 a. 如左图AB两点为同一色温,但表现 出完全不同的颜色。 a.色容差实际指测量值偏离目标值的距离。 b.色容差的量化一般用椭圆来表征。 疑问:同一色温的XY组合有很多,怎样的色温 及坐标才是符合固态照明及人眼舒适度感官? 色容差定义

人眼对颜色的敏感度 麦克亚当理论 麦克亚当椭圆 小结: 1、人眼对光谱颜色的差别感受性为非均匀性; 2、根据人眼对颜色的识别度不同,麦克亚当椭圆在不同区域大小也是不一致的。 麦克亚当椭圆理论: 为描述普通人眼的颜色视觉的精确度以及区分相似颜色的优良度提供了指导方法。椭圆内的颜色代表人眼感觉不出颜色太大变化的范围称为颜色的宽容量。

固态照明标准 行业标准水平: 1、能源之星ANSI C78.376 ,色容差≤7SDCM; 2、欧盟标准IEC60081 ,色容差≤7SDCM; 3、国标GB10682-2002,色容差≤5SDCM; 标准点X Y F65000.313 0.337 F50000.346 0.359 F40000.380 0.380 F35000.409 0.394 F30000.440 0.403 F27000.463 0.420 小结: 1、测试产品色容差时,需 以各自色温段的标准点为 基准,测试结果才准确。

照度计算公式

照度计算公式 Last updated on the afternoon of January 3, 2021

照度计算公式 E=(Φ×n×N×MF×UF)/A 式中,E=工作面的维护平均照度(lx); Φ=灯初始光通量(lm) n= 每个灯具所含光源的数量 N=灯具数量 MF=设备维护系数 UF=设备利用系数 A=工作面的面积 一个灯具在给室内的利用系数UF是照射到工作面上所有光通量与设备中所有灯发出的光通量之比。这一系数包括反射光、相互反射光及来自灯具的直接光。它的值取决于房间的形状、高度、墙壁的反射率及灯具的光强分布。 MF=设备维护系数一般取之间。 UF=设备利用系数(由于范围更宽)一般取之间。 一般室内取,体育取 维护系数:一般取~ 实例:一个100平方米的办公室,层高3米,工程方要求的照度是 500lx,要用我公司的3*36W T8灯盘,请问要用多少套?

用上面的公司计算,取 MF(设备维护系数)为, UF(设备利用系数)为,假设要用3*36W T8灯盘X套, 公式 E=(Φ×n×N×MF×UF)/A 即:500=(3300×3×X××)/100 X= 约9套 照度计算方法 利用系数法计算平均照度 平均照度 (Eav)=光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF)/区域面积(m2) (适用于室内或体育场的照明计算) 利用系数: 一般室内取,体育取 维护系数:一般取~ 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)××÷4÷5?

=1080Lux 结论:平均照度1000Lux以上 举例2: 体育馆照明:20×40米场地, 使用POWRSPOT?1000W金卤灯60套 平均照度=光源总光通量×CU×MF/面积 =(105000×60)××÷20÷40? =1890Lux 结论:平均水平照度 1500Lux以上 某办公室平均照度设计案例: 设计条件: 办公室长米,宽米,顶棚高米,桌面高米,利用系数,维护系数,灯具数量33套,求办公室内平均照度是多少? 灯具解决方案: 灯具采用 DiNiT2X55W防眩日光灯具,光通量3000Lm,色温3000K,显色性Ra90以上。根据公式可求得: Eav=(33套X6000LmXX÷米X?米) =?÷m2

晶知识扫盲系列6:色座标,色温与白平衡

液晶知识扫盲系列6:色座标,色温与白平衡 1,色座标,色温及白平衡的定义 (1)色座标(chromaticity coordinate):就是颜色的坐标。也叫表色系。 色坐标是色度学的重要内容之一,光源的色坐标测量是研究光源特性的重要方法之一,它具有广泛的使用意义。色坐标测量的基本原理是根据光源的光谱分布由色坐标的基本规定进行计算而得出的。 现在常用的颜色坐标,横轴为x ,纵轴为y 。有了色坐标,可以在色度图上确定一个点。这个点精确表示了发光颜色。即:色坐标精确表示了颜色。因为色坐标有两个数字,又不直观,所以大家喜欢用色温来大概表示照明光源的发光颜色。 (2)色温(color temperature): 是表示光源光色的尺寸,单位是开尔文。 光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。 (3)白平衡(white balance):白平衡的基本概念是“不管在任何光源下,都能将白色物体还原为白色”,对在特定光源下拍摄时出现的偏色现象,通过加强对应的补色来进行补偿。白平衡是描述显示器中红、绿、蓝三基色混合生成后白色精确度的一项指标。白平衡是电视摄像领域一个非常重要的概念,通过它可以解决色彩还原和色调处理的一系列问题。 2,色座标,色温及白平衡的关系 如上所讲,色座标与色温是有对应关系的,色温可以由色座标计算出来。其中一个很直观的理解就是,色度图下上的某一点的颜色确定了,我们就可以由于坐标图确定了它的x轴及y 轴的点,在色度图的位置确定了,从而就可以确认它的色温了。 (1)色温在色度图中的位置如下图,从图中可以看出,色座标与色温是有一一对应的关系。 (2)通过计算软件计算色座对应色温的实例和他们的对应关系。(相关的计算公式及软件

色温对照表

色温对照表 拍摄时色温的设置(对照表) 烛 焰 1500 -1800* 日落前光色偏红,色温降至2200) 家用白灯 2500-3000 60瓦的充气钨丝灯 2800 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000(日出后40分钟光色较黄) 500瓦的投影灯 2865 500瓦钨丝灯 3175 3200K的泛光灯 3200

琥珀闪光信号灯 3200 R32反射镜泛光灯 3200 锆制的浓弧光灯 3200 反射镜泛光灯 3400 暖色的白荧光灯 3500 清晰闪光灯信号 3800 冷色的白荧光灯 4500 白昼的泛光灯 4800 (下午阳光雪白上升4800~5800) 白焰碳弧灯 5000 (阳光直射下) M2B闪光信号灯 5100 晴 天 5200* 正午的日光 5400 高强度的太阳弧光灯 5550 夏季的直射太阳光 5800 早上10点到下午3点的直射太阳光 6000*(摄影拍片黄金时间) 蓝闪光信号灯 6000 白昼的荧光灯6500(阴天下6500~9000) 正午晴空的太阳光 6500* (阴天正午时分约6500) 阴天的光线 6800-7000 * 高速电子闪光管 7000 来自灰蒙天空的光线 7500-8400 来自晴空蓝天的光线 10000-20000* 在水域上空的晴朗蓝天 20000-27000*

注:光源以 K (开尔文)为单位,(K数为高越偏蓝调)色温(Color Temperature),单位:开尔文[Kelvin]定义:当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体”的温度就称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。色温是衡量一种光源“有多么热”或者“有多么冷”的指标,也是表示一种光源“白得程度”、“黄得程度”或者“蓝得程度”的指标。 暖色<3300K;中间色3300至5000K;冷色>5000K。如:海洋、无云的天空、雪地阴影、晴天里的阴影、室内、雨天、阴天(色温在9000-20000K) 拍摄时色温的设置(对照表) 烛 焰 1500-1800* (日落前光色偏红,色温降至2200) 家用白灯2500-3000 60瓦的充气钨丝灯2800 100瓦的钨丝灯2950 1000瓦的钨丝灯3000(日出后40分钟光色较黄) 500瓦的投影灯2865 500瓦钨丝灯3175 3200K的泛光灯3200 琥珀闪光信号灯3200 R32反射镜泛光灯3200 锆制的浓弧光灯3200 反射镜泛光灯3400 暖色的白荧光灯3500 清晰闪光灯信号3800 冷色的白荧光灯4500 白昼的泛光灯4800

换算公式表

换算公式表 常用土地面积换算公式1亩=60平方丈=6000平方尺,1亩=666.6平方米其实在民间还有一个更实用的口决来计算: 平方米换为亩,计算口诀为“加半左移三”。1平方米=0.0015亩,如128平方米等于多少亩?计算方法是先用128加128的一半:128+64=192,再把小数点左移3位,即得出亩数为0.192。 亩换平方米,计算口诀为“除以三加倍右移三”。如要计算24.6亩等于多少平方米,24.6÷3=8.2,8.2加倍后为16.4,然后再将小数点右移3位,即得出平方米数为16400。 市亩和公亩以及公顷又有很大的差异,具体换算公式如下: 1公顷=15亩=100公亩=10000平方米1(市)亩等于666.66平方米 1公顷等于10000平方米 1公亩等于100平方米 台湾常用的坪和平米的转化也很多人不知道: 1坪=3.30579平方米 外国换算公式:1 英亩等于: - 0.004 047 平方公里 - 0.404 686 公頃 - 40.468 648 公亩 - 1,224.176 601 坪 - 160 平方桿 - 4046.864 798 平方米 - 4,840 平方碼 - 43,560 平方英尺 - 1 平方碼= 0.000 207 英亩- 1 平方公里= 247.105 英亩 - 1 公頃= 2.471 049 英亩 - 1 公亩= 0.024 710 英亩 - 1 坪= 0.000 817 英亩 - 1 平方桿= 0.006 25 英亩 - 1 平方米= 0.000 247 英亩 1亩=666.6666666.平方米 1 公顷= 10 000 平方米(square meters) 1 公顷= 100 公亩(ares) 1 公顷= 15 亩 1 公顷= 2.471 053 8 英亩(acres) 1 公顷= 0.01 平方公里(平方千米)(square kilometers) 1平方公里=100公顷 1亩=0.0666666公顷=666.6666平方米 1公亩=100平方米 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre)

色品坐标

荧光灯生产中如何配粉供大家参考 为满足顾客对灯管的高光通、长寿命、色溶差、显色指数等参数的需要。所以有实力的制灯厂为了保证质量上高品质、己推行了单色粉自配各种色温灯管。或者单色粉的微调 。在生产中有时并不能得到理想的光电参数与制灯的工艺相关的有涂层的厚度及上下端厚簿差、灯内气体的种类及压力、汞的纯度、、、、、、等等。但假没工艺不变、对x、y值的调整<当燃是单色粉加入>有一个″最好"。在批量生产前测定粉浆是否符合要求。我称为"打点"。 通过打点就改变了以粉决定灯管的质量。色溶差、光电参数也能达到客户要求。把老粉、多余的粉充份利用、在市场上有更好的竞争力。 如何打点移动xy值呢? 1加红粉;色温降低x值增大、显色指数提高、光通量有所降低、y值变化很少、但也有点下降 2 加兰粉:色温升高、x值y值多减少<6500k粉基本相同值>显色指数略高、光通量降低。 3 加绿粉:原色温低于5000k色温增大、原色温高于5000k色温减少、光通量提高、显色指数降低。 4 混合粉点位在单色粉点位与原粉浆点位的莲线上。 5可根椐自己生产工艺、每2公斤粉的粉浆加入20克单色红粉计算降每克多少色温。加入20克兰粉计算每克升多少色温。加入20克绿粉计算上移多少。 红粉加大X值,绿粉加大Y值,兰粉同时缩小X、Y值,比较坐标点与中心点的位置差来调整就可以了 色品图 以不同位置的点表示各种色品的平面图。1931年由国际照明委员会(CIE)制定,故称CIE色品图。描述颜色品质的综合指标称为色品,色品用如下3个属性来描述: ①色调。色光中占优势的光的波长称主波长,由主波长的光决定的主观色觉称色调。 ②亮度。由色光的能量所决定的主观明亮程度。 ③饱和度。描述某颜色的组分中纯光谱色所占的比例,即颜色的纯度。 由单色光引起的光谱色认为是很纯的颜色,在视觉上称为高饱和度颜色。单色光中混有白光时纯度降低,相应地饱和度减小。 例如波长为650纳米的色光是很纯的红色,把一定量白光加入后,混合结果产生粉红色,加入的白光越多,混合色就越不纯,视觉上的饱和度就越小。 标注 附图为CIE色品图,图中x坐标是红原色的比例,y坐标是绿原色的比例,代表蓝原色的坐标z可由x+y+z=1推出。图中

色差的计算方法

色差公式: △Eab=[△L*2 △a*2 △b2]1/2 △L=L样品-L标准明度差异 △a=a样品-a标准红/绿差异 △b=b样品-b标准黄/蓝差异 △E总色差的大小 △L大表示偏白,△L小表示偏黑 △a大表示偏红,△a小表示偏绿 △b大表示偏黄,△b小表示偏蓝 范围色差(容差) 0 - 0.25△E 非常小或没有;理想匹配 0.25 - 0.5△E 微小;可接受的匹配 0.5 -1.0△E 微小到中等;在一些应用中可接受 1.0 - 2.0△E 中等;在特定应用中可接受 2.0 - 4.0△E 有差距;在特定应用中可接受 4.0△E以上 非常大;在大部分应用中不可接受 为了解决基于RGB 色彩模型的图片比对存在的上述问题,我们采用了基于色彩计算的新的图片验证方法。在开始介绍基于色差分析的图片比对方法之前,先介绍一下色差的相关原理。 色差的原理和发展历史 所谓色差,简单说来就是表示两种颜色的差异程度。说到色彩的量化和测量技术,就必须提到国际发光照明委员会(CIE)。鉴于RGB 色彩模型与设备相关性等问题,CIE 在RGB 模型基础上,制定了一系列包括CIE XYZ 基色系统和颜色空间等在内的新标准,试图建立一个新的色彩空间,使得工业界能够准确指定产品颜色。而后又针对XYZ 色彩空间的不足,进一步制定了LAB 色彩空间规范及有关色差计算公式。使得工业界可以用数值deltaE 来表示两种色彩的差异程度,进而评估它们的近似度。目前CIE1976LAB 规范已经被广泛应用,成为国际通用的色彩测量标准。需要指出的是,色差的计算公式并非只有CIELAB 差公式这一种。色差的计算和应用 虽然RGB 色彩模型被广泛应用,但却不能直接通过RGB 色彩模型计算出色差。我们必须先将色彩从RGB 色彩空间转换到XYZ 色彩空间,而后再转换到LAB 色彩空间,最后根据总色差公式来计算色差。 事实上CIE 提供了多种理想的色彩模型和转换算法,这里我们只是选取其中的一种简单算法。

计算公式

内容简介 一、面阵相机和镜头选型 (2) 二、针对速度和曝光时间的影响,产品是否有拖影 (2) 三、线阵相机和镜头选型 (2) 四、图像采集卡、相机接口、PCI、PCI-E插槽的选型 (3) 五、线阵相机、镜头、光源的选型详解 (4) 六、图像采集卡的选型详解 (9) 七、线阵摄像机与面阵摄像机的区别 (14) 八、图像采集卡选型详解 (18)

一、面阵相机和镜头选型 已知:被检测物体大小为A*B,要求能够分辨小于C,工作距离为D 解答: 1.计算短边对应的像素数E=B/C,相机长边和短边的像素数都要大于E。 2.像元尺寸=产品短边尺寸B/所选相机的短边像素数 3.放大倍率=所选相机芯片短边尺寸/相机短边的视野范围 4.可分辨的产品精度=像元尺寸/放大倍率(判断是否小于C) 5.物镜的焦距=工作距离/(1+1/放大倍率)单位:mm 6.像面的分辨率要大于1/(2*0.1*放大倍率)单位:lp/mm 以上只针对镜头的主要参数进行计算选择,其他如畸变、景深、环境等,可根据实际要求进行选择。 二、针对速度和曝光时间的影响,产品是否有拖影 已知:确定每一次检测的范围为80mm*60mm,200万像素CCD相机(1600*1200),相机或产品运动速度为12m/min = 200mm/s。 曝光时间计算: 曝光时间<长边视野范围/(长边像素值*产品运动速度) 曝光时间< 80mm/(1600*250mm/s) 曝光时间< 0.00025s = 1/4000 s 总结:故曝光时间要小于1/4000 s ,图像才不会产生拖影。 三、线阵相机和镜头选型 相机选型: 已知:幅宽为1600mm、检测精度1mm/pixel、运动速度22000mm/s、物距1300mm 相机像素数=幅宽/检测精度=1600mm /1mm/pixel = 1600pixel 最少2000个像素,选定为2k相机 实际检测精度=幅宽/实际像素=1600mm/2048pixel=0.8mm/pixel 扫描行频=运动速度/实际检测精度=22000mm/0.8mm=27.5KHz 应选定相机为2048像素28kHz相机,像元尺寸10um 选用一个VT-FAGL2015线阵相机或两个103k-1k线阵相机拼接 镜头选型: sensor长度=像素宽度×像素数=0.01mm×2048=20.48mm 镜头焦距=sensor长度×物距/幅宽=20.48×1300/1600=16mm

LED色温图谱详解_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ LED色温图谱详解 LED 色温图谱详解 NOTE: 色温=实测色温-计算色温(根 据相对色温线) 结论: 1. 根据实际测试的色标可看出: 不在 色温线上面的色坐标点, 可以通过相对色温线的方式求出该点色温. 2. 向下延长各个相对色温线, 基本交汇在一点(X:0. 33 Y: 0. 20) . 依此点坐标: 2500K 相对色温线与X 轴的夹角约为30 度. 25000K 相对色温线与 2500K 相对色温线之间的夹角约为 90 度. 250000K 相对色温线与 2019K 相对色温线之间的夹角约为 100 度. 具体见上图所示. 3. 根据上图白光色坐标分布图与相对色温线 的关系, 现在许多分光参数表是根据色温方式划分各个 BIN 等级(色标分布图是参照早期日亚白光色标分布图制作) . 这样分当然具 有一定的好处。 4. 工厂色标分布图所对应的的色温范围为:4000K~16000K. 5. 采用白光计算机(T620) 测试出的色温值与根据相对色温线所计 算出的色温值有一定的差别, 机台测试出的色温值只能做一个参考值. 根据相对色温线所计算出的色温值与机台测试的色温值之间的 差别详见上表色温值. 相关色温 8000-4000K 的白光 LED 的 发射光谱和色品质特性摘要: 文章报告和分析了 8000K、 6400K、 5000K 和 4000K 四种色温 的白光 LED 的发射光谱、色品质和显色性等特性,它们与工作条 件密切相关。 1/ 22

最新坐标正反算定义及公式

坐标正反算定义及公 式

第六章→第三节→导线测量内业计算 导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。 一、坐标正算与坐标反算 1、坐标正算 已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。如图6-6 所示,点的坐标可由下式计算:

式中、为两导线点坐标之差,称为坐标增量,即: 【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标? 35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。如图6-6 可知,由下式计算水平距离与坐标方位角。 (6-3)

(6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。 【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。 =62°09'29.4"+180°=242°09'29.4" 注意:一直线有两个方向,存在两个方位角,式中:、 的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。

坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。 【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离 。 键入1771.03-2365.16按等号键[=]等于纵坐标增量,按储存键[], 键入1719.24-1181.77按等号键[=]等于横坐标增量,按[]键输入,按[]显示横坐标增量,按[]键输入,按第二功能键[2ndF],再按[]键,屏显为距离,再按[]键,屏显为方位角。 【例题6-4】坐标正算,已知坐标方位角=294°42'51", =200.40,试计算纵坐标增量横坐标增量。 键入294.4251,转换为以度为单位按[DEG],按[]键输入,键入200.40,按[]键输入,按第二功能键[2ndF],按[]屏显,按[]屏显。 视力保护色: - 字体大小:大中小

色坐标软件使用说明

色坐标软件使用说明 1、 CIE介绍 国际照明协会法国语的缩写,相关网站为:http://www.cie.co.at/ 2、色坐标介绍 色坐标也叫色品坐标或色度坐标。CIE色度系统中,三刺激值各值与他们之和的比。在XYZ色品系统中,由三刺激值X、Y、Z可算出色品坐标x、y、z。 x=X/(X+Y+Z),y=Y/(X+Y+Z),z=Z/(X+Y+Z)。XYZ表示任何一种特定颜色所具有的三种理论原色刺激的量。X表示红原色刺激的量、Y表示绿原色刺激的量,而Z表示蓝原色刺激的量。 简单的就是某个光源发光的颜色在色坐标图中的位置,代表颜色的成分。 纯白光色坐标为(0.33±0.05, 0.33±0.05) 3、软件介绍 ColorCoordinate.exe:计算色坐标的软件,目前为1.0版本,台湾人编写,228K大小。CIE1931.exe:色坐标图,976K大小。 4、使用说明 1、准备含波长和发光强度两栏的文本文件(.txt)。波长范围为300–800之间。实际测量往 往不是在此范围,那么把测量范围外的强度设为0。前提当然是要求发射谱包含所有发出的光。文本制作参见例子Em349.txt。 2、打开ColorCoordinate.exe,依次点击“打开文件–“线性内插”–“计算”,就可得到色 坐标值。如例子Em349.txt的色坐标为(0.3260834, 0.3439385)。该软件同时计算出该色坐标对应的色温Tc。如例子Em349.txt的色温为5784.23060774796 3、打开CIE1931.exe,输入x和y值,点击ENTER,就会在色坐标图中标出位置。该软件 可同时标出无数个位置,只要反复输入x和y值即可。最后点击SA VE就可保存结果。 例子:

坐标转换办法

测绘成果转换到2000国家大地坐标系技术指南 一、2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。2000国家大地坐标系采用的地球椭球参数的数值为: 长半轴 a=6378137m 扁率 f=1/298.257222101 地心引力常数GM=3.986004418×1014m3s-2 自转角速度ω=7.292l15×10-5rad s-1 其它参数见下表: 用2000国家大地坐标系后仍采用无潮汐系统。 二、点位坐标转换方法 (一)模型选择 全国及省级范围的坐标转换选择二维七参数转换模型;省级以下的坐标转换可选择三维四参数模型或平面四参数模型。对于相对独立的平面坐标系统与2000国

家大地坐标系的联系可采用平面四参数模型或多项式回归模型。坐标转换模型详见本指南第六部分。 (二)重合点选取 坐标重合点可采用在两个坐标系下均有坐标成果的点。但最终重合点还需根据所确定的转换参数,计算重合点坐标残差,根据其残差值的大小来确定,若残差大于3倍中误差则剔除,重新计算坐标转换参数,直到满足精度要求为止;用于计算转换参数的重合点数量与转换区域的大小有关,但不得少于5个。 (三)模型参数计算 用所确定的重合点坐标,根据坐标转换模型利用最小二乘法计算模型参数。(四)精度评估与检核 用上述模型进行坐标转换时必须满足相应的精度指标,具体精度评估指标及评估方法见附件中相关内容。选择部分重合点作为外部检核点,不参与转换参数计算,用转换参数计算这些点的转换坐标与已知坐标进行比较进行外部检核。应选定至少6个均匀分布的重合点对坐标转换精度进行检核。 (五)数据库中点位坐标转换模型参数计算的区域选取 对于1980西安坐标系下的数据库,采用全国数据计算的一套模型参数可满足1:5万及1:25万比例尺数据库转换的精度要求;采用全国数据计算的六个分区的模型参数可满足1:1万比例尺数据库转换的精度要求。对于1954年北京坐标系下的数据库的转换,采用全国数据计算的六个分区的模型参数可满足1:5万及1:25万比例尺数据库转换的精度要求;按(2°×3°)进行分区计算模型参数可满足1:1万比例尺数据库转换的精度要求。 三、1:2.5-1:25万数据库的转换

相关文档
最新文档