电气测试技术第三版_课后习题答案(林德杰)

电气测试技术第三版_课后习题答案(林德杰)
电气测试技术第三版_课后习题答案(林德杰)

l第一章思考题与习题

1-2 图1.6为温度控制系统,试画出系统的框图,简述其工作原理;指出被控过程、被控参数和控制参数。

解:乙炔发生器中电石与冷水相遇产生乙炔气体

并释放出热量。当电石加入时,内部温度上升,温度

检测器检测温度变化与给定值比较,偏差信号送到控

制器对偏差信号进行运算,将控制作用于调节阀,调

节冷水的流量,使乙炔发生器中的温度到达给定值。

系统框图如下:

被控过程:乙炔发生器

被控参数:乙炔发生器内温度

控制参数:冷水流量

1-3 常用过程控制系统可分为哪几类?

答:过程控制系统主要分为三类:

1. 反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。它是最常用、最基本的过程控制系统。

2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。由于没有被控量的反馈,所以是一种开环控制系统。由于是开环系统,无法检查控制效果,故不能单独应用。

3. 前馈-反馈控制系统:前馈控制的主要优点是能够迅速及时的克服主要扰动对被控量的影响,而前馈—反馈控制利用反馈控制克服其他扰动,能够是被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。

3-4 过程控制系统过渡过程的质量指标包括哪些内容?它们的定义是什么?哪些是静态指标?哪些是动态质量指标?

答:1. 余差(静态偏差)e:余差是指系统过渡过程结束以后,被控参数新的稳定值y(∞)

与给定值c 之差。它是一个静态指标,对定值控制系统。希望余差越小越好。

2. 衰减比n:衰减比是衡量过渡过程稳定性的一个动态质量指标,它等于振荡过程的第

一个波的振幅与第二个波的振幅之比,即:

n <1系统是不稳定的,是发散振荡;n=1,系统也是不稳定的,是等幅振荡;n >1,系统是稳定的,若n=4,系统为4:1的衰减振荡,是比较理想的。 衡量系统稳定性也可以用衰减率φ

4.最大偏差A :对定值系统,最大偏差是指被控参数第一个波峰值与给定值C 之差,它衡量被控参数偏离给定值的程度。

5. 过程过渡时间ts :过渡过程时间定义为从扰动开始到被控参数进入新的稳态值的±5%或±3% (根据系统要求)范围内所需要的时间。它是反映系统过渡过程快慢的质量指标,t s 越小,过渡过程进行得越快。

6.峰值时间tp : 从扰动开始到过渡过程曲线到达第一个峰值所需要的时间,(根据系统要求)范围内所需要的时间。称为峰值时间tp 。它反映了系统响应的灵敏程度。

静态指标是余差,动态时间为衰减比(衰减率)、最大偏差、过程过渡时间、峰值时间。

第二章 思考题与习题

2-1 如图所示液位过程的输入量为Q1,流出量为Q2,Q3,液位h 为被控参数,C 为容量系数,并设R1、R2、R3均为线性液阻,要求:

(1) 列出过程的微分方程组;

(2) 求过程的传递函数W 0(S )=H (S )/Q 1(S ); (3) 画出过程的方框图。

解:(1)根据动态物料平衡关系,流入量=流出量:

B B n '

=

B

B B '-=

?dt

dh )Q Q (Q 321=

+-h d ?

过程的微分方程的增量形式:

中间变量:

消除中间变量:

同除 (R2+R3) 得到:

令:

上式可写为:

(2)Laplace 变换得到:

传递函数:

(3) 过程的方框图:

2-2.如图所示:Q 1为过程的流入量,Q 2为流出流量,h 为液位高度,C 为容量系数,若以Q 1为过程的输入量,h 为输出量(被控量),设R 1、R 2为线性液阻,求过程的传递函数 W 0(S)=H(S)/Q 1(S)。

解:根据动态物料平衡关系,流入量=流出量:

过程的微分方程的增量形式:

中间变量:

2

2R h

Q ??=

3

3R h

Q ??=

h )R R (dt

h

d R CR Q R R 233

2132???++=h

dt

h

d R R R CR Q R R R R 323213232???++=+3

23

2R R R R R +=

h dt h d CR Q R 1???+=)S (H )S (CRSH )S (RQ 1+=1

RCS R )

s (Q )s (H )s (W 10+=

=dt

h

d C Q Q 21???=-2

2R h Q ??=h dt

h

d CR Q R 2

12???+=

传递函数:

如果考虑管道长度l , 即出现纯时延,由于管道流量恒定,所以l

Q =

τ

其传递函数为:

其中:l

Q =

τ

2-3.设矩形脉冲响应幅值为2 t/h ,脉冲宽度为△t =10min ,某温度过程的矩形脉冲响应记录数据如下:

(1) 将该脉冲矩形响应曲线转换成阶跃响应曲线; (2) 用一阶惯性环节求该温度对象的传递函数。 解:将脉冲响应转换成阶跃响应曲线,数据如下:

绘出阶跃响应曲线如下:

)S (H )S (SH CR )S (Q R 212+=1

S CR R )s (Q )s (H )s (W 2210+=

=

τ

S

2210e

1

S CR R )s (Q )

s (H )s (W -+==

5.502

101

x )0(y )(y K 00==-∞=

由图y(t1)=0.4y(∞) ,y(t2)=0.8y(∞)处可得:t1=14min t2=30.5 t1/t2≈0.46 故二阶系统数字模型为 2

0)

1TS (K )s (W +=

根据经验公式有: 3.1016.22

t t )s (T 2

10=?+=

所有: 2

200)

1S 3.10(5

.50)1TS (K )s (W +=+=

2-5 某过程在阶跃扰动量Δu =20%,其液位过程阶跃响应数据见下表:

(1) 画出液位h 的阶跃响应曲线 (2) 求液位过程的数学模型 解:方法一:图解法

由图可以看出:过程应该用一阶加延时系统。

1002

.020

x )0(y )(y K 00==-∞=

从图中得到:τ=40s , T =260-40=220s

S 40S 00e 1

S 220100

e 1TS K )s (W --+=+=

τ

方法二:计算法:

在图中取y (t 1)=0.33 y (∞) y (t 2)=0.39y (∞) y (t 3)=0.632 y(∞) y (t 4)=0.7 y (∞) 得t 1=125s t 2 =140s t 3 = 225s t 4 =260s

s 150)t t (2T 231=-≈ s 55t t 2321=-≈τ

s 1688.0t t T 142=-≈

s 572

t

t 3412=-≈τ 可见数据很接近,于是:

s 1592T T T 210=+=

s 562

2

10=+=τττ 过程数学模型:

S 56S 00e 1

S 159100

e 1TS K )s (W --+=+=

τ

2-6 某过程在阶跃扰动ΔI =1.5mADC 作用下,其输出响应数据见下表:

解:求出y(∞)-y(t)值如下表:

根据表格在半对数纸上描绘出曲线1,曲线1作直线部分的延长线2,2线减去1线得到直线3。

过程放大倍数 K 0

3.15

.14

6x )0(y )(y K 00=-=-∞=

根据直线2和直线3,与纵坐标、横坐标构成的两个三角形,可以求出时间参数T 1、T 2 : 由A 1=7,B 1=0.1 , t 1=10s

35.2)

1.0lg 7(lg 303.2s

10)B lg A (lg 303.2t T 1111=-=-=

由 A 2=5,B 2=0.1 t 2=6s

该过程的数学模型为:

第三章 思考题与习题

)1s 53.1)(1s 35.2(3

.1)1s T )(1s T (K )s (W 2100++=

++=53

.1)

1.0lg 5(lg 303.2s

6)B lg A (lg 303.2t T 2222=-=-=

3-2 有一压力控制系统选用DDZ -Ⅲ压力变送器,其量程为0~200kPa 。生产工艺要求被控压力为150±2kPa ,现将该变送器量程调整到100~200 kPa ,求零点迁移前后该压力变送器的灵敏度。

解: 零点迁移前灵敏度:

零点迁移后灵敏度:

3-4 某DDZ -Ⅲ直流毫伏变送器,其零点移到Vio =5mV ,零迁后的量程为DC10mV ,求该变送器输出I 0=10mADC 时的输入是多少毫伏? 解:分析:零点迁移后5~10mV 对应输出为 4~20mA ,如右图所示。 根据图的几何关系有:

ab : ac =eb : dc

88.116

6

5dc eb ac ab ≈?=?=

∴ I 0=10mA 时,输入电压为: V in =5+1.88=6.88(mVDC )

3-7.说明DDZ -Ⅲ热电偶温度变送器的冷端温度补偿原理。

以A 和B 两种导体组成的热电偶产生的热电势与材料种类和接触点的温度有关。热电偶产生的热电势与被测温度T 具有单值函数关系。但是,其前提条件必须保持冷端温度T0 不变。

热电偶的热电势大小不仅与热端温度有关,而且还与冷端温度有关。实际使用中冷端暴露在仪表之外,受环境影响较大,因此必须进行冷端补偿(温度校正)

热电偶冷端温度的补偿方法

(1)补偿导线法(延伸导线法):用与热电偶热电性质相同的臂长补偿导线(或称延伸导线)将热电偶的冷端延伸到温度保持恒定的地方。

(2)冷端恒温法:将热电偶的冷端置于恒定温度的容器内或场合内。

(3)冷端温度修正法(计算校正法):

kPa

/mA 08.00

2004

20K 1=--

=

kPa

/mA 16.0100

2004

20K 1=--

=)

t (e )t (e )t ,t (E 0AB AB 0-=

(4)补偿电桥法:利用不平衡电桥产生相应的不平衡电势补偿由于热电偶冷端温度变化引起的测量误差。

3-8.DDZ -Ⅲ温度变送器是如何使被测温读与输出信号I 。成线性关系的?简述热电偶温度

变送器与热电阻温度的线性化原理。

3-5 .DDZ -Ⅲ温度变送器测温范围为800~1200°C 。选择哪一种测温元件较为合适?当输

出电流为DC16mA 时,被测温度是多少? 解:检测温度高于600℃,应选择热电偶测温元件。

ab : ac =bd : ce

30016

12

400ce bd ac ab ≈?=?=

∴ I 0=16mA 时,被测温度为: T =800+300=1100(℃)

3-6 .DDZ-Ⅲ温度变送器测温范围为400~600°C 。选择哪一种测温元件较为合理?当温度

从500°C 变化到550°C 时,输出电流变化多少? 解::检测温度低于600℃,应选择铂电阻测温元件。

温度变化50℃时,输出电流变化:

ΔI =0.08 mA/℃×50℃=4 mA

3-8 用标准孔板测量气体流量,给定设计参数p =0.8kPa ,t =20°C 。实际被测介质参数p 1=0.8k Pa ,t 1=30C 。仪表显示流量Q =3800m3h ,求被测介质实际流量大小。

3-9 一只用水标定的浮子流量计,其满刻度值为1000m3/h ,不锈钢浮子密度为7.92g/cm3。现用来测量密度为0.72g/cm3的乙醇流量,问浮子流量计的测量上限是多少? 解:设转子、水、被测液体的密度分别为ρ1、ρ0、ρ2, 由液体流量的修正公式,密度修正系数:

根据修正系数求得,浮子流量计的测量上限是:

2.1720

)10007920(1000

)7207920()()(K 0101=--='-'-=

ρρρρρ

ρ℃

/mA 08.0200

6004

20K 1=--=

Q 2max =K Q 0 max =1.2×1000=1200 m 3/h

3-16 简述涡轮流量计的工作原理。某涡轮流量计的仪表常数K =150.4次/L ,当它测量流

量时的输出频率为?=400Hz 时,求其瞬时体积流量为每小时多少立方米?

第四章 思考题与习题

4-1 什么是正作用调节器和反作用调节器?如何实现调节器的正反作用?

答:输入增加时,调节器输出也随之增加称为正作用调节器;输入增加时,调节器输出减小称为反作用调节器。在调节器输入级的输入端设有一个双向开关S 7,通过切换改变输入信号的极性来实现调节器的正反作用。

4-3 如何测定DDZ -Ⅲ调节器的微分时间T D 和积分时间T I ? 答:一、微分传递函数为:

拉氏反变换得阶跃作用下的时间函数:

当t =t(0+)时,

当t =∞时, 由图有:

实验得到曲线后,可以按图求取微分时间T D 二、积分传递函数:

t =0时,

)

t (V )0(V 1O 02?=+α632

.0)

(V V )K T (

V V 0202D

D 0202=∞--)

t (V e )1K (1K )t (V 1O t T K

D D 02D D ???

?????

-+?=-α

)

t (V K )0(V 1O D

02?=

S K T 1S

T 1K )S (W D

D D D

PD ++?

=

α

S

T K 1

1S

T 1

1C C )S (W I I I M I PI ++

?

-=?-

=02M

I

03V C C )0(V )t (V e )1K (K C C

)t (V 2O t T K K

I I M

I

03I I D ???

?????

-+?-=

-

t =∞时,

t =T I 时:

4-3 设DDZ -Ⅲ基型调节器的PID 参数的刻度值为δ=0.50,T I =30s ,T D =20s 。计算实际值δ*

、T I *

和T D *

之值。

解:先计算F : F =1+T D /T I =1+2/3=1.67

δ*

、T I *

、T D *

之实际值: δ*

=δ/F =0.5/1.67=0.3

T I *=T I /F =17.9 T D *=T D /F =11.9

4-5 数字式完全微分PID 控制规律与不完全微分PID 控制规律有说明区别?哪种控制规律的应用更为普遍?

答: 完全微分型PID 算法的微分作用过于灵敏,微分作用持续时间短,容易引起控制系统振荡,降低控制品质。不完全微分是在PID 输出端串接一个一阶惯性环节,这样,在偏差变化较快时,微分作用不至于太强烈,且作用可保持一段时间。因此不完全微分PID 控制规律更为普遍。 4-6

4-9 某流体的最大流量为80 m 3/h ,改流体密度为0.16×10-

2g/cm 3,阀前后一压差为

0.1MPa ,试选择调节阀的公称直径和阀座直径。(要求泄露量小) 解:调节阀的流通能力C 为:

h /m 12.101

.01016.080P Q C 32

=?==-?ρ

取 h /m 12C 3

=

查表得dg =32mm ,Dg =32mm 。

第六章 思考题与习题

6-5 调节器的P 、PI 、PD 、PID 控制规律各有什么特点?它们各用于什么场合? 答: 比例控制规律 适用于控制通道滞后较小,时间常数不太大,扰动幅度较小,负荷变

?-

=∞02I M

I

03V K C C )(V ?-=∞02M

I

03V C C 2

)(V

化不大,控制质量要求不高,允许有余差的场合。如贮罐液位、塔釜液位的控制和不太重要的蒸汽压力的控制等。

比例积分控制规律引入积分作用能消除余差。适用于控制通道滞后小,负荷变化不太大,工艺上不允许有余差的场合,如流量或压力的控制。

比例微分控制规律引入了微分,会有超前控制作用,能使系统的稳定性增加,最大偏差和余差减小,加快了控制过程,改善了控制质量。适用于过程容量滞后较大的场合。对于滞后很小和扰动作用频繁的系统,应尽可能避免使用微分作用。

比例积分微分控制规律可以使系统获得较高的控制质量,它适用于容量滞后大、负荷变化大、控制质量要求较高的场合,如反应器、聚合釜的温度控制。

6-7在某生产过程中,冷物料通过加热炉对其进行加热,热物料温度必须满足生产工艺要求,故设计图所示温度控制系统流程图,画出控制框图,指出被控过程、被控参数和控制参数。确定调节阀的流量特性、气开、气关形式和调节器控制规律及其正、反作用方式。

解:系统方框图:

被控过程为加热炉;被控参数是热物料的温度;控制参数为燃料的流量。

加热炉的过程特性一般为二阶带时延特性,即过程为非线性特性。因此,调节阀流量特性选择对数特性调节阀。

根据生产安全原则,当系统出现故障时应该停止输送燃料,调节阀应选用气开式。即无气时调节阀关闭。

控制器的正反作用的选择应该在根据工艺要求,原则是:使整个回路构成负反馈系统。控制器的正、反作用判断关系为:

(控制器“±”)·(控制阀“±”)·(对象“±”)=“-”

调节阀:气开式为“+”,气关式为“-”;

控制器:正作用为“+”,反作用为“-”;

被控对象:按工艺要求分析,通过控制阀的物量或能量增加时,被控制量也随之增加为“+”;反之随之降低的为“-”;

变送器一般视为正作用。

根据安全要求,调节阀选气开式K v为正,温度变送器K m一般为正,当调节器增加时,温度值增加,故过程(对象)为正,为了保证闭环为负。所以调节器应为负作用。

6-8 下图为液位控制系统原理图。生产工艺要求汽包水位一定必须稳定。画出控制系统框图,指出被控过程、被控参数和控制参数。确定调节阀的流量特性、气开、气关形式和调节器的控制规律及其正反作用方式。

解:控制系统框图如下图所示。

被控过程为汽包;被控参数是汽包的液

位;控制参数为给水的流量。

汽包的过程特性为一阶带时延特性,即

过程为非线性特性。因此,调节阀流量特性选

择对数特性调节阀。

根据生产安全原则,当系统出现故障时应该停止输送燃料,调节阀应选用气关式。即无气时调节阀打开。保证在控制出现故障时,汽包不会干烧。

调节阀:选择气关式调节阀,故K V为“-”;

被控对象:按工艺要求分析,通过给水增加时,被控制参数的液位也会增加。所以K0为“+”;

变送器一般视为正作用。

控制器的正、反作用判断关系为:

(控制器“?”)·(控制阀“-”) ·(对象“+”)=“-”根据判断关系式,调节器应为正作用。

6-9 某过程控制通道作阶跃实验,输入信号Δu =50,其记录数据见表6-11

(1)用一阶加纯时延近似该过程的传递函数,求K 0、T 0、和τ0值。 (2)用动态响应曲线法整定调节器的PI 参数(取ρ=1,φ=0.75)。 解:(1)根据表6-11得到过程阶跃响应曲线:

由图读得T 0=1.08 min τ0=0.42 min

∴0.2≤0.38≤1

根据动态特性整定公式有:

T I =0.8 T 0 =0.74 min

6-10 对某过程控制通道作一阶跃实验,输入阶跃信号Δμ=5,阶跃响应记录数据如表所示。

82

.250

200

5.341x )0(y )(y K 00=-=-∞=

S

42.00e 1

s 08.182

.2)s (W -+=

39.008

.142

.0T 0

0=

81.06

.0T 08

.0T 6

.20

=+-?

=

τ

τ

ρ

δ

(1) 若过程利用一阶加纯时延环节来描述,试求K 0、T 0、τ

(2) 设系统采用PI 调节规律,按4:1衰减比,用反应曲线法整定调节器参数,求δ、

T i 。

解:(1)求过程的传递函数,由表作图:

从图中可以得到:τ=25min =1500s ; T 0=30min =1800s 采用一阶加时延系统则:

将数值代入得:

(2) 因为τ/ T 0 =1500/1800=0.83<1 取φ=0.75的有自衡过程的整定公式:

a .比例系数δ:

b .积分时间常数T i :

T i =0.8T 0=1440 (s)

6-12 已知被控制过程的传递函数 ,其中T 0=6s ,τ 0=3s 。试用

响应曲线法整定PI 、PD 调节器的参数;再用临界比例度法整定PI 调节器的参数(设T K =10s ,δK =0.4);并将两种整定方法的PI 参数进行比较。

S

000e

)

s T 1(K )s (W τ

-+=4

.15

.07

.0x )0(y )(y K 00==-∞=

S

1500e )

s 1801(4

.1)s (W -+=

24

.148.06.26

.083.015

.083.06.26

.0T 08

.0T

16.20

≈?≈+-?=+-?=τ

τ

ρ

δS

0e )1s T (4.1)s (W τ-+=

解:对有自衡能力的系统ρ=1,T 0 / τ 0=0.5。

采用特性参数法(响应曲线法)公式及PI 控制规律,有:

T i =0.8T 0=4.8 (s)

对PD 控制规律调节器,有

T i =0.25τ0=0.75 (s)

采用临界比例度法,对PI 调节规律:

T i =0.85T K =8,5 (s)

两种整定方法得到的结果不同,比例度比较接近、T I 相差较大。在工程实践中应该应用不同的整定方法进行比较,选择控制效果最佳方案。

第七章 思考题与习题

7-2 在串级控制系统的设计中,副回路设计和副参数的选择应考虑哪几个原则? 答:副回路设计是选择一个合适的副变量,从而组成一个以副变量为被控变量的副回路。副回路设计应遵循的一些原则:

(1) 副参数选择应该时间常数小,时延小、控制通道短的参数作为副回路的控制参数。当对象具有较大的纯时延时,应使所设计的副回路尽量少包括最好不包括纯时延。

(2) 使系统中的主要干扰包含在副环内。在可能的情况下,使副环内包含更多一些干扰。

当对象具有非线性环节时,在设计时将副环内包含更多一些干扰。

(3) 副回路应考虑到对象时间常数的匹配:T 01/T 02=3~10,以防止“共振”发生。 (4) 副回路设计应该考虑生产工艺的合理性 (5) 副回路设计应考虑经济原则。

7-3 图为加热炉出口温度与炉膛温度串级控制系统。工艺要求一旦发生重大事故,立即切断原料的供应。

91

.07

.05.008

.05.06.28.08.0P ≈+-?

?==δδ88

.02.2P ==δδ99

.06

.05.008

.05.06.26

.0T 08

.0T 16.20

≈+-?=+-?=τ

τ

ρδ

(1)画出控制系统的组成框图

(2)确定调节阀的流量特性气开、气关形式

(3)确定主副调节器的控制规律及其正反作用方式

解:(1)串级系统方框图如下:

副回路选择加热炉炉膛温度控制,消除F1(S)干扰。

(2)由于发生重大事故时立即切断燃料油的供应,从工艺的安全性考虑,调节阀选择气开式,保证无气时调节阀关闭。

(3)主调节器选择PI(或PID)控制规律,副调节器选择P调节规律。

由于燃料增加加热炉温度必然增加,所以过程为正。调节阀气开式为正,根据表7-4可知主副调节器都选择正作用方式。

7-5 某温度-温度串级控制系统,主调节器采用PID控制规律,副调节器采用P控制规律。采用两步整定法整定主、副调节器的参数,按4:1衰减比测得δ1S=0.12,δ1S=0.5 ,T1S =140s,T2S=12s。求主、副调节器参数的整定值。

解:按照4:1两步整定法经验公式:

主调节器(温度调节器):

=0.8×δ1S=0.8×0.12=9.6%

比例度δ

积分时间常数T I=0.3×T1S=42 s

微分时间常数:TD=0.1×T1S=14 s

副调节器:

比例度δ2=δ2S=50%

7-8 用蒸汽加热的贮槽加热器,进料量Q 1稳定,而Q 1的初始温度T 1有较大波动,生产工艺要求槽内物料温度T 恒定。Q 2为下一工艺的负荷,要求Q2的温度为T 。试设计一过程控制系统,并画出控制系统框图。

解:应用前馈-反馈控制系统对冷物料进行前馈补偿 控制、对被控参数:出口热物料进行反馈控制。系统 控制流程图如下图所示。

控制系统组成框图:

其中

前馈补偿器传递函数

)

s (W )s (W )s (W 0f FF -

=

机械工程测试技术课后习题答案

思考题与习题 3-1 传感器主要包括哪几部分试举例说明。 传感器一般由敏感元件、转换元件、基本转换电路三部分组成。 如气体压力传感器。其内部的膜盒就是敏感元件,它的外部与大气压力相通,内部感受被测压力p ,当p 发生变化时,引起膜盒上半部分移动,可变线圈是传感器的转换元件,它把输入的位移量转换成电感的变化。基本电路则是完成上述电感变化量接入基本转换电路,便可转换成电量输出。 3-2 请举例说明结构型传感器与物性型传感器的区别。 答:结构型传感器主要是通过传感器结构参量的变化实现信号变换的。例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化。 物性型传感器则是利用敏感元件材料本身物理性质的变化来实现信号变换。例如,水银温度计是利用水银的热胀冷缩性质;压电式传感器是利用石英晶体的压电效应等。 3-3 金属电阻应变片与半导体应变片在工作原理上有何区别 答:金属电阻应变片与半导体应变片的主要区别在于:金属电阻应变片是基于电阻应变效应工作的;半导体应变片则是基于压阻效应工作的。 3-4 有一电阻应变片(见图3-105),其灵敏度S 0=2,R =120Ω,设工作时其应变为1000με,问ΔR =设将此应变片接成图中所示的电路,试求:1)无应变时电流指示值;2)有应变时电流指示值;3)试分析这个变量能否从表中读出 解:由0dR R s ε = 得,0R R s ε?=??即,6012010001020.24R R s ε-?=??=???= ()1.5 12.5120 I mA = = 3-5 电容式传感器常用的测量电路有哪几种 答:变压器式交流电桥、直流极化电路、调频电路、运算放大电路。 3-6 一个电容测微仪其传感器的圆形极板半径r=4mm ,工作初始间隙δ=0.3mm ,求: 图3-105 题3-4图

电气测试技术林德杰课后答案

1-1 答:应具有变换、选择、比较和选择4种功能。 1-2 答:精密度表示指示值的分散程度,用δ表示。δ越小,精密度越高;反之,δ越大,精密度越低。准确度是指仪表指示值偏离真值得程度,用ε表示。ε越小,准确度越高;反之,ε越大,准确度越低。精确度是精密度和准确度的综合反映,用τ表示。再简单场合,精密度、准确度和精确度三者的关系可表示为:τ=δ+ε。 1-5 答:零位测量是一种用被测量与标准量进行比较的测量方法。其中典型的零位测量是用电位差及测量电源电动势。其简化电路如右下图所示。图中,E 为工作电源,E N 为标准电源,R N 为标准电阻,E x 为被测电源。 测量时,先将S 置于N 位置,调节R P1,使电流计P 读书为零,则N N 1R E I =。然后将S 置于x 位置,调节R P2,使电流计P 读书为零,则x x R E I =2。由于两次测量均使电流计P 读书为零,因此有 N N N N 21E R R E R E x R x E I I x x =?=?= 零位测量有以下特点: 1) 被测电源电动势用标准量元件来表示,若采用高精度的标准元件,可有效提高测量精度。 2) 读数时,流经E N 、E x 的电流等于零,不会因为仪表的输入电阻不高而引起误差。 3) 只适用于测量缓慢变化的信号。因为在测量过程中要进行平衡操作。 1-6答:将被测量x 与已知的标准量N 进行比较,获得微差△x ,然后用高灵敏度的直读史仪表测量△x ,从而求得被测量x =△x +N 称为微差式测量。由于△x <N ,△x <<x ,故测量微差△x 的精度可能不高,但被测量x 的测量精度仍然很高。 题2-2 解:(1) ΔA =77.8-80=-2.2(mA ) c =-ΔA =2.2(mA ) %.%.-%A ΔA γA 75210080 22100=?=?=

《测试技术》(第二版)课后习题答案-_

《测试技术》(第二版)课后 习题答案-_ -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

解: (1) 瞬变信号-指数衰减振荡信号,其频谱具有连续性和衰减性。 (2) 准周期信号,因为各简谐成分的频率比为无理数,其频谱仍具有离 散性。 (3) 周期信号,因为各简谐成分的频率比为有理数,其频谱具有离散 性、谐波性和收敛性。 解:x(t)=sin2t f 0π的有效值(均方根值): 2 /1)4sin 41(21)4sin 41(21)4cos 1(212sin 1)(1000 00 00 00 000 020 2 000=-= - = -== =? ? ? T f f T T t f f T T dt t f T dt t f T dt t x T x T T T T rms ππππππ 解:周期三角波的时域数学描述如下:

(1)傅里叶级数的三角函数展开: ,式中由于x(t)是偶函数,t n 0sin ω是奇函数,则t n t x 0sin )(ω也是奇函数,而奇函数在上下限对称区间上的积分等于0。故 =n b 0。 因此,其三角函数展开式如下: 其频谱如下图所示: ? ????????+≤ ≤-≤≤- +=) (2 02022)(0000 0nT t x T t t T A A t T t T A A t x 2 1)21(2)(12/0002/2/00000= -==??-T T T dt t T T dt t x T a ??-==-2/000 02 /2/00 000cos )21(4cos )(2T T T n dt t n t T T dt t n t x T a ωω?????==== ,6,4,20 ,5,3,14 2sin 422222n n n n n π ππ?-=2 /2 /00 00sin )(2T T n dt t n t x T b ω∑∞ =+=102 2 cos 1 4 21)(n t n n t x ωπ ∑∞ =++=102 2)2sin(1 421n t n n πωπ (n =1, 3, 5, …)

电气测试技术第三版_课后习题答案(林德杰)

l第一章思考题与习题 1-2 图1.6为温度控制系统,试画出系统的框图,简述其工作原理;指出被控过程、被控参数和控制参数。 解:乙炔发生器中电石与冷水相遇产生乙炔气体 并释放出热量。当电石加入时,部温度上升,温度 检测器检测温度变化与给定值比较,偏差信号送到控 制器对偏差信号进行运算,将控制作用于调节阀,调 节冷水的流量,使乙炔发生器中的温度到达给定值。 系统框图如下: 被控过程:乙炔发生器 被控参数:乙炔发生器温度 控制参数:冷水流量 1-3 常用过程控制系统可分为哪几类? 答:过程控制系统主要分为三类: 1. 反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。它是最常用、最基本的过程控制系统。 2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。由于没有被控量的反馈,所以是一种开环控制系统。由于是开环系统,无法检查控制效果,故不能单独应用。 3. 前馈-反馈控制系统:前馈控制的主要优点是能够迅速及时的克服主要扰动对被控量的影响,而前馈—反馈控制利用反馈控制克服其他扰动,能够是被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。 3-4 过程控制系统过渡过程的质量指标包括哪些容?它们的定义是什么?哪些是静态指标?哪些是动态质量指标? 答:1. 余差(静态偏差)e:余差是指系统过渡过程结束以后,被控参数新的稳定值y(∞)

与给定值c 之差。它是一个静态指标,对定值控制系统。希望余差越小越好。 2. 衰减比n:衰减比是衡量过渡过程稳定性的一个动态质量指标,它等于振荡过程的第 一个波的振幅与第二个波的振幅之比,即: n <1系统是不稳定的,是发散振荡;n=1,系统也是不稳定的,是等幅振荡;n >1,系统是稳定的,若n=4,系统为4:1的衰减振荡,是比较理想的。 衡量系统稳定性也可以用衰减率φ 4.最大偏差A :对定值系统,最大偏差是指被控参数第一个波峰值与给定值C 之差,它衡量被控参数偏离给定值的程度。 5. 过程过渡时间ts :过渡过程时间定义为从扰动开始到被控参数进入新的稳态值的±5%或±3% (根据系统要求)围所需要的时间。它是反映系统过渡过程快慢的质量指标, t s 越小,过渡过程进行得越快。 6.峰值时间tp : 从扰动开始到过渡过程曲线到达第一个峰值所需要的时间,(根据系统要求)围所需要的时间。称为峰值时间tp 。它反映了系统响应的灵敏程度。 静态指标是余差,动态时间为衰减比(衰减率)、最大偏差、过程过渡时间、峰值时间。 第二章 思考题与习题 2-1 如图所示液位过程的输入量为Q1,流出量为Q2,Q3,液位h 为被控参数,C 为容量系数,并设R1、R2、R3均为线性液阻,要求: (1) 列出过程的微分方程组; (2) 求过程的传递函数W 0(S )=H (S )/Q 1(S ); (3) 画出过程的方框图。 解:(1)根据动态物料平衡关系,流入量=流出量: B B n ' = B B B '-= ?dt dh )Q Q (Q 321=+-h d ?

机械工程测试技术课后习题答案

第三章:常用传感器技术 3-1 传感器主要包括哪几部分?试举例说明。 传感器一般由敏感元件、转换元件、基本转换电路三部分组成。 如图所示的气体压力传感器。其内部的膜盒就是敏感元件,它的外部与大气压力相通,内部感受被测压力p ,当p 发生变化时,引起膜盒上半部分移动,可变线圈是传感器的转换元件,它把输入的位移量转换成电感的变化。基本电路则是完成上述电感变化量接入基本转换电路,便可转换成电量输出。 3-2 请举例说明结构型传感器与物性型传感器的区别。 答:结构型传感器主要是通过传感器结构参量的变化实现信号变换的。例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化。 物性型传感器则是利用敏感元件材料本身物理性质的变化来实现信号变换。例如,水银温度计是利用水银的热胀冷缩性质;压电式传感器是利用石英晶体的压电效应等。 3-3 金属电阻应变片与半导体应变片在工作原理上有何区别? 答: (1)金属电阻应变片是基于金属导体的“电阻应变效应”, 即电阻材料在外力作用下发生机械变形时,其电阻值发生变化的现象,其电阻的相对变化为()12dR R με=+; (2)半导体应变片是基于半导体材料的“压阻效应”,即电阻材料受到载荷作用而产生应力时,其电阻率发生变化的现象,其电阻的相对变化为dR d E R ρλερ == 。 3-4 有一电阻应变片(见图3-105),其灵敏度S 0=2,R =120Ω,设工作时其应变为1000με,问ΔR =?设将此应变片接成图中所示的电路,试求:1)无应变时电流指示值;2)有应变时电流指示值;3)试分析这个变量能否从表中读出? 解:根据应变效应表达式R /R =S g 得 R =S g R =2100010-6120=0.24 1)I 1=1.5/R =1.5/120=0.0125A=12.5mA 2)I 2=1.5/(R +R )=1.5/(120+0.24)0.012475A=12.475mA 3)电流变化量太小,很难从电流表中读出。如果采用高灵敏度小量程的微安表,则量程不够,无法测量12.5mA 的电流;如果采用毫安表,无法分辨0.025mA 的电流变化。一般需要电桥图3-105 题3-4图

电气测试技术-实验指导书

电气测试技术 实 验 指 导 书 河北科技师范学院 机械电子系电气工程教研室 二00六年十月

实验台组成及技术指标 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、15个(基本型)传感器和相应的实验模板、数据采集卡及处理软件、实验台桌六部分组成。 1、主控台部分:提供高稳定的±15V、+5V、±2V~±1OV可调、+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、频率、转速的3位半数显表。音频信号源(音频振荡器)0.4KHz~10KHz可调);低频信号源(低频振荡器)1Hz~3OHz(可调);气压源0~15kpa可调;高精度温度控制仪表(控制精度±0.5℃);RS232计算机串行接口;流量计。 2、三源板:装有振动台1Hz~3OHz(可调);旋转源0~2400转/分(可调);加热源<200℃(可调)。 3、传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流位移传感器、光纤位移传感器、光电转速传感器、集成温度传感器、K型热电偶、E型热电偶、Pt10O 铂电阻,共十五个。 4、实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 5、数据采集卡及处理软件:数据采集卡采用12位A/D转换、采样速度1500点/秒,采样速度可以选择,既可单采样亦能连续采样。标准RS-232接口,与计算机串行工作。提供的处理软件有良好的计算机显示界面,可以进行实验项目选择与编辑,数据采集,特性曲线的分析、比较、文件存取、打印等。 6、实验台桌尺寸为160O×8OO×280(mm),实验台桌上预留计算机及示波器安放位置。 注意事项: 1、迭插式接线应尽量避免拉扯,以防折断。 2、注意不要将从各电源、信号发生器引出的线对地(⊥)短路。 3、梁的振幅不要过大,以免引起损坏。 4、各处理电路虽有短路保护,但避免长时间短路。 5、最好为本仪器配备一台超低频双线示波器,最高频率≥1MHz,灵敏度不低于 2mV/cm。 6、 0.4~10KHZ信号发生器接低阻负载(小于100Ω),必须从L V接口引出。

(完整版)测试技术课后题答案

1-3 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。 (2)220 2 2 (2) ()()(2) 2(2)a j f t j f t at j f t e A A a j f X f x t e dt Ae e dt A a j f a j f a f -+∞ ∞ ---∞-∞-==== =-+++??πππππππ ()X f = Im ()2()arctan arctan Re ()X f f f X f a ==-π? 1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。 0cos ()0 ωt t T x t t T ?≥的频谱密度函数为 1122 1()()j t at j t a j X f x t e dt e e dt a j a ∞ ∞ ----∞ -= == =++? ?ωωω ωω 根据频移特性和叠加性得: []001010222200222 000222222220000()()11()()()22()()[()]2[()][()][()][()] a j a j X X X j j a a a a j a a a a ??---+= --+=-??+-++?? --= -+-+++-++ωωωωωωωωωωωωωωωωωω ωωωωωωωω

电气测试技术林德杰课后答案学习资料

电气测试技术林德杰 课后答案

1-1 答:应具有变换、选择、比较和选择4种功能。 1-2 答:精密度表示指示值的分散程度,用δ表示。δ越小,精密度越高;反之,δ越大,精密度越低。准确度是指仪表指示值偏离真值得程度,用ε表示。ε越小,准确度越高;反之,ε越大,准确度越低。精确度是精密度和准确度的综合反映,用τ表示。再简单场合,精密度、准确度和精确度三者的关系可表示为:τ=δ+ε。 1-5 答:零位测量是一种用被测量与标准量进行比较的测量方法。其中典型的零位测量是用电位差及测量电源电动势。其简化电路如右下图所示。图中,E 为工作电源,E N 为标准电源,R N 为标准电阻,E x 为被测电源。 测量时,先将S 置于N 位置,调节R P1,使电流计P 读书为零,则N N 1R E I =。然后将S 置于x 位置,调节R P2,使电流计P 读书为零,则x x R E I =2。由于两次测量均使电流计P 读书为零,因此有 N N N N 2 1E R R E R E x R x E I I x x = ?=? = 零位测量有以下特点: 1) 被测电源电动势用标准量元件来表示,若采用高精度的标准元件,可有效提高 测量精度。

2) 读数时,流经E N 、E x 的电流等于零,不会因为仪表的输入电阻不高而引起误 差。 3) 只适用于测量缓慢变化的信号。因为在测量过程中要进行平衡操作。 1-6答:将被测量x 与已知的标准量N 进行比较,获得微差△x ,然后用高灵敏度的直读史仪表测量△x ,从而求得被测量x =△x +N 称为微差式测量。由于△x <N ,△x <<x ,故测量微差△x 的精度可能不高,但被测量x 的测量精度仍然很高。 题2-2 解:(1) ΔA =77.8-80=-2.2(mA ) c =-ΔA =2.2(mA ) %.%.-%A ΔA γA 75210080 22100=?=?= (2)%.%x x m m m 221000=??= γ 故可定为s =2.5级。 题2-3解:采用式(2-9)计算。 (1)用表①测量时,最大示值相对误差为: %.%.x x % s m xm 0520 20050±=?±=±=γ (2)用表②测量时,最大示值相对误差为: %.%.x x % s m xm 75320 3052±=?±=±=γ 前者的示值相对误差大于后者,故应选择后者。 题2-4解:五位数字电压表±2个字相当于±0.0002V 。

现代测试技术课后习题详解答案 申忠如 西安交通大学出版社

现测课后习题答案 第1章 1. 直接的间接的 2. 测量对象测量方法测量设备 3. 直接测量间接测量组合测量直读测量法比较测量法时域测量频域测量数据域测量 4. 维持单位的统一,保证量值准确地传递基准量具标准量具工作用量具 5. 接触电阻引线电阻 6. 在对测量对象的性质、特点、测量条件(环境)认真分析、全面了解的前提下,根据对测量结果的准确度要求选择恰当的测量方法(方式)和测量设备,进而拟定出测量过程及测量步骤。 7. 米(m) 秒(s) 千克(kg) 安培(A) 8. 准备测量数据处理 9. 标准电池标准电阻标准电感标准电容 第2章 填空题 1. 系统随机粗大系统 2. 有界性单峰性对称性抵偿性 3. 置信区间置信概率 4. 最大引用0.6% 5. 0.5×10-1[100.1Ω,100.3Ω] 6. ± 7.9670×10-4±0.04% 7. 测量列的算术平均值 8. 测量装置的误差不影响测量结果,但测量装置必须有一定的稳定性和灵敏度 9. ±6Ω 10. [79.78V,79.88V]

计算题 2. 解: (1)该电阻的平均值计算如下: 1 28.504n i i x x n == =∑ 该电阻的标准差计算如下: ?0.033σ == (2)用拉依达准则有,测量值28.40属于粗大误差,剔除,重新计算有以下结果: 28.511?0.018x σ '='= 用格罗布斯准则,置信概率取0.99时有,n=15,a=0.01,查表得 0(,) 2.70g n a = 所以, 0?(,) 2.700.0330.09g n a σ =?= 可以看出测量值28.40为粗大误差,剔除,重新计算值如上所示。 (3) 剔除粗大误差后,生于测量值中不再含粗大误差,被测平均值的标准差为: ?0.0048σσ ''== (4) 当置信概率为0.99时,K=2.58,则 ()0.012m K V σ'?=±=± 由于测量有效位数影响,测量结果表示为 28.510.01x x m U U V =±?=± 4. 解: (1) (2) 最大绝对误差?Um=0.4,则最大相对误差=0.4%<0.5% 被校表的准确度等级为0.5 (3) Ux=75.4,测量值的绝对误差:?Ux=0.5%× 100=0.5mV

电气测试技术第三版_课后习题答案(林德杰)

电气测试技术第三版_课后习题答案(林德杰) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

l第一章思考题与习题 1-2 图1.6为温度控制系统,试画出系统的框图,简述其工作原理;指出被控过程、被控参数和控制参数。 解:乙炔发生器中电石与冷水相遇产生乙炔气体 并释放出热量。当电石加入时,内部温度上升,温度 检测器检测温度变化与给定值比较,偏差信号送到控 制器对偏差信号进行运算,将控制作用于调节阀,调 节冷水的流量,使乙炔发生器中的温度到达给定值。 系统框图如下: 被控过程:乙炔发生器 被控参数:乙炔发生器内温度 控制参数:冷水流量 1-3 常用过程控制系统可分为哪几类? 答:过程控制系统主要分为三类: 1. 反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。它是最常用、最基本的过程控制系统。 2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。由于没有被控量的反馈,所以是一种开环控制系统。由于是开环系统,无法检查控制效果,故不能单独应用。 3. 前馈-反馈控制系统:前馈控制的主要优点是能够迅速及时的克服主要扰动对被控量的影响,而前馈—反馈控制利用反馈控制克服其他扰动,能够是被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。 3-4 过程控制系统过渡过程的质量指标包括哪些内容它们的定义是什么哪些是静态指标哪些是动态质量指标

答:1. 余差(静态偏差)e :余差是指系统过渡过程结束以后,被控参数新的稳定值y(∞)与给定值c 之差。它是一个静态指标,对定值控制系统。希望余差越小越好。 2. 衰减比n:衰减比是衡量过渡过程稳定性的一个动态质量指标,它等于振荡过程的第 一个波的振幅与第二个波的振幅之比,即: n <1系统是不稳定的,是发散振荡;n=1,系统也是不稳定的,是等幅振荡;n >1,系统是稳定的,若n=4,系统为4:1的衰减振荡,是比较理想的。 衡量系统稳定性也可以用衰减率φ 4.最大偏差A :对定值系统,最大偏差是指被控参数第一个波峰值与给定值C 之差,它衡量被控参数偏离给定值的程度。 5. 过程过渡时间ts :过渡过程时间定义为从扰动开始到被控参数进入新的稳 态值的±5%或±3% (根据系统要求)范围内所需要的时间。它是反映系统过渡过程快慢的质量指标,t s 越小,过渡过程进行得越快。 6.峰值时间tp : 从扰动开始到过渡过程曲线到达第一个峰值所需要的时间,(根据系统要求)范围内所需要的时间。称为峰值时间tp 。它反映了系统响应的灵敏程度。 静态指标是余差,动态时间为衰减比(衰减率)、最大偏差、过程过渡时间、峰值时间。 第二章 思考题与习题 2-1 如图所示液位过程的输入量为Q1,流出量为Q2,Q3,液位h 为被控参数,C 为容量系数,并设R1、R2、R3均为线性液阻,要求: (1) 列出过程的微分方程组; (2) 求过程的传递函数W 0(S )=H (S )/Q 1(S ); (3) 画出过程的方框图。 B B n ' = B B B '-= ?

机械工程测试技术课后习题答案

机械工程测试技术课后 习题答案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

第三章:常用传感器技术 3-1 传感器主要包括哪几部分?试举例说明。 传感器一般由敏感元件、转换元件、基本转换电路三部分组成。 如图所示的气体压力传感器。其内部的膜盒就是敏感元件,它的外部与大气压力相通,内部感受被测压力p ,当p 发生变化时,引起膜盒上半部分移动,可变线圈是传感器的转换元件,它把输入的位移量转换成电感的变化。基本电路则是完成上述电感变化量接入基本转换电路,便可转换成电量输出。 3-2 请举例说明结构型传感器与物性型传感器的区别。 答:结构型传感器主要是通过传感器结构参量的变化实现信号变换的。例如,电容式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起自感或互感的变化。 物性型传感器则是利用敏感元件材料本身物理性质的变化来实现信号变换。例如,水银温度计是利用水银的热胀冷缩性质;压电式传感器是利用石英晶体的压电效应等。 3-3 金属电阻应变片与半导体应变片在工作原理上有何区别? 答: (1)金属电阻应变片是基于金属导体的“电阻应变效应”, 即电阻材料在外力作用下发生机械变形时,其电阻值发生变化的现象,其电阻的相对变化为()12dR R με=+; (2)半导体应变片是基于半导体材料的“压阻效应”,即电阻材料受到载荷作用而产生应力时,其电阻率发生变化的现象,其电阻的相对变化为dR d E R ρλερ == 。 3-4 有一电阻应变片(见图3-105),其灵敏度S 0=2,R =120Ω,设工作时其 应变为1000με,问ΔR =?设将此应变片接成图中所示的电路,试求:1)无应变时电流指示值;2)有应变时电流指示值;3)试分析这个变量能否从表中读出? 解:根据应变效应表达式R /R =S g 得 R =S g R =2100010-6120=0.24 1)I 1=1.5/R =1.5/120=0.0125A=12.5mA 2)I 2=1.5/(R +R )=1.5/(120+0.24)0.012475A=12.475mA 图3-105 题3-4图

电气测试技术课程设计参考题目

电气测试技术课程设计参考题目 1.设计一个自动量测啤酒等液体灌装流水线上成品瓶数的装置,要求手控启动后从0开始 由LED数码管显示其动态值。(提示:需要考虑发送距离;背景光变化所产生的误计数; 瓶子抖动产生重复计数等因素对装置所造成的影响) 2.设计一个检测汽车司机饮酒程度的仪器。分为十档,用一个数码管显示,要求能抗汽油 味干扰。采用的方法是测量司机呼出气体中的酒精含量,若其含量<100ppm,则为0档。 以后含量每增加300ppm就加一档。(提示:传感器可考虑选用QM系列半导体气敏传感器,可考虑用已知体积的带盖密封瓶中加不同量酒精的方法做定标用的信号源)) 3.设计一个厨房可燃性气体泄漏情况的检测报警装置。当厨房中天然气(CH 4 )或液化石油 气(C 4H 10 )浓度大于某个数值(例1000ppm)时,用蜂鸣器报警并发出控制信号,启动 抽油烟机。 4.设计一个花木温室的温度采集系统。每10分钟测温一次,24小时连续采集,数据存入 内存。每隔24小时把数据输出给电平记录仪并画出24小时中的温度变化曲线,接着再进行下一次测温循环。 5.用单片机8031组成8路温度巡回检测系统。最远测点距离为100m,温度测量范围0~ 100℃,温度分辨率为0.5℃,环境共模噪声为5V,要求每秒钟至少测一次。每路可设置温度的上限值和下限值,并在超出其范围时发报警信号。各路最近1分钟内的测量结果及其最高、最低和平均温度存在内存区,以供主机取用。(提示:因温度变化慢,采样保持可考虑不要;因远距离传输,可考虑把电压信号转换为电流信号) 6.设计峰值检测电路:传感器输入信号的测量范围为1μV~10μV,10μV ~100μV,100 μV ~1mV,1mV~10mV;设计程控放大器,利用程控放大器将传感器的输入信号放大为0~1.999V,供A/D转换用;设计自动切换量程电路,完成各种量程的转换。 7.在生物培育室、蔬菜大棚等场合,对温度有一定要求。如果温度太高,则应及时采取降 温措施;如果温度太低,则应及时采取升温措施。为了便于及时了解温度是否正常,可使用温度报警器。要求如下: ⑴ 0℃~30℃,5℃为一档显示; ⑵高于30℃,发出1kHz声响,同时打开电扇继电器;当低于28℃,停止; ⑶低于10℃,发出1kHz间歇声响,同时打开加热器;当高于12℃,停止。 8 .设计一个可以演奏乐曲的红外线遥控电子门铃,设计要求:

测试技术部分课后习题参考答案

第1章测试技术基础知识 1.4常用的测呈结果的表达方式有哪3种?对某量进行了8次测量,测得值分别为:8 2.40、 82.43、82.50、82.48、82.45、82.38、82.42、82.46 0试用3 种表达方式表示其测量结果。 解:常用的测量结果的表达方式有基于极限误差的表达方式、基于/分布的表达方式和基于不确怎度的表达方式等3种 1)基于极限误差的表达方式可以表示为 均值为 因为最大测量值为82.50,最小测量值为82.38,所以本次测量的最大误差为0.06.极限误差戈m取为最大误差的两倍,所以 忑=82.44 ±2x 0.06 = 82.44 ±0.12 2)基于/分布的表达方式可以表示为 一A = X ± S

= 0.014 自由度“8-1 = 7,置信概率0 = 0.95,查表得f 分布值0 = 2.365,所以 x () = 82.44 ± 2.365 x 0.014 = 82.44 ± 0.033 3)基于不确定度的表达方式可以表示为 所以 X O =82.44±O.O14 解題思路:1)给岀公式;2)分别讣算公式里而的各分项的值;3)将值代入公式,算岀结 果。 第2章信号的描述与分析 2.2 一个周期信号的傅立叶级数展开为 含有正弦项的形式。 解^基波分量为 2JT T I 120JT . n ——cos —r + sin —r 10 4 30 4 所以:1)基频 co {} = - (rad / s) 4 2)信号的周期7 = —= 8(5) 5 — A — =X±(7x = X± 求: 曲)=4 + £( /I-1 2 K /? rm os —1 + 10 4 120”兀.fin ---- sin ——/) 30 4 (/的单位是秒) 1) ^(): 2)信号的周期:3)信号的均值; 4)将傅立叶级数表示成只 y(r)h ?]=

电气测量技术的现状及发展

电气测量技术的现状及发展 摘要:电子自动化测量设备是实现电气自动化的重要组成部分,科学技术的迅速发展,为电气自动化测量设备的更新和进步提供了技术支持。随着科学技术的迅猛发展,电气设备发展日新月异。尤其是以计算机、信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计、制造技术不断吸收信息控制、材料、能源及管理等领域的现代成果,综合应用于产品设计、制造、检测、生产管理和售后服务。这些领域的发展,离不开测量。其中,国防更是离不开测量。电气测量技术的现状与发展令人堪忧。 关键字:电气现状应用发展测量 正文: 我国仪器科技的发展现状:测量技术与仪器涉及所有物理量的测量,对于材料、工程科学、能源科学关系密切。由于长期习惯仿制国外产品,我国的仪器仪表工业缺乏创新能力,跟不上科学研究和工程建设的需要。我国仪器科学与技术研究领域积累了大量科研成果,许多成果处于国际领先水平,有待筛选、提高和转化,但产业化程度很低,没有形成具有国际竞争力的完整产业。 1、电气测量技术的现状 目前,我国电气自动化测量技术虽然取得了一定的进步,但是整体发展水平还是落后的。首先,仪器仪表与测量控制现状同国际先进水平相比,还存在着很大的差距。差距是全方位的,最主要的有如下三点:我国仪器仪表产业规模小、产值低;于我国仪器仪表产品质量上、品种上还存在不少问题,产品的可靠性和稳定性,长期以来没有得到根本解决,严重影响到市场销售和正常使用,许多大型精密仪器我国还生产不出来,国内需求的满足几乎全部依赖进口;我国仪器仪表产业创新能力不强,还无法承担起科技创新主体的责任。国际上仪器仪表科技创新发展极快,而我国仪器仪表产品不少还沿自于20 世纪80 年代技术引进的

测试技术课后题部分答案

1.1简述测量仪器的组成与各组成部分的作用 答:感受件、中间件和效用件。感受件直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号;中间件将传感器的输出信号经处理后传给效用件,放大、变换、运算;效用件的功能是将被测信号显示出来。 1.2测量仪器的主要性能指标及各项指标的含义是什么 答:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。精确度表示测量结果与真值一致的程度;恒定度为仪器多次重复测量时,指示值的稳定程度;灵敏度以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例表示;灵敏度阻滞又称感量,是足以引起仪器指针从静止到做微小移动的被测量的变化值;指示滞后时间为从被测参数发生改变到仪器指示出该变化值所需时间,或称时滞。 2.3试述常用的一、二阶测量仪器的传递函数及它的实例 答:一阶测量仪器如热电偶;二阶测量仪器如测振仪。 2.4试述测量系统的动态响应的含义、研究方法及评价指标。 答:测量系统的动态响应是用来评价系统正确传递和显示输入信号的指标。研究方法是对系统输入简单的瞬变信号研究动态特性或输入不同频率的正弦信号研究频率响应。评价指标为时间常数τ(一阶)、稳定时间t s和最大过冲量A d(二阶)等。 2.6试说明二阶测量系统通常取阻尼比ξ=0.6~0.8范围的原因 答:二阶测量系统在ξ=0.6~0.8时可使系统具有较好的稳定性,而且此时提高系统的固有频率ωn会使响应速率变得更快。 3.1测量误差有哪几类?各类误差的主要特点是什么? 答:系统误差、随机误差和过失误差。系统误差是规律性的,影响程度由确定的因素引起的,在测量结果中可以被修正;随机误差是由许多未知的或微小因素综合影响的结果,出现与否和影响程度难以确定,无法在测量中加以控制和排除,但随着测量次数的增加,其算术平均值逐渐接近零;过失误差是一种显然与事实不符的误差。 3.2试述系统误差产生的原因及消除方法 答:仪器误差,安装误差,环境误差,方法误差,操作误差(人为误差),动态误差。消除方法:交换抵消法,替代消除法,预检法等。 3.3随机误差正态分布曲线有何特点? 答:单峰性、对称性、有限性、抵偿性。 4.1什么是电阻式传感器?它主要分成哪几种? 答:电阻式传感器将物理量的变化转换为敏感元件电阻值的变化,再经相应电路处理之后转换为电信号输出。分为金属应变式、半导体压阻式、电位计式、气敏式、湿敏式。 4.2用应变片进行测量时为什么要进行温度补偿?常用的温度补偿方法有哪几种? 答:在实际使用中,除了应变会导致应变片电阻变化之外,温度变化也会使应变片电阻发生误差,故需要采取温度补偿措施消除由于温度变化引起的误差。常用的温度补偿方法有桥路补偿和应变片自补偿两种。 4.4什么是电感式传感器?简述电感式传感器的工作原理 答:电感式传感器建立在电磁感应的基础上,是利用线圈自感或互感的变化,把被测物理量转换为线圈电感量变化的传感器。 4.5什么是电容式传感器?它的变换原理如何 答:电容式传感器是把物理量转换为电容量变化的传感器,对于电容器,改变ε ,d和A都会 r 影响到电容量C,电容式传感器根据这一定律变换信号。 4.8说明磁电传感器的基本工作原理,它有哪几种结构形式?在使用中各用于测量什么物理量?

电气测试技术林德杰课后答案

电气测试技术课后答案 第一章 测量仪表应具有哪些基本功能? 应具有变换、选择、比较和选择 4种功能。 精密度、准确度和精确度的定义 及其三者的相互关系如何? S 表示。S 越小,精密度越高;反之,S 越 £表示。£越小,准确 度 &越大,准确度越低。精确度是精密度和准确度的综合反映,用 T 表示。 T = S + £ 0 1-5举例分析零位测量原理,并分析零位测量的特点。 答:零位测量是一种用被测量与标准量进行比较的测量方法。 是用电位差及测量电源电动势。其简化电路如右下图所示。图中, 准电源,F N 为标准电阻,&为被测电源。 测量时,先将S 置于N 位置,调节F P1,使电流计P 读书为零,则11 E N /R N 。然后 将S 置于x 位置,调节Fk ,使电流计P 读书为零,则12 E x/R x 。由于两次测量均 使电流计P 读书为零,因此有 零位测量有以下特点: 1) 被测电源电动势用标准量元件来表示,若采用高精度的标准元件,可有效提高测 量精度。 2) 读数时,流经E N E x 的电流等于零,不会因为仪表的输入电阻不高而引起误差。 3) 只适用于测量缓慢变化的信号。因为在测量过程中要进行平衡操作。 1-6在微差式测量中,为什么说微差^ x 的精度可能不高,但被测量x 的测量精度仍 很高。请证明之。 答:将被测量x 与已知的标准量N 进行比较,获得微差△ x ,然后用高灵敏度的直读 史仪表测量△ x ,从而求得被测量 *△ x+N 称为微差式测量。由于△ x < ",△ XVV x,故 测量微差^ x 的精度可能不高,但被测量x 的测量精度仍然很高。 第二章 △ A = 77.8 — 80= — 2.2 (mA =—△ A = 2.2 ( mA om 旦 100% 2.2% 1-1 答: 1-2 答:精密度表示指示值的分散程度,用 大,精密度越低。准确度是指仪表指示值偏离真值得程度,用 越高;反之, 再简单场合,精密度、准确度和精确度三者的关系可表示为: 其中典型的零位测量 E 为工作电源,E N 为标 题2-2 解: (1) c

测试技术课后题答案8力

习题8 8.2一等强度梁上、下表面贴有若干参数相同的应变片,如题图8.1 所示。 题图8.1 梁材料的泊松比为μ,在力P的作用下,梁的轴向应变为ε,用静态应变仪测量时,如何组桥方能实现下列读数? a)ε;b) (1+μ)ε;c) 4ε;d) 2(1+μ)ε;e) 0;f) 2ε 解: 本题有多种组桥方式,例如图所示。 8.2如题图8.2所示,在一受拉弯综合作用的构件上贴有四个电阻应变片。试分析各应变片感受的应变,将其值填写在应变表中。并分析如何组桥才能进行下述测试:(1) 只测弯矩,消除拉应力的影响;(2) 只测拉力,消除弯矩的影响。电桥输出各为多少?

题图8.2 解 组桥如图。 设构件上表面因弯矩产生的应变为ε,材料的泊松比为μ,供桥电压为u0,应变片的灵敏度系数为K。 各应变片感受的弯应变如题表8.1-1。 题表8.1-1 R1R2R3R4 -μεε-εμε 可得输出电压 )] 1(2[ 4 1 ] ( ) ( [ 4 1 με με με ε ε+ = - - + - - =K u K u u y 其输出应变值为) 1(2με + (1)组桥如题图。 2

3 设构件上表面因拉力产生的应变为ε,其余变量同(1)的设定。 各应变片感受的应变如 题表8.1-2。 可得输出电压 )] 1(2[4 1 ]()([4100μεμεε μεε+=--+--= K u K u u y 输出应变值为 )1(2με+ 8.4 用YD -15型动态应变仪测量钢柱的动应力,测量系统如题图10.3所示,若R 1=R 2=120Ω,圆柱轴向应变为220με,μ=0.3,应变仪外接负载为R fz =16Ω,试选择应变仪衰减档,并计算其输出电流大小。(YD -15型动态应变仪的参数参见题表8.3-1和8.3-2。) 解 电桥输出应变 286220)3.011仪=?+=+=()(εμεμε 由题表8.3-1选衰减档3。

《电气测试技术》-复习

电气测试技术—复习 1、石英晶体为例简述压电效应产生的原理 2、如图所示变压器式传感器差分整流电路全波电压输出原理图,试分析其工作原理。 3、证明①(线性)电位器式传感器由于测量电路中负载电阻R L带来的负载误差 % %=100 1 1 1 100 U U U L L ? ? ? ? ? ? ? + - ? - = r) - mr(1 δ,假设 max x R R r=; L max R R m=。 4、试证明热电偶的中间导体定律 5、由热电偶工作原理可知,热电偶输出热电势和工作端与冷端的温差有关,在实际的测量过程中,要对热电偶冷端温度进行处理,经常使用能自动补偿冷端温度波动的补偿电桥,如图所示,试分析此电路的工作原理

6、测得某检测装置的一组输入输出数据如下: X 0.9 2.5 3.3 4.5 5.7 6.7 Y 1.1 1.6 2.6 3.2 4.0 5.0 试用最小二乘法拟合直线,求其线性度和灵敏度 7、霍尔元件采用分流电阻法的温度补偿电路,如图所示。试详细推导和分析分流电阻法。 8、采用四片相同的金属丝应变片(K=2),将其贴在实心圆柱形测力弹性元件上。力F=1000kg。圆柱断面半径r=1cm,E=2×107N/cm2,μ=0.3。求: (1)画出应变片在圆柱上贴粘位置和相应测量桥路原理图; (2)各应变片的应变 的值,电阻相对变化量; (3)若U=6V,桥路输出电压U0; (4)此种测量方式能否补偿环境温度的影响,说明理由。

9、一台变间隙式平板电容传感器,其极板直径D=8mm,极板间初始间距d0=1mm.,极板间介质为空气,其介电常数ε0=8.85×10-12F/m。试求: (1)初始电容C0; (2)当传感器工作时,间隙减小?d=10μm,则其电容量变化?C; (3)如果测量电路的灵敏K u=100mV/pF,则在?d=±1μm时的输出电压U0。10、热电阻测量电路采用三线连接法,测温电桥电路如图所示。 (1)试说明电路工作原理; (2)已知R t是P t100铂电阻,且其测量温度为t=50℃,试计算出R t的值和R a 的值; (3)电路中已知R1、R2、R3和E,试计算电桥的输出电压V AB。 (其中(R1=10KΩ,R2=5KΩ,R3=10KΩ,E=5V,A=3.940×10-3/℃,B=-5.802×10-7/℃,C=-4.274×10-12/℃)

测试技术习题答案版

测试技术复习题 一、填空题: 1.一阶系统的时间常数为T,被测信号的频率为1/T,则信号经过测试系统后,输出 信号与输入信号的相位差为(-45 度). 2.一阶系统的动特性参数是(),为使动态响应快,该参数(越小越好)。 3.周期信号的频谱是离散的,同时周期信号具有(谐波性)和(收敛性)特性。 4.周期信号的频谱具有(离散)特点,瞬变非周期信号的频谱具有(对称)特点。 5.模似信号是指时间和幅值都具有(连续)特性的信号。 6.信号在时域被压缩,则该信号在频域中的(低频)成分将增加。 7.X(F)为x(t)的频谱,W(F)为矩形窗函数w(t)的频谱,二者时域相乘,则频域可表示 为(X(F)* W(F)),该乘积后的信号的频谱为(连续)频谱。 8.根据采样定理,被测信号的频率f1与测试系统的固有频率f2关系是(f2>2f1)。 9.正弦信号的自相关函数是一个同频的(余弦)函数。 10.对二阶系统输入周期信号x(t) =a cos(wt+q),则对应的输出信号的频率(不变),输 出信号的幅值(震荡或衰减),输出信号的相位(延迟)。 11.时域是实偶函数的信号,其对应的频域函数是(实偶)函数。 12.频域是虚奇函数的信号,其对应的时域函数是(实奇)函数。 13.引用相对误差为0.5%的仪表,其精度等级为(0.5 )级。 14.某位移传感器测量的最小位移为0.01mm,最大位移为1mm,其动态线性范围(或 测量范围)是(40 )dB。 15.测试装置输出波形无失真但有时间延迟t的有失真测试条件是:装置的幅频特性为 (常数),相频特性为(与为线性关系);输出波形既不失真又无延迟的条件是:幅频特性为(常数),相频特性为()。 16.系统实现动态测试不失真的频率响应特性满足权函数,幅值或时延。 17.若采样频率过低,不满足采样定理,则采样离散信号的频谱会发生(混叠)现 象。对连续时域信号作加窗截断处理,必然会引起频谱的(泄露)现象。 18.若信号满足y(t)=kx(t)关系,其中k常数,则其互相关系数p xy()=(1 ). 19.频率不同的两个正弦信号,其互相关函数Rxy()=( 0). 20.同频的正弦函数和余弦函数,其互相关函数Rxy()=(1). 21.周期信号的频谱是离散频谱,各频率成分是基频的整数倍。 22.双边谱的幅值为单边谱幅值的1/2 。 23.自相关函数是偶(奇或偶)函数,其最大值发生在τ= 0 时刻,当 时延趋于无穷大时,周期信号的自相关函数仍然是同频率的周期信号。 24.概率密度函数是在幅值域上对信号的描述,相关函数是在时延域 上对信号的描述。 25.自相关函数的傅立叶变换是自功率谱密度函数。

相关文档
最新文档