上海光机所--导模法生长掺碳蓝宝石晶体的方法-

上海光机所--导模法生长掺碳蓝宝石晶体的方法-
上海光机所--导模法生长掺碳蓝宝石晶体的方法-

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

(完整版)中国著名科研院所名单

北方交通大学信息科学研究所 北京科技大学矿业研究所 北京林业大学林业研究所 北京师范大学北京市辐射中心 北京市计量科学研究所 北京市农林科学院 北京邮电大学 北京自动化系统工程研究设计院 大庆石油天然气地质研究所 大庆石油学院石油天然气钻采工程研究所 地质矿产部海洋地质研究所 地质矿产部沈阳地质矿产研究所 地质矿产部石油地质中心实验室 地质矿产部水文地质工程地质研究所 地质矿产部西安地质矿产研究所 地质矿产部岩溶地质研究所 地质矿产部郑州矿产综合利用研究所 电力工业部电力科学研究院 电力工业部武汉高压研究所 电子工业部蚌埠接插件继电器研究所 电子工业部长沙半导体设备研究所 电子工业部电视电声研究所 电子工业部东北微电子研究所 电子工业部杭州计算机外部设备研究所 电子工业部华北计算技术研究所 电子工业部华东电子工程研究所 电子工业部华东微电子技术研究所 电子工业部南京电子技术工程研究所 电子工业部平凉半导体专用设备研究所 电子工业部上海微电机研究所 电子工业部四川压电与声光技术研究所 电子工业部天津电子材料研究所 电子工业部西安导航技术研究所 电子工业部中国电波传播研究所 电子工业部中国西南电子设备研究所 电子工业部中原电子技术研究所 东北工学院干燥技术研究所 东北工学院金属塑性加工与型钢生产技术研究所东北工学院设备诊断技术研究所 东北工学院自动化所 东北工学院自动化仪表与过程控制研究所 东南大学电子学研究所 东南大学建筑研究所 东南大学无线电研究所

东南大学运输工程研究所 东南大学自动化研究所 福建省热带作物科学研究所 福建省三明市真菌研究所 福建省亚热带植物研究所 公安部第三研究所 公安部交通管理研究所 公安部上海消防科学研究所 公安部四川消防科学研究所 广播电影电视部广播科学研究所 广东省广州市医药工业研究所 广东省家禽科学研究所 广东省农业科学院 广西大学自动化研究所 广西壮族自治区中医药研究所 贵州省黔东南苗族侗族自治州农业科学研究所(简称黔东南州农科所)国家地震局地壳应力研究所 国家地震局地质研究所 国家地震局工程力学研究所 国家海洋局第二海洋研究所 国家海洋局第一海洋研究所 国家海洋局海洋技术研究所 国家建筑材料工业局北京玻璃钢研究设计院 国家建筑材料工业局南京玻璃纤维研究设计院 国家建筑材料工业局人工晶体研究所 国家建筑材料工业局咸阳非金属矿研究所 国家建筑材料工业局中国建筑防水材料公司苏州研究设计所 国家体育运动委员会昆明体育电子设备研究所 国家医药管理局天津药物研究院 国家重点化学工程联合实验室 国内贸易部(原商业部)杭州茶叶加工研究所 国内贸易部(原商业部)南京野生植物综合利用研究所 国内贸易部(原商业部)无锡粮食科学研究设计院 国内贸易部(原商业部)郑州粮食科学研究设计院 国内贸易部物资流通技术研究所 哈尔滨船舶工程学院 合肥工业大学工业自动化研究所 合肥工业大学计算机综合自动化研究所 合肥工业大学能源研究所 合肥工业大学预测与发展研究所 河北省廊坊市农业科学研究所 河北省水产研究所 河南省农业科学院 核工业北京地质研究院

单晶硅生长炉原理

单晶硅生长炉原理 单晶硅生长炉原理 首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉 m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的。 单晶硅生长炉现状 目前国内外晶体生长设备的现状如下: 美国KAYEX公司 国外以美国KAYEX公司为代表,生产全自动硅单晶体生长炉。KAYEX公司是目前世界上最大,最先进的硅单晶体生长炉制造商之一。KAYEX的产品早在80年代初就进入中国市场,已成为中国半导体行业使用最多的品牌。该公司生长的硅晶体生长炉从抽真空-检漏-熔料-引晶-放肩-等径-收尾到关机的全过程由计算机实行全自动控制。晶体产品的完整性与均匀性好,直径偏差在单晶全长内仅±1mm。主要产品有CG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg。

中国科学院大气物理研究所

中国科学院大气物理研究所 中国科学院大气物理研究所简介 大气物理研究所前身是1928年成立的原中央研究院气象研究所。现有职工325人,其中科技人员251人,有中国科学院院士7人,研究员46人,副研究员和高级工程师86人,中级科技人员108人。大气所是博士、硕士学位授予单位和博士后流动站建站单位。是中国科学院博士生重点培养基地,国家毕业生就业重点保证单位。现有在学博士生211人,硕士生105人,博士后18人。 大气物理研究所主要研究大气中各种运动和物理化学过程的基本规律及其与周围环境的相互作用,特别是研究在青藏高原、热带太平洋和我国复杂陆面作用下的东亚天气气候和环境的变化机理、预测理论及其探测方法,以建立东亚气候系统和季风环境系统的理论体系及遥感观测体系,发展新的探测和试验手段,为天气、气候和环境的监测、预测和控制提供理论和方法。四个优势创新研究领域是:气候系统动力学和预测理论研究、大气环境和人类生存环境变化动力学和预测理论研究、中层大气与遥感理论和技术研究、中小尺度天气系统与灾害研究。 大气物理研究所拥有的科研部门包括:大气科学和地球流体力学数值模拟国家重点实验室、大气边界层物理与大气化学国家重点实验室、中国科学院东亚区域气候-环境重点实验室、中层大气遥感与探测开放实验室、云降水物理与强风暴实验室、国际气候与环境科学中心、竺可桢--南森国际研究中心、灾害性气候研究与预测中心、中国生态系统研究络大气分中心、季风系统研究中心。另外还设有信息科学中心。 2005年,大气物理所知识创新工程全面推进阶段工作进展顺利,科研工作取得若干重要进展,气候数值模式、模拟及气候可预报性研究项目荣获2005年度国家自然科学二等奖;获得湖北省科技进步一等奖1项,中国人民解放军科学技术进步二等奖1项,中国气象局气象科技奖成果应用奖一等奖 1项,国家教育部科学技术进步二等奖1项。共发表科技论文469篇,其中ScI收录论文126篇,申报专利5项。队伍建设和人才培养工作成效显著,叶笃正荣获国家科学技术最高奖,并作为第一主持人荣获国家科学技术进步二等奖;吕达仁当选为中国科学院院士。一批科研和管理人员以及研究生获得了各类奖项,取得佳绩。制度化、民主化、科学化三化建设继续向前推进。 2005年,申请获得973项目北方干旱化与人类适应1项、973课题2项、863专题3项;获得国家自然科学基金各类项目29项,包括4个重点基金、面上基金23项,杰出A和杰出B各1项;获院方向性项目3项,课题1项。还获

晶体生长计算与模拟软件之FEMAG

晶体生长计算软件FEMAG 20世纪80年代中期,鲁汶大学Fran?ois Dupret教授带领其团队,开始晶体生长的研究,经过10多年的行业研发及应用,Fran?ois Dupret教授于2003年成立了FEMAGSoft公司(总部设在比利时Louvain-la-Neuve市),正式推出晶体生长数值仿真软件FEMAG。如今,FEMAG软件已成为全球行业用户高度认可的数值仿真工具,在晶体生长数值模拟领域处于国际领先地位。 FEMAG Soft擅长所有类型晶体材料生长方面的工艺模拟专业技术,比如:?直拉法(Czochralski) ?区熔法(Floating Zone) ?适用于铸锭定向凝固过程工艺(DS),Bridgman法 ?物理气相传输法(PVT) 产品模块 1.FEMAG/CZ-Czochralski (CZ) Process 适用于Czochralski直拉法生长工艺和Kyropoulos生长工艺 2.FEMAG/DS-Directional Solidification (DS) Process 适用于铸锭定向凝固过程工艺 3.FEMAG/FZ-Float Zone Process (FZ) 适用于区熔法生长工艺

主要功能 1.全局热传递分析 “全局性”即包涵所有拉晶要素在内,并考虑传热模式的耦合。全局热传递模拟分析,主要考虑:炉内的辐射和传导、熔体对流和炉内气体流量分析。 2.热应力分析 按照经验,一般情况下,晶体位错的产生与晶体生长过程中热应力的变化有着密切的关系。该软件可以进行三维的非轴对称和非各向同性温度场热应力分析计算,可以提出对晶体总的剪切力预估。 “位错”的产生是由于在晶体生长过程中,热剪应力超越临界水平,被称为CRSS(临界分剪应力),而导致的塑性变形。 3.点缺陷预报 该软件可以预知在晶体生长过程中的点缺陷(自裂缝和空缺),该仿真可以很好的预测在晶体生长过程中点缺陷的分布。 4.动态仿真 动态仿真提供了对复杂几何形状对于时间演变的预测。该预测把发生在晶体生长和冷却过程中所有瞬时的影响因素都考虑在内。为了准确地预报晶体点缺陷和氧分,布动态仿真尤其是不可或缺的。 5.固液界面跟踪 在拉晶的过程中准确预测固液界面同样是一个关键问题。对于不同的柑祸旋转速度和不同的提拉高度,其固液界面是不同的。 6.加热器功率预测 利用软件动态仿真反算加热功率对于生长合格晶体也是非常必要的。

蓝宝石晶体生长设备

大规格蓝宝石单晶体生长炉技术说明 一、项目市场背景 α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。 蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要

求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。 二、微提拉旋转泡生法制备蓝宝石晶体工艺技术说明 微提拉旋转泡生法制备蓝宝石晶体方法在对泡生法和提拉法改进的基础上发展而来的用于生长大尺寸蓝宝石晶体的方法,主要在乌克兰顿涅茨公司生产的 Ikal-220型晶体生长炉的基础上改进和开发。晶体生长系统主要包括控制系统、真空系统、加热体、冷却系统和热防护系统等。微提拉旋转泡生法大尺寸蓝宝石晶体生长技术主要是通过调控系统内的热量输运来控制整个晶体的生长过程,因此加热体与热防护系统的设计,热交换器工作流体的选择、散热能力的设计,晶体生长速率、冷却速率的控制等工艺问题对能否生长出品质优良的蓝宝石晶体都至关重要。 微提拉旋转泡生法制备蓝宝石晶体,生长设备集水、电、气于一体,主要由能量供应与控制系统、传动系统、晶体生长室、真空系统、水冷系统及其它附属设备等组成。传动系统作为籽晶杆(热交换器)提拉和旋转运动的导向和传动机构,与立柱相连位于炉筒之上,其主要由籽晶杆(热交换器)的升降、旋转装置组成。提拉传动装置由籽晶杆(热交换器)的快速及慢速升降系统两部分组成。籽晶杆(热交换器)的慢速升降系统由稀土永磁直流力矩电机,通过谐波减速器与精密滚珠丝杠相连,经滚动直线导轨导向,托动滑块实现籽晶杆(热交换器)在拉晶过程中的慢速升降运动。籽晶杆(热交换器)的快速升降系统由快速伺服电机经由谐波减速器上的蜗杆、蜗杆副与谐波的联动实现。籽晶杆的旋转运动由稀土永磁式伺服电机通过楔形带传动实现。该传动系统具有定位精度高、承载能力大,速度稳定、可靠,无振动、无爬行等特点。采用精密加热,其具有操作方法简单,容易控制的特点。在热防护系统方面,该设计保温罩具有调节气氛,防辐射性能好,保温隔热层热导率小,材料热稳定性好,长期工作不掉渣,不起皮,具有对晶体生长环境污染小,便于清洁等优点。选用金属钼坩埚,并依据设计的晶体生长尺寸、质量来设计坩埚的内径、净深、壁厚等几何尺寸,每炉最大可制备D200mmX200mm,重量25Kg蓝宝石单晶体。Al2O3原料晶体生长原料采用纯度为5N的高纯氧化铝粉或熔焰法制备的蓝宝石碎晶。 从熔体中结晶合成宝石的基本过程是:粉末原料→加热→熔化→冷却→超过临界过冷度→结晶。 99.99%以上纯度氧化铝粉末加有机黏结剂,在压力机上形成坯体;先将该坯体预先烧成半熟状态的氧化铝块,置入炉内预烧,将炉抽真空排出杂质气体,先后启动机械泵、扩散泵,抽真空至10↑[-3]-10↑[-4]Pa,当炉温达1500-1800℃充入混合保护气体,继续升温至设定温度(2100-2250℃);(3)炉温达设定温度后,保温4-8小时,调节炉膛温度

中国晶体硅生长炉设备调查

中国晶体硅生长炉设备调查 目前我国有超过30家企业在生产多晶硅铸锭炉和单晶炉。现推出中国晶体硅生长炉设备调查。 多晶硅铸锭炉发展迅速太阳能产业的迅猛发展需要更多的硅料及生产设备来支撑。世界光伏产业中,多晶硅片太阳能电池占据主导地位,带动了多晶硅铸锭生长设备市场的发展。目前,全球太阳能电池的主流产品为硅基产品,占太阳能电池总量的85%以上。多晶硅太阳能电池占太阳能电池总量的56%。多晶硅太阳能电池由于产能高,单位能源消耗低,其成本低于单晶硅片,适应降低太阳能发电成本的发展趋势。多晶铸锭生长技术已逐渐发展成为一种主流的技术,由此也带动了多晶硅铸锭炉市场的发展。多晶硅铸锭炉作为一种硅重熔的设备,重熔质量的好坏直接影响硅片转换效率和硅片加工的成品率。 目前,我国引进最多的是GT SOALR(GT Advanced Technologies Inc.,以下简称GT) 的结晶炉。在国际多晶硅铸锭炉市场上,市场份额占有率最高的为美国GT公司和德国ALD公司。GT公司市场主要面向亚洲,在亚洲的市场销售额占其收入的60%;ALD公司主要面向欧洲市场。其他多晶铸锭设备的主要国际生产商还有美国Crystallox Limited、挪威Scanwafer、普发拓普、和法国ECM。德国ALD公司生产的多晶硅铸锭炉投料量为400kg/炉;美国Crystallox Limited 公司为275kg/炉;挪威Scanwafer公司生产的多晶硅铸锭炉可同时生产4锭,投料量达到800~1000kg/炉,该设备属于专利产品,暂时不对外销售;法国ECM生产的多晶硅铸锭炉采用三温区设计,提高了硅料的再利用率高。 国内的保定英利、江西赛维LDK、浙江精功太阳能都是引进GT的结晶炉。从早期160公斤级到240公斤级,目前容量已增加到450公斤级甚至到800公斤级。2003年10月国内第一条铸锭线在保定英利建成,2006年4月LDK项目投产,百兆瓦级规模生产启动。随后,尚德、林洋、CSI等众多企业多晶硅电池开始量产。2002年, 30~50kg的小型浇铸炉研发;2004年, 100kg试验型热交换型铸锭炉研发;2007年, 240kg大生产型定向凝固炉研发成功并推向市场。

中国科学院大气物理研究所

中国科学院大气物理研究所 2006年博士生入学试题 《大气化学》(满分100) 一、解释下列各对名词(每组2分,共计40分) 1)干沉降和湿沉降2)光学等效直径和空气动力学等效直径3)气溶胶及 PM 10、PM 2.5 4)热化学平衡和光化学平衡5)原生粒子和次生粒子6)元素 和同位素7)细粒子和硫酸盐8)反应物和前体物9)自由基和链式反应10)化学反应速率常数和平衡常数11)雾和光化学烟雾12)粒子数浓度和质量浓度13)pH 值和酸雨14)光化学反应和量子效率15)温室气体和温室效应16)人工降雨和凝结核17)爱根核和云18)酸雨和酸沉降19)大气寿命和半衰期20)均相化学反应和非均相化学反应 二、简答题(每题10分,共计20分) 1.写出《京都议定书》明确要求发达国家减少排放的6种(类)人造物质名称和 分子式,并从它们大气化学降解速率和过成的角度说明必须减少向大气排放这些物质的原因。(10分) 2.N 2 O是一种重要的温室气体,主要从土壤排放到大气,消耗于平流层。当前国 际上测量土壤N 2 O排放普遍使用的方法是用一定体积的箱子罩在一定面积的土壤 上,通过测量箱内N 2 O浓度随时间的变化率,从而计算其界面交换通量(单位时 间单位面积的质量)。设在两地分别测量土壤N 2 O的排放,采样箱参数和测定值如下表,请问A、B哪个排放通量大?(提示:使用理想气体状态方程,0 ℃=273.5 K ) (10分) (t0浓度是指开始罩箱时的N2O浓度;t1是指开始罩箱后的t1时刻N2O浓度) 三、述题(40分,每题20分) 1.目前城市大气中两种最重要的O 3前体物是VOC和NOx(NO+NO 2 ),下图显示的是 第1页共2页

晶体生长方法(新)

晶体生长方法 1) 提拉法(Czochralski,Cz ) 晶体提拉法的创始人是J. Czochralski ,他的 论文发表于1918年。提拉法是熔体生长中最常 用的一种方法,许多重要的实用晶体就是用这 种方法制备的。近年来,这种方法又得到了几 项重大改进,如采用液封的方式(液封提拉法, LEC ),如图1,能够顺利地生长某些易挥发的化 合物(GaP 等);采用导模的方式(导模提拉法) 生长特定形状的晶体(如管状宝石和带状硅单 晶等)。 所谓提拉法,是指在合理的温场下,将装 在籽晶杆上的籽晶下端,下到熔体的原料中, 籽晶杆在旋转马达及提升机构的作用下,一边 旋转一边缓慢地向上提拉,经过缩颈、扩肩、 转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。 提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 图1 提拉法晶体生长装置结构示意图

2)热交换法(Heat Exchange Method, HEM) 热交换法是由D. Viechnicki和 F. Schmid于1974年发明的一种长晶方法。 其原理是:定向凝固结晶法,晶体生长 驱动力来自固液界面上的温度梯度。特 点:(1) 热交换法晶体生长中,采用钼 坩埚,石墨加热体,氩气为保护气体, 熔体中的温度梯度和晶体中的温度梯 度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地 控制固体和熔体中的温度梯度;(2) 固 液界面浸没于熔体表面,整个晶体生长 过程中,坩埚、晶体、热交换器都处于 静止状态,处于稳定温度场中,而且熔 体中的温度梯度与重力场方向相反,熔 体既不产生自然对流也没有强迫对流; (3) HEM法最大优点是在晶体生长结束 后,通过调节氦气流量与炉子加热功率, 实现原位退火,避免了因冷却速度而产 生的热应力;(4) HEM可用于生长具有 图2HEM晶体生长装置结构示意图 特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。

中科院上海光学精密机械研究所院校简介

中科院上海光学精密机械研究所院校简 介 中国科学院上海光学精密机械研究所(简称:上海光机所)成立于1964年,是我国建立最早、规模最大的激光科学技术专业研究所。经过四十多年的发展,上海光机所已成为以探索现代光学重大基础及应用基础前沿、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。 研究所重点学科领域为:强激光技术、强场物理与强光光学、信息光学、量子光学、激光与光电子器件、光学材料等。 上海光机所现有职工800余人,专业技术人员500余人,正副高级科研人员200余人,先后有8位专家当选为中国科学院、中国工程院院士。在读研究生450余人。 上海光机所设8个研究室,包括国家重点实验室1个、“中科院-中物院”联合实验室1个、中科院重点实验室4个、上海市重点实验室1个。 上海光机所共获得省部级以上科技成果奖300多项,其中国家级奖44项。“激光12号实验装置”、“小型化OPCPA(光学参量啁啾脉冲放大)超短超强激光装置研究”获国家科技进步奖一等奖。上海光机所年均获得专利授权200余项,专利申请数一直名列全国科研机构前茅;年均发表论文600多篇,科技论文三项指标(SCI收录论文、被国外引用论文、国内期刊论文)连年位于全国科研机构前列。 建所四十多年来,上海光机所以突出的科研成绩和自身的学科优势确立了在国内外科技界的地位,为我国现代光学和激光与光电子学的发展及应用做出了突出贡献。上海光机所广大科技人员将牢记自己的历史使命,传承老一辈科学家的光荣传统,锐意创新、开拓进取,努力为我国现代光学和激光与光电子学的开拓与发展,为国家安全、国民经济建设作出更大的贡献。 上海光机所是国内最早获得硕士、博士学位授予权和设立博士后流动站的单位之一,具有物理学、光学工程和材料学三个学科的博士授予权和博士后流动站,是中国科学院博士生重点培养基地之一。现有研究生导师90余名(其中博士生导师53名),先后有7位专家被评为中国科学院院士、1位专家被评为中国工程院院士。目前在学硕士、博士研究生近500人。 在国务院学位委员会1994年进行的研究生教育质量评估中,上海光机所光学专业博士、硕士学位点双双名列全国同专业之首。在2002年首次全国一级学科整体水平评估中,上海光机所光学专业在整个物理学一级学科评比中排名第五。在2003年全国一级学科整体水平评估中,上海光机所光学工程在该一级学科中排名第二。物理学博士后流动站为上海市优秀博士后流动站。在1999年开始进行的全国百篇优秀博士学位论文评选中,上海光机所已有4篇入选。 小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情

中科院各大研究所

中国科学院数学与系统科学研究院 *中国科学院数学研究所 *中国科学院应用数学研究所 *中国科学院系统科学研究所 *中国科学院计算数学与科学工程计算研究所 中国科学院物理研究所 中国科学院理论物理研究所 中国科学院高能物理研究所 中国科学院力学研究所 中国科学院声学研究所 中国科学院理化技术研究所 中国科学院化学研究所 中国科学院生态环境研究中心 中国科学院过程工程研究所 中国科学院地理科学与资源研究所 中国科学院国家天文台 *中国科学院云南天文台 *中国科学院乌鲁木齐天文工作站 *中国科学院长春人造卫星观测站 *中国科学院南京天文光学技术研究所 中国科学院遥感应用研究所 中国科学院地质与地球物理研究所 中国科学院古脊椎动物与古人类研究所 中国科学院大气物理研究所 中国科学院植物研究所 中国科学院动物研究所 中国科学院心理研究所 中国科学院微生物研究所 中国科学院生物物理研究所 中国科学院遗传与发育生物学研究所 *中国科学院遗传与发育生物学研究所农业资源研究中心(原中国科学院石家庄农业资源研究所) 中国科学院计算技术研究所 中国科学院软件研究所 中国科学院半导体研究所 中国科学院微电子研究所 中国科学院电子学研究所 中国科学院自动化研究所 中国科学院电工研究所 中国科学院工程热物理研究所 中国科学院空间科学与应用研究中心 中国科学院自然科学史研究所 中国科学院科技政策与管理科学研究所

中国科学院光电研究院 北京基因组研究所 中国科学院青藏高原研究所 国家纳米科学中心 院直属事业单位(京外) 中国科学院山西煤炭化学研究所 中国科学院沈阳分院 中国科学院大连化学物理研究所 中国科学院金属研究所 中国科学院沈阳应用生态研究所 中国科学院沈阳自动化研究所 中国科学院海洋研究所 青岛生物能源与过程研究所(筹) 烟台海岸带可持续发展研究所(筹) 中国科学院长春分院 中国科学院长春光学精密机械与物理研究所 中国科学院长春应用化学研究所 中国科学院东北地理与农业生态研究所 *中国科学院东北地理与农业生态研究所农业技术中心(原中国科学院黑龙江农业现代化研究所) 中国科学院上海分院 中国科学院上海微系统与信息技术研究所 中国科学院上海技术物理研究所 中国科学院上海光学精密机械研究所 中国科学院上海硅酸盐研究所 中国科学院上海有机化学研究所 中国科学院上海应用物理研究所(原子核研究所) 中国科学院上海天文台 中国科学院上海生命科学院 *生物化学与细胞生物学研究所 *神经科学研究所 *药物研究所 *植物生理生态研究所 *国家基因研究中心 *健康科学研究中心 *中国科学院上海生命科学信息中心 *营养科学研究所 *中国科学院上海生物工程研究中心 中国科学院上海巴斯德研究所(筹) 中国科学院福建物质结构研究所 中国科学院城市环境研究所 中国科学院宁波材料技术与工程研究所(筹) 中国科学院南京分院

晶体生长炉控制系统

HOLLIAS-LEC G3 PLC在SiC晶体生长炉控制系统中的应用作为一种新型的半导体材料,SiC以其优良的物理化学特性和电特性成为制造短波长光电子器件、高温器件、抗辐照器件和大功率/高额电子器件最重要的半导体材料。特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件。因此,SiC 器件和其各类传感器已逐步成为关键器件之一,发挥着越来越重要的作用。 从20世纪80年代起,特别是1989年第一种SiC衬底圆片进入市场以来,SiC器件和电路获得了快速的发展。在某些领域,如发光二极管、高频大功率和高电压器件等,SiC器件已经得到较广泛的商业应用,发展迅速。经过十几年的发展,目前SiC器件工艺已经可以制造商用器件。以Cree为代表的一批公司已经开始提供SiC器件的商业产品。 国内的研究所和高校在SiC材料生长和器件制造工艺方面也取得了可喜的成果。目前Si C因片的体生长和外延生长技术已经可以得到应用于商业生产的SiC圆片,市场上可以获

得3英寸的SiC圆片,4英寸的圆片生产技术也不断研制成熟。中科院物理研究所从2000年以来投入大量人力和物力进行了SiC晶体关键生长技术的研发,凭借其多年在晶体生长的经验和实力雄厚的科研力量,目前物理所已跻身于全球几个有能力生长2英寸SiC半导体晶体的单位之一,同时已设计并制造出具有自主知识产权的SiC晶体生长炉,为规模化生产奠定了基础,并具有明显的价格优势。目前本研究组响应把科学技术转化为生产力的号召,集多方资源建立了从事SiC单晶材料生长炉规模化生产业务的公司。 [ 2 生长炉的组成 SiC晶体的生长条件苛刻,需在2100℃以上保持高真空一周以上,且对籽晶质量、固定方式等也有很高要求。物理所利用长期研究工作中积累的单晶生长经验,结合自行设计的独特的坩埚和温场,设计并制造出具有自主知识产权的SiC晶体生长炉。除炉体以外,生长炉具有大量控制设备来确保晶体生长苛刻的环境要求,这样控制设备大体上可以分为真空设备、加温设备和运动设备。 真空设备包括变频器、真空计、真空泵、智能控制仪表、真空控制器和密封设备等,真空计采集炉腔内的真空度,真空控制器根据真空度变化调节变频器频率,进而改变真空泵的运行频率,以保证炉腔内的真空度稳定;加温设备包括中频加热炉、中频电源、电流/电压传感器、可控硅和PID智能调节温控仪表等,温控仪表采集电流传感器的模拟量信号(此值与炉内温度成线性关系),根据电流值和设定值进行PID调节,输出给可控硅来调节中频电源的电压,进而保证炉内温度的稳定;运动设备包括步进电机、G3 PLC、丝杠、导轨、编码器、限位开关和触摸屏等,闭环调节籽晶杆和坩埚杆的运动,调节坩埚自转,各种参数可以设置。 3 运动控制系统组成

中国科学院上海微系统所-研发成果

中科院上海微系统与信息技术研究所 最新科技成果汇编 1.项目名称: 12英寸大硅片研制成功 1)成果简介: 上海微系统所发起设立的上海新昇半导体科技有限公司采用直拉单晶法成功地拉制出第一根大产率的300 mm硅晶棒,并于11月亮相2016上海工博会,表明300毫米硅片研发线(产能1万片/月)贯通。 2)推广转化: 对完善上海的硅材料布局、为我国深亚微米极大规模集成电路产业的发展奠定坚实的衬底基础,未来将有效地形成以硅产业投资公司为旗舰,新傲科技SOI晶圆材料、新昇半导体12英寸大硅片、若干海外控股或参股企业为成员的“航母编队”,在上海建设具有全球影响力的集成电路硅材料产业基地。 3)相关技术或产品/样品图片材料

2.项目名称: 窄带物联网技术(NB-IoT)在智慧燃气中的应用研究----智能抄表实践与验证 1)成果简介: 为解决人工抄表入户难、工作效率低、及时性差等难题,研发了基于NB-IoT的智慧燃气终端模块和第三方检测平台,实现对燃气表具的计量数据实时采集,为建设大数据信息化的智慧燃气奠定了基础。成果包含两个部分:(1)基于窄带物联网(NB-IoT)的智慧燃气终端模块(2)基于窄带物联网NB-IoT的燃气行业第三方检测平台。 与目前传输技术相比,本终端模块利用商用网络,实现低功耗数据上传,使用寿命可达10年以上(目前其他技术只有5~6年),达到国际先进水平。3、国内首创,建立了燃气行业第三方检测平台,为上海智慧燃气表具的市场规范准入提供有效的、公平的检测手段。该平台具有完全的自主知识产权,达到国际先进水平。 2)推广转化: 从社会效益看,NB-IoT技术有望成为传统燃气行业智能化产业升级的重要抓手。降低燃气表日常使用中的用电等成本,降低家庭燃气系统故障带来的风险,将会极大的提高人民群众在智能城市生活中所感受到的幸福感和便利性;而对于燃气企业而言,有助于燃气企业从传统公共事业部门转换角色,成为智能城市信息化时代的引领者,是确保燃气企业紧跟甚至引领智慧城市发展的重要一步。 从经济效益看,NB-IoT终端表具将有可能在综合成本,网络建设成本,故障率和维护成本,抄表成功率,公网电信级服务,一次性抄

晶体生长方法

1.1.5 热交换法Heat exchange method (HEM) 该方法的实质是熔体在坩埚内直径凝固。它 与坩埚移动法的区别是在这种方法中,坩埚不做 任何方向的移动。这是近年来生长大尺寸晶体的 又一发展。Schmid最初的生长是在一个梯度单 晶炉内进行,用以生长大尺寸白宝石单晶。右图 所示的是这种方法的示意图。该梯度炉就是在真 空墨电阻炉的底部装上一个钨铝制成的热交换 器,内有冷却氦气流过。把装有原料的坩埚放在 热交换器的顶端,两者中心互相重合,而籽晶置 于坩埚底部的中心处(注意,热交换器与坩埚底 面积之比应有一定的比例),当坩埚内的原料被 加热熔化以后,此时,由于氦气流经热交换器冷却,使籽晶并未熔化,当氦气流量逐渐加大后,则从熔体带走的热量亦相应增加,使籽晶逐渐长大。最后使整个坩埚内的熔体全部凝固。整个晶体生长过程分两个阶段进行,即成核阶段和生长阶段。在这个过程中晶体生长的去的驱动力来自固—液界面上的温度梯度。通过调节石墨加热器的功率,可达到调节熔体温度的目的。而晶体的热量可通过氦气的流量带走。因此,在生长过程中,晶体的生长界面上可以建立起所需要的温度梯度。 这种方法的主要优点如下: 1)晶体生长时,坩埚、晶体和加热区都不移动,这就消除了由于机械运动而产生的熔体涡流,控制热交换器的温度,是晶体生长在温度梯度场中进行,抑制了熔体的涡流和对流,可以消除固—液界面上温度和浓度的波动,以避免晶体造成过多的缺陷。 2)刚生长出来的晶体被熔体所包围,这样就可以控制它的冷却速率,以减少晶体的热应力及由此产生的开裂和位错等缺陷。同时,也可以长出与坩埚形状和尺寸相仿的单晶。 当然热交换法生长晶体的周期较长,例如,Schmid生长32cm直径的白宝石单晶约需一周左右的时间。 1.1.6水平结晶法Horizontal directional crystallization method(HDC) 其生长原理如右图所示,将原料放入船形坩埚之中,船形坩埚之船头部位主要是放置晶种,接着使坩埚经过一加热器,邻近加热器之部份原料最先熔化形成熔汤,形成熔汤之原料便与船头之晶种接触,即开始生长晶体,当坩埚完全经过加热器后,便可得一单晶体。为了晶体品质及晶体生张结束后,方便取出晶体,坩埚应采用不沾其熔汤之材料所製,如石英、

晶体生长方法(新)

晶体生长方法 1)提拉法(Czochralski,CZ 晶体提拉法的创始人是J. Czochralskj他的论文发表于 1918年。提拉法是熔体生长中最常用的一种方法,许多重要 的实用晶体就是用这种方法制备的。近年来,这种方法又得 到了几项重大改进,如采用液封的方式(液封提拉法, LEC,如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体 (如管状宝石和带状硅单晶等)。 所谓提拉法,是指在合理的温场下,将装在籽晶杆上的 籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机 构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩 肩、转肩、等径、收尾、拉脱等几个工艺阶段,生 长出几何形状及内在质量都合格单晶的过程。这种方 法的主要优点是:(a)在生长过程中,可以 图1提拉法晶体生长装置结构示意图方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处 生长, 而不与坩埚相接触,这样能显 著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与缩颈” 工艺,得 到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以 较快的速率生长较高质量的晶体。

提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不 得不改用其它生长方法。

2) 热交换法(Heat Exchange Method, HEM ) 热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1)热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作 为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2)固 液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM 可用于生长具有特定形状要求的晶体。 由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如①30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长, 体价格昂贵,所以长晶成本很高。 悶Wliry; 图2 HEM晶体生长装置结构示意图 He气 In別加口 "—. / Power ! Crumble H i: jinl ? Heatrngi c hm衍 B pump Heat Hdum

第一章红外辐射和辐射源-中国科学院上海技术物理研究所

高级红外光电工程导论中科院上海技术物理研究所教育中心

序言 红外线是电磁波谱的一个部分,这一波段位于可见光和微波之间。早在1800年,英国天文学家赫胥尔为寻找观察太阳时保护自己眼睛的方法就发现了这一“不可见光线”。但是,红外技术取得迅速发展还是在二次大战期间和战后的几十年,推动技术发展的原因主要是由于军事上的迫切需要和航天工程的蓬勃开展。 红外系统是用于红外辐射探测的仪器。根据普朗克辐射定理,凡是绝对温度大于零度的物体都能辐射电磁能,物体的辐射强度与温度及表面的辐射能力有关,辐射的光谱分布也与物体温度密切相关。在电磁波谱中,我们把人眼可直接感知的0.4~0.75微米波段称为可见光波段,而把波长从0.75至1000微米的电磁波称为红外波段,红外波段的短波端与可见光红光相邻,长波端与微波相接。可见光辐射主要来自高温辐射源,如太阳、高温燃烧气体、灼热金属等,而任何低温、室温或加热后的物体都有红外辐射。 通常情况下,红外仪器总被认为是一种无源、被动式的探测仪器,因为它主要探测来自被测物体自身的红外辐射。例如:红外辐射计、热像仪、搜索跟踪设备等就不需要像雷达系统那样的大功率辐射源,红外仪器可对物体自身热辐射进行非接触式的检测,从中反演出物体温度或辐射功率、能量等。由于,具有全天时、隐蔽性好、不易为敌方干扰,适合军事应用。 但是,并非所有的红外仪器都是无源的。因为,除物体自身热辐射外,自然或人工辐射源与物质相互作用也能产生电磁辐射。电磁辐射与物体的相互作用可以表现为反射、吸收、透射、偏振、荧光等多种形式,利用不同作用机理,可研制出门类众多的红外仪器。如利用物体反射、吸收电磁辐射时的光谱特征,可测量分析物体的颜色、水份、和材料组分等。这一类探测仪器是需要辐射源的。 习惯上,我们都是根据仪器自身是否带辐射源来划分被动式或主动式探测仪器。仪器的命名也有所不同,如我们把被动式的辐射测量设备称之为辐射计,如红外辐射计、微波辐射计。而主动式的辐射探测设备相应地称为红外雷达、微波雷达。本课程主要介绍被动式的红外光电探测系统。 红外系统的信息流程通常包含辐射产生、传输、采集、光电转换、信号处理等环节。红外光、可见光本质上都是电磁波,波段相邻,红外仪器与可见光仪器的工作原理、信息流程几乎相同,主要元部件(如光学系统、探测器)虽有差异,但其作用机理、设计方法相似之处甚多,许多遥感仪器也经常集成了可见光通道和红外探测通道。由此,红外光电系统课程重点讲授红外技术,但许多内容对可见光系统也是适用的。

中科院光电所研制出实用深紫外光刻机

中科院光电所研制出实用深紫外光刻机 近日,中国科学院光电技术研究所微电子专用设备研发团队研制成功波长254nm 的实用深紫外光刻机(Mask aligner ),光刻分辨力达到500nm 。Mask aligner 因使用方便、效率高、成本低,一直是使用面最广、使用数量最多的一种光刻设备。在现有的微纳加工工艺中,光刻所采用的波段是决定光刻分辨力的重要因素之一。长期以来,国产Mask aligner 均采用紫外波段 (350nm 至450nm ),分辨力只能做到1ym以上。而对于 200nm至1 ^m的微纳器件复制,只能采用进口紫外投影光刻机,200nm 以下分辨力则只能采用进口深紫外投影光刻机。光电所该型设备的成功研制,填补了国内商用化深紫外光刻机的空白,可低成本解决500nm 以上器件的高效复制,具有很好的社会经济效益。光电所微电子专用设备研发团队积极响应客户需求,大胆创新,成功解决了低成本深紫外光源、深紫外高均匀性匀光技术、新型深紫外介质膜镀膜技术以及非球面准直技术等诸多难点。该型设备仅需通过更换滤光模块,便可实现紫外、中紫外波段、深紫外波段的相互切换。同时,该型设备以光电所URE-2000 系列紫外光刻机为基台(已经销售550 台,其中出口30 多台),配有高精度对准模块、真空曝光模式、双面曝光模式、纳米压印模式、接近式模式、数字设定曝光间隙等诸多功能供用户选择或定制,能满足不同光刻工艺需求。该设备自动化程度高、操作十分方便、外形美观。该型

设备的成功研制,是光电所光刻机团队将光刻工艺需求与设备研发紧密结合的产物,市场前景十分广阔。光电所研发团队还积极与潜在用户单位进行需求沟通和工艺探索,利用中紫外波段(峰值波长310nm )在光敏玻璃(FOTURANII)上完成了高深宽比结构的制备直接光刻,设备已经销售数台,并与德国肖特 (SCHOTT)公司达成合作协议。⑻设备外观图;(b)设备输出光谱实测曲线

相关文档
最新文档